1
|
Yang Y, Chang W, Ding J, Xu H, Wu X, Ma L, Xu Y. Effects of different modalities of transcranial magnetic stimulation on post-stroke cognitive impairment: a network meta-analysis. Neurol Sci 2024; 45:4399-4416. [PMID: 38600332 DOI: 10.1007/s10072-024-07504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE The study aimed to evaluate, using a network meta-analysis, the effects of different transcranial magnetic stimulation (TMS) modalities on improving cognitive function after stroke. METHODS Computer searches of the Cochrane Library, PubMed, Web of Science, Embass, Google Scholar, CNKI, and Wanfang databases were conducted to collect randomized controlled clinical studies on the use of TMS to improve cognitive function in stroke patients, published from the time of database construction to November 2023. RESULTS A total of 29 studies and 2123 patients were included, comprising five interventions: high-frequency rTMS (HF-rTMS), low-frequency rTMS (LF-rTMS), intermittent theta rhythm stimulation (iTBS), sham stimulation (SS), and conventional rehabilitation therapy (CRT). A reticulated meta-analysis showed that the rankings of different TMS intervention modalities in terms of the Montreal Cognitive Assessment (MoCA) scores, Mini-Mental State Examination scores (MMSE), and Modified Barthel Index (MBI) scores were: HF-rTMS > LF-rTMS > iTBS > SS > CRT; the rankings of different TMS intervention modalities in terms of the event-related potential P300. amplitude scores were HF-rTMS > LF-rTMS > iTBS > CRT > SS; the rankings of different TMS intervention modalities in terms of the P300 latency scores were: iTBS > HF-rTMS > LF-rTMS > SS > CRT. Subgroup analyses of secondary outcome indicators showed that HF-rTMS significantly improved Rivermead Behavior Memory Test scores and Functional Independence Measurement-Cognitive scores. CONCLUSIONS High-frequency TMS stimulation has a better overall effect on improving cognitive functions and activities of daily living, such as attention and memory in stroke patients.
Collapse
Affiliation(s)
- Yulin Yang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wanpeng Chang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiangtao Ding
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hongli Xu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Wu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lihong Ma
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yanwen Xu
- Ergonomics and Vocational Rehabilitation Lab, College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Rehabilitation Medicine, Wuxi , 9Th Affiliated Hospital of Soochow University, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
2
|
Abomosallam M, Hendam BM, Abdallah AA, Refaat R, Elshatory A, Gad El Hak HN. Neuroprotective effect of piracetam-loaded magnetic chitosan nanoparticles against thiacloprid-induced neurotoxicity in albino rats. Inflammopharmacology 2023; 31:943-965. [PMID: 36745244 PMCID: PMC10140136 DOI: 10.1007/s10787-023-01151-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/27/2023] [Indexed: 02/07/2023]
Abstract
Thiacloprid (TH) is a neurotoxic agricultural insecticide and potential food contaminant. The purpose of this study was to investigate the relationship between TH exposure and memory dysfunction in rats, as well as the potential protective effect of piracetam and piracetam-loaded magnetic chitosan nanoparticles (PMC NPs). Rats were divided into five equal groups (six rats/group). The control group received saline. Group II was treated with PMC NPs at a dose level of 200 mg/kg body weight (Bwt); Group III was treated with 1/10 LD50 of TH (65 mg/kg Bwt); Group IV was treated with TH (65 mg/kg Bwt) and piracetam (200 mg/kg Bwt); Group V was co-treated with TH (65 mg/kg Bwt) and PMC NPs (200 mg/kg Bwt). All animal groups were dosed daily for 6 weeks by oral gavage. Footprint analysis, hanging wire test, open field test, and Y-maze test were employed to assess behavioral deficits. Animals were euthanized, and brain tissues were analyzed for oxidative stress biomarkers, proinflammatory cytokines, and gene expression levels of glial fibrillary acidic protein (GFAP), amyloid-beta precursor protein (APP), B-cell lymphoma 2 (Bcl-2), and caspase-3. Brain and sciatic nerve tissues were used for the evaluation of histopathological changes and immunohistochemical expression of tau protein and nuclear factor kappa B (NF-κB), respectively. The results revealed that TH-treated rats suffered from oxidative damage and inflammatory effect on the central and peripheral nerves. The administration of PMC NPs considerably protected against TH-induced neuronal damage, increased antioxidant enzyme activity, decreased inflammatory markers, and improved behavioral performance than the group treated with piracetam. The neuroprotective effect of PMC NPs was mediated through the inhibition of GFAP, APP, caspase-3, Tau, and NF-κB gene expression with induction of Bcl-2 expression. In conclusion, TH could induce oxidative stress, inflammatory and neurobehavior impairment in rats. However, PMC NPs administration markedly mitigated TH-induced brain toxicity, possibly via oxidative and inflammatory modulation rather than using piracetam alone.
Collapse
Affiliation(s)
- Mohamed Abomosallam
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma M Hendam
- Husbandry and Development of Animal Wealth Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amr A Abdallah
- Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, 12619, Egypt
| | - Rasha Refaat
- Phytochemistry and Plant Systematics Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Ahmed Elshatory
- Forensic Medicine and Clinical Toxicology Department, School of Medicine, Cairo University, Cairo, 11865, Egypt
| | | |
Collapse
|
3
|
Liu M, Bao G, Bai L, Yu E. The role of repetitive transcranial magnetic stimulation in the treatment of cognitive impairment in stroke patients: A systematic review and meta-analysis. Sci Prog 2021; 104:368504211004266. [PMID: 33827345 PMCID: PMC10455033 DOI: 10.1177/00368504211004266] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stroke is a global health problem, and survivors of a stroke often suffer from cognitive impairment, which has an essential impact on the rehabilitation of various functions. Repetitive Transcranial Magnetic Stimulation (rTMS) has been widely used in the rehabilitation treatment of stroke patients. There are many investigations into how rTMS impacts motor dysfunction, speech dysfunction and swallowing dysfunction after stroke, but the analysis of rehabilitation effect on stroke patients with cognitive dysfunction is lacking. The purpose of this study was to analyze the effect of different rTMS related therapies on cognitive impairment and to evaluate its clinical effect on cognitive rehabilitation after stroke. Four databases including PubMed, EMBASE, MEDLINE and the Cochrane Library, were searched and a total of 2754 papers were collected. Two reviewers independently completed a review of all papers' titles and abstracts, screened out the documents that met the criteria, and carried out data extraction, quality assessment, and data analysis. A total of six studies with 197 patients were included. Three studies used the Mini-Mental Status Examination (MMSE) scale to evaluate the cognitive function with a mean effect size of 1.89 (95% CI = -3.08-6.86). Two studies used the Loewenstein Occupational Therapy of Cognitive Assessment (LOTCA) scale with the mean effect size of 1.64 (95% CI = -7.65-10.93). These studies were evaluated separately. Our article provides that rTMS has a positive effect on improving the cognitive ability of stroke patients, but the evidence is still limited, and further large-scale studies are needed to explore the optimal stimulus parameters.
Collapse
Affiliation(s)
- Mengting Liu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Guanai Bao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lu Bai
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Enyan Yu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Jawaid T, . K, Kamal M, Verma N, A. Alkhame O, Alaseem AM, M. Alsanad S. Neuroprotective Effects of Co-Administration of Selegiline with Piracetam on Cognitive Impairment: Involvement of NR2B, NR1 and Bax Signaling Pathway. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.529.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Abstract
BACKGROUND AND OBJECTIVE Cerebral ischemia affects hepatic enzymes and brain permeability extensively. Piracetam was investigated up to phase III of clinical trials and there is lack of data on brain penetration in cerebral ischemic condition. Thus, knowledge of the pharmacokinetics and brain penetration of piracetam during ischemic condition would aid to improve pharmacotherapeutics in ischemic stroke. METHODS Focal cerebral ischemia was induced by middle cerebral artery occlusion for 2 h in male Wistar rats followed by reperfusion. After 24 h of middle cerebral artery occlusion or 22 h of reperfusion, piracetam was administered for pharmacokinetic, brain penetration, and pharmacological experiments. In pharmacokinetic study, blood samples were collected at different time points after 200-mg/kg (oral) and 75-mg/kg (intravenous) administration of piracetam through right external jugular vein cannulation. In brain penetration study, the cerebrospinal fluid, systemic blood, portal blood, and brain samples were collected at pre-designated time points after 200-mg/kg oral administration of piracetam. In a separate experiment, the pharmacological effect of the single oral dose of piracetam in middle cerebral artery occlusion was assessed at a dose of 200 mg/kg. RESULTS All the pharmacokinetic parameters of piracetam including area under curve (AUC0-24), maximum plasma concentration (C max), time to reach the maximum plasma concentration (t max), elimination half-life (t 1/2), volume of distribution (V z), total body clearance, mean residence time, and bioavailability were found to be similar in ischemic stroke condition except for brain penetration. Piracetam exposure (AUC0-2) in brain and CSF were found to be 2.4- and 3.1-fold higher, respectively, in ischemic stroke compared to control rats. Piracetam significantly reduced infarct volume by 35.77% caused by middle cerebral artery occlusion. CONCLUSIONS There was no change in the pharmacokinetic parameters of piracetam in the ischemic stroke model except for brain penetration. This indicates that variables influencing brain penetration may not be limiting factors for use of piracetam in ischemic stroke.
