2
|
Michelle EH, Pinal-Fernandez I, Casal-Dominguez M, Albayda J, Paik JJ, Tiniakou E, Adler B, Mecoli CA, Danoff SK, Christopher-Stine L, Mammen AL, Lloyd TE. Clinical Subgroups and Factors Associated With Progression in Patients With Inclusion Body Myositis. Neurology 2023; 100:e1406-e1417. [PMID: 36690456 PMCID: PMC10065210 DOI: 10.1212/wnl.0000000000206777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 11/18/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Sporadic inclusion body myositis (IBM) is the most common acquired myopathy in individuