1
|
Al-Kafaji G, Alwehaidah MS, Alsabbagh MM, Alharbi MA, Bakhiet M. Mitochondrial DNA haplogroup analysis in Saudi Arab patients with multiple sclerosis. PLoS One 2022; 17:e0279237. [PMID: 36534684 PMCID: PMC9762579 DOI: 10.1371/journal.pone.0279237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Previous studies have suggested that mitochondrial DNA (mtDNA) variants are associated with multiple sclerosis (MS), a complex neurodegenerative immune-mediated disease of the central nervous system. Since mtDNA is maternally inherited without recombination, specific mtDNA variants defining genetic background are associated with the susceptibility to human diseases. To assess the contribution of mtDNA haplogroups to the predisposition of MS in an Arab population, we analysed sequencing data of mitochondrial genomes from 47 native Saudi Arab individuals including 23 patients with relapsing-remitting MS (RRMS) and 24 healthy controls. All patients and controls could be classified into ten haplogroups. The European-specific haplogroup U was more prevalent in patients than in the controls (26.1% vs. 4.2%), whereas haplogroup T was only present in patients and haplogroups HV and N were only found in controls. Haplogroup U was significantly association with increased risk of MS (odds ratio = 6.26, p<0.05), although the association did not maintain significance after adjustment for multiple comparisons. Haplotype U was more prevalent in patients with younger age of onset (p = 0.006), but there was no relationship between haplotype U and disease severity, disease duration or EDSS and age-matched carriers and non-carriers of haplogroup U (p>0.05). Definition site of haplogroup U include the variant m.12308A>G in MT-TL2 gene which was found to affect highly conserved position within the variable arm of tRNALeu(CUN) and thus may impact mitochondrial protein synthesis, and two other variants namely m.11467A>G in MT-ND4 gene and m.12372G>A in MT-ND5 gene which were previously linked with mitochondrial function. Despite the small number of subjects, which may limit the statistical power of the study, our results showed for the first time a possible contribution of haplogroup U to the predisposition to MS in an Arab population. These findings warrant further validation in a large cohort to distinguish a genuine effect specific to MS from a chance finding due to small sampling.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
- * E-mail:
| | - Materah Salem Alwehaidah
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Kuwait City, Kuwait
| | - Manahel Mahmood Alsabbagh
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Maram A. Alharbi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Moiz Bakhiet
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
2
|
Al-Kafaji G, Alharbi MA, Alkandari H, Salem AH, Bakhiet M. Analysis of the entire mitochondrial genome reveals Leber's hereditary optic neuropathy mitochondrial DNA mutations in an Arab cohort with multiple sclerosis. Sci Rep 2022; 12:11099. [PMID: 35773337 PMCID: PMC9246974 DOI: 10.1038/s41598-022-15385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Several mitochondrial DNA (mtDNA) mutations of Leber's hereditary optic neuropathy (LHON) have been reported in patients with multiple sclerosis (MS) from different ethnicities. To further study the involvement of LHON mtDNA mutations in MS in the Arab population, we analyzed sequencing data of the entire mitochondrial genome from 47 unrelated Saudi individuals, 23 patients with relapse-remitting MS (RRMS) and 24 healthy controls. Ten LHON mutations/variants were detected in the patients but were absent in the controls. Of them, the common primary pathogenic mutation m.14484T>C and the rare mutation m.10237T>C were found in one patient, whereas the rare mutation m.9101T>C was found in another patient. The remaining were secondary single nucleotide variants (SNVs) found either in synergy with the primary/rare mutations or individually in other patients. Patients carrying LHON variants also exhibited distinct mtDNA variants throughout the mitochondrial genome, eight were previously reported in patients with LHON. Moreover, five other LHON-related SNVs differed significantly in their prevalence among patients and controls (P < 0.05). This study, the first to investigate LHON mtDNA mutations/variants in a Saudi cohort may suggest a role of these mutations/variants in the pathogenesis or genetic predisposition to MS, a possibility which needs to be explored further in a large-scale.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain. .,Department of molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Salmaniya Avenue, Building 293, Road 2904, Block 329, Manama, Kingdom of Bahrain.
| | - Maram A Alharbi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Hasan Alkandari
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Abdel Halim Salem
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
3
|
Steudler J, Ecott T, Ivan DC, Bouillet E, Walthert S, Berve K, Dick TP, Engelhardt B, Locatelli G. Autoimmune neuroinflammation triggers mitochondrial oxidation in oligodendrocytes. Glia 2022; 70:2045-2061. [PMID: 35762739 PMCID: PMC9546135 DOI: 10.1002/glia.24235] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/06/2022]
Abstract
Oligodendrocytes (ODCs) are myelinating cells of the central nervous system (CNS) supporting neuronal survival. Oxidants and mitochondrial dysfunction have been suggested as the main causes of ODC damage during neuroinflammation as observed in multiple sclerosis (MS). Nonetheless, the dynamics of this process remain unclear, thus hindering the design of neuroprotective therapeutic strategies. To decipher the spatio-temporal pattern of oxidative damage and dysfunction of ODC mitochondria in vivo, we created a novel mouse model in which ODCs selectively express the ratiometric H2 O2 biosensor mito-roGFP2-Orp1 allowing for quantification of redox changes in their mitochondria. Using 2-photon imaging of the exposed spinal cord, we observed significant mitochondrial oxidation in ODCs upon induction of the MS model experimental autoimmune encephalomyelitis (EAE). This redox change became already apparent during the preclinical phase of EAE prior to CNS infiltration of inflammatory cells. Upon clinical EAE development, mitochondria oxidation remained detectable and was associated with a significant impairment in organelle density and morphology. These alterations correlated with the proximity of ODCs to inflammatory lesions containing activated microglia/macrophages. During the chronic progression of EAE, ODC mitochondria maintained an altered morphology, but their oxidant levels decreased to levels observed in healthy mice. Taken together, our study implicates oxidative stress in ODC mitochondria as a novel pre-clinical sign of MS-like inflammation and demonstrates that evolving redox and morphological changes in mitochondria accompany ODC dysfunction during neuroinflammation.
Collapse
Affiliation(s)
- Jasmin Steudler
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Timothy Ecott
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Elisa Bouillet
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Kristina Berve
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|
4
|
Al-Kafaji G, Bakheit HF, AlAli F, Fattah M, Alhajeri S, Alharbi MA, Daif A, Alsabbagh MM, Alwehaidah MS, Bakhiet M. Next-generation sequencing of the whole mitochondrial genome identifies functionally deleterious mutations in patients with multiple sclerosis. PLoS One 2022; 17:e0263606. [PMID: 35130313 PMCID: PMC8820615 DOI: 10.1371/journal.pone.0263606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/22/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system with genetics and environmental determinants. Studies focused on the neurogenetics of MS showed that mitochondrial DNA (mtDNA) mutations that can ultimately lead to mitochondrial dysfunction, alter brain energy metabolism and cause neurodegeneration. We analyzed the whole mitochondrial genome using next-generation sequencing (NGS) from 47 Saudi individuals, 23 patients with relapsing-remitting MS and 24 healthy controls to identify mtDNA disease-related mutations/variants. A large number of variants were detected in the D-loop and coding genes of mtDNA. While distinct unique variants were only present in patients or only occur in controls, a number of common variants were shared among the two groups. The prevalence of some common variants differed significantly between patients and controls, thus could be implicated in susceptibility to MS. Of the unique variants only present in the patients, 34 were missense mutations, located in different mtDNA-encoded genes. Seven of these mutations were not previously reported in MS, and predicted to be deleterious with considerable impacts on the functions and structures of encoded-proteins and may play a role in the pathogenesis of MS. These include two heteroplasmic mutations namely 10237T>C in MT-ND3 gene and 15884G>C in MT-CYB gene; and three homoplasmic mutations namely 9288A>G in MT-CO3 gene, 14484T>C in MT-ND6 gene, 15431G>A in MT-CYB gene, 8490T>C in MT-ATP8 gene and 5437C>T in MT-ND2 gene. Notably some patients harboured multiple mutations while other patients carried the same mutations. This study is the first to sequence the entire mitochondrial genome in MS patients in an Arab population. Our results expanded the mutational spectrum of mtDNA variants in MS and highlighted the efficiency of NGS in population-specific mtDNA variant discovery. Further investigations in a larger cohort are warranted to confirm the role of mtDNA MS.