Collapse
|
6
|
Uncensored EEG: The role of DC potentials in neurobiology of the brain. Prog Neurobiol 2018; 165-167:51-65. [PMID: 29428834 DOI: 10.1016/j.pneurobio.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/24/2017] [Accepted: 02/03/2018] [Indexed: 12/11/2022]
Abstract
Brain direct current (DC) potentials denote sustained shifts and slow deflections of cerebral potentials superimposed with conventional electroencephalography (EEG) waves and reflect alterations in the excitation level of the cerebral cortex and subcortical structures. Using galvanometers, such sustained displacement of the EEG baseline was recorded in the early days of EEG recordings. To stabilize the EEG baseline and eliminate artefacts, EEG was performed later by voltage amplifiers with high-pass filters that dismiss slow DC potentials. This left slow DC potential recordings as a neglected diagnostic source in the routine clinical setting over the last few decades. Brain DC waves may arise from physiological processes or pathological phenomena. Recordings of DC potentials are fundamental electro-clinical signatures of some neurological and psychological disorders and may serve as diagnostic, prognostic, and treatment monitoring tools. We here review the utility of both physiological and pathological brain DC potentials in different aspects of neurological and psychological disorders. This may enhance our understanding of the role of brain DC potentials and improve our fundamental clinical and research strategies for brain disorders.
Collapse
|
7
|
D'Agata F, Peila E, Cicerale A, Caglio MM, Caroppo P, Vighetti S, Piedimonte A, Minuto A, Campagnoli M, Salatino A, Molo MT, Mortara P, Pinessi L, Massazza G. Cognitive and Neurophysiological Effects of Non-invasive Brain Stimulation in Stroke Patients after Motor Rehabilitation. Front Behav Neurosci 2016; 10:135. [PMID: 27445730 PMCID: PMC4919333 DOI: 10.3389/fnbeh.2016.00135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
The primary aim of this study was to evaluate and compare the effectiveness of two specific Non-Invasive Brain Stimulation (NIBS) paradigms, the repetitive Transcranial Magnetic Stimulation (rTMS), and transcranial Direct Current Stimulation (tDCS), in the upper limb rehabilitation of patients with stroke. Short and long term outcomes (after 3 and 6 months, respectively) were evaluated. We measured, at multiple time points, the manual dexterity using a validated clinical scale (ARAT), electroencephalography auditory event related potentials, and neuropsychological performances in patients with chronic stroke of middle severity. Thirty four patients were enrolled and randomized. The intervention group was treated with a NIBS protocol longer than usual, applying a second cycle of stimulation, after a washout period, using different techniques in the two cycles (rTMS/tDCS). We compared the results with a control group treated with sham stimulation. We split the data analysis into three studies. In this first study we examined if a cumulative effect was clinically visible. In the second study we compared the effects of the two techniques. In the third study we explored if patients with minor cognitive impairment have most benefit from the treatment and if cognitive and motor outcomes were correlated. We found that the impairment in some cognitive domains cannot be considered an exclusion criterion for rehabilitation with NIBS. ERP improved, related to cognitive and attentional processes after stimulation on the motor cortex, but transitorily. This effect could be linked to the restoration of hemispheric balance or by the effects of distant connections. In our study the effects of the two NIBS were comparable, with some advantages using tDCS vs. rTMS in stroke rehabilitation. Finally we found that more than one cycle (2-4 weeks), spaced out by washout periods, should be used, only in responder patients, to obtain clinical relevant results.
Collapse
Affiliation(s)
| | - Elena Peila
- Department of Neuroscience, University of TurinTurin, Italy
| | | | | | - Paola Caroppo
- Department of Neuroscience, University of TurinTurin, Italy
- UO Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo BestaMilano, Italy
| | | | | | - Alice Minuto
- Physical Medicine and Rehabilitation, University of TurinTurin, Italy
| | | | | | | | - Paolo Mortara
- Department of Neuroscience, University of TurinTurin, Italy
| | | | - Giuseppe Massazza
- Physical Medicine and Rehabilitation, University of TurinTurin, Italy
| |
Collapse
|
8
|
Effect of piracetam, vincamine, vinpocetine, and donepezil on oxidative stress and neurodegeneration induced by aluminum chloride in rats. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s00580-015-2182-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|