Collapse
Affiliation(s)
- Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
- * E-mail:
| | - Halla F. Bakheit
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Faisal AlAli
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Mina Fattah
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | | | - Maram A. Alharbi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Abdulqader Daif
- King Saud University Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Manahel Mahmood Alsabbagh
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Materah Salem Alwehaidah
- Department of Medical Laboratory, Faculty of Allied Health, Kuwait University, Kuwait City, State of Kuwait
| | - Moiz Bakhiet
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
5
|
Pashaei S, Mohammadi P, Yarani R, Haghgoo SM, Emami Aleagha MS. Carbohydrate and lipid metabolism in multiple sclerosis: Clinical implications for etiology, pathogenesis, diagnosis, prognosis, and therapy. Arch Biochem Biophys 2021; 712:109030. [PMID: 34517010 DOI: 10.1016/j.abb.2021.109030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 01/28/2023]
Abstract
Multiple sclerosis (MS) is a complicated autoimmune disease characterized by inflammatory and demyelinating events in the central nervous system. The exact etiology and pathogenesis of MS have not been elucidated. However, a set of metabolic changes and their effects on immune cells and neural functions have been explained. This review highlights the contribution of carbohydrates and lipids metabolism to the etiology and pathogenesis of MS. Then, we have proposed a hypothetical relationship between such metabolic changes and the immune system in patients with MS. Finally, the potential clinical implications of these metabolic changes in diagnosis, prognosis, and discovering therapeutic targets have been discussed. It is concluded that research on the pathophysiological alterations of carbohydrate and lipid metabolism may be a potential strategy for paving the way toward MS treatment.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark; Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Seyyed Mortaza Haghgoo
- Department of Clinical Biochemistry, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sajad Emami Aleagha
- Medical Technology Research Center (MTRC), School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Mitonuclear interactions influence multiple sclerosis risk. Gene 2020; 758:144962. [DOI: 10.1016/j.gene.2020.144962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
|
7
|
Alharbi MA, Al-Kafaji G, Khalaf NB, Messaoudi SA, Taha S, Daif A, Bakhiet M. Four novel mutations in the mitochondrial ND4 gene of complex I in patients with multiple sclerosis. Biomed Rep 2019; 11:257-268. [PMID: 31798871 PMCID: PMC6873451 DOI: 10.3892/br.2019.1250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated neurological, inflammatory disease of the central nervous system. Recent studies have suggested that genetic variants in mitochondrial DNA (mtDNA)-encoded complexes of respiratory chain, particularly, complex I (NADH dehydrogenase), contribute to the pathogenicity of MS among different ethnicities, and targeting mitochondrial function may represent a novel approach for MS therapy. In this study, we sequenced ND genes (ND1, ND2, ND3, ND4, ND4L, ND5 and ND6) encoding subunits of complex I in 124 subjects, 60 patients with relapsing-remitting MS and 64 healthy individuals, in order to identify potential novel mutations in these patients. We found several variants in ND genes in both the patients and controls, and specific variants only in patients with MS. While the majority of these variants were synonymous, 4 variants in the ND4 gene were identified as missense mutations in patients with MS. Of these, m.11150G>A was observed in one patient, whereas m.11519A>C, m.11523A>C and m.11527C>T were observed in another patient. Functional analysis predicted the mutations, m.11519A>C, m.11523A>C and m.11150G>A, as deleterious with a direct impact on ND4 protein stability and complex I function, whereas m.11527C>T mutation had no effect on ND4 protein stability. However, the 3 mutations, m.11519A>C, m.11523A>C and m.11527C>T, which were observed in the same patient, were predicted to cause a cumulative destabilizing effect on ND4 protein, and could thus disrupt complex I function. On the whole, this study identified 4 novel mutations in the mtDNA-encoded ND4 gene in patients with MS, which could lead to complex I dysfunction, and further confirmed the implication of mtDNA mutations in the pathogenicity of MS. The identified novel mutations in patients with MS may be ethnic-related and may prove to be significant in personalized treatment.
Collapse
Affiliation(s)
- Maram Atallah Alharbi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh 14812, Kingdom of Saudi Arabia
| | - Ghada Al-Kafaji
- Department of Molecular Medicine, Al-Jawhara Centre for Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Block 329, Manama, Kingdom of Bahrain
| | - Noureddine Ben Khalaf
- Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Block 329, Manama, Kingdom of Bahrain
| | - Safia Abdulsalam Messaoudi
- College of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh 14812, Kingdom of Saudi Arabia
| | - Safa Taha
- Department of Molecular Medicine, Al-Jawhara Centre for Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Block 329, Manama, Kingdom of Bahrain
| | - Abdulqader Daif
- King Saud University Medical City, Riyadh 12372, Kingdom of Saudi Arabia
| | - Moiz Bakhiet
- Department of Molecular Medicine, Al-Jawhara Centre for Genetics and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Block 329, Manama, Kingdom of Bahrain
| |
Collapse
|
8
|
Boyko AN, Kozin MS, Osmak GZ, Kulakova OG, Favorova OO. Mitochondrial genome and risk of multiple sclerosis. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/2074-2711-2019-3-43-46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mitochondrial DNA (mtDNA) polymorphism makes a certain contribution to the formation of a genetic risk of multiple sclerosis (MS).Objective: to analyze the frequency of mtDNA variants in patients with MS and control individuals in the Russian population. A similar study was conducted for the first time.Patients and methods. The polymorphism of mtDNA was studied in the Russian population: in 283 unrelated patients with relapsing-remitting MS and in 290 unrelated healthy controls matched for gender and age.Results and discussion. The frequency of haplogroup J in the patients with MS was twice higher than that in the control group (p=0.0055) (odds ratio (OR) 2.00; 95% confidence interval (CI). 1.21–3.41). This association was mostly observed in women (p=0.0083) (OR 2.20; 95% CI, 1.19–4.03). There was also a significant association of the A allele of MT-ND5 (m. 13708G>A) with MS (p=0.03) (OR 1.89; 95% CI 1.11–3.32). Sex stratification showed that the association with MS was significant only in women (p=0.009; OR, 2.52; 95% CI, 1.29–5.14). Further investigations will aim to analyze mtDNA variability (at the level of individual polymorphisms, haplogroups, and whole genome) in patients with relapsing-remitting MS and in those with primary progressive MS versus healthy individuals and patients with relapsing-remitting MS according to disease severity.Conclusion. The data obtained in the Russian population suggest that mtDNA variations are involved in MS risk, to a greater extent in women.
Collapse
Affiliation(s)
- A. N. Boyko
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia;
Federal Center of Cerebrovascular Disease and Stroke, Ministry of Health of Russia
| | - M. S. Kozin
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia;
Federal Center of Cerebrovascular Disease and Stroke, Ministry of Health of Russia
| | - G. Zh. Osmak
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia;
Federal Center of Cerebrovascular Disease and Stroke, Ministry of Health of Russia
| | - O. G. Kulakova
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - O. O. Favorova
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| |
Collapse
|
9
|
Kozin MS, Kulakova OG, Favorova OO. Involvement of Mitochondria in Neurodegeneration in Multiple Sclerosis. BIOCHEMISTRY (MOSCOW) 2018; 83:813-830. [PMID: 30200866 DOI: 10.1134/s0006297918070052] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Functional disruption and neuronal loss followed by progressive dysfunction of the nervous system underlies the pathogenesis of numerous disorders defined as "neurodegenerative diseases". Multiple sclerosis, a chronic inflammatory demyelinating disease of the central nervous system resulting in serious neurological dysfunctions and disability, is one of the most common neurodegenerative diseases. Recent studies suggest that disturbances in mitochondrial functioning are key factors leading to neurodegeneration. In this review, we consider data on mitochondrial dysfunctions in multiple sclerosis, which were obtained both with patients and with animal models. The contemporary data indicate that the axonal degeneration in multiple sclerosis largely results from the activation of Ca2+-dependent proteases and from misbalance of ion homeostasis caused by energy deficiency. The genetic studies analyzing association of mitochondrial DNA polymorphic variants in multiple sclerosis suggest the participation of mitochondrial genome variability in the development of this disease, although questions of the involvement of individual genomic variants are far from being resolved.
Collapse
Affiliation(s)
- M S Kozin
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia. .,National Medical Research Center of Cardiology, Moscow, 121552, Russia
| | - O G Kulakova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia. .,National Medical Research Center of Cardiology, Moscow, 121552, Russia
| | - O O Favorova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.,National Medical Research Center of Cardiology, Moscow, 121552, Russia
| |
Collapse
|
10
|
Azadi A, Seo DJ, Jafari Sasansara H, Van Haute M. Mitochondrial DNA variations are associated with recurrent pregnancy loss. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:674-678. [PMID: 28696810 DOI: 10.1080/24701394.2017.1350854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cases with three or more consecutive spontaneous abortions before the 20th week of gestation are termed as recurrent pregnancy loss (RPL). Problems in implantation of the foetus and any retarded growth of the foetus in the uterus can be correlated to RPL. Possible causes of RPL would include the genetic variations in the regulatory enzymes of the crucial metabolic pathways, clotting factors, hormones and hormone receptors. This defect of the mitochondrial respiratory chain is recognized as a major cause of human disease. We investigated 73 women with RPL and 100 healthy normal controls. By using the direct sequencing method, the amplified products including the mtDNA complex I genes were analyzed. Overall, seven variations in mitochondrial complex I genes were found (T4216C, A5153G, C10142T, C12062T, A12662G, G14179A and T14263C) using direct sequencing technique. The RPL group had significantly higher proportions of the different variants than those observed of the control group. In conclusion, more research is essentially needed to understand the effect and role of the mitochondrial variations in the progress of RPL, which may vary among individuals and different ethnic groups.
Collapse
Affiliation(s)
- Ali Azadi
- a Department of Medicine , De La Salle Health Sciences Institute , Dasmariñas , Philippines
| | - Dong Joo Seo
- a Department of Medicine , De La Salle Health Sciences Institute , Dasmariñas , Philippines
| | | | - Michael Van Haute
- a Department of Medicine , De La Salle Health Sciences Institute , Dasmariñas , Philippines
| |
Collapse
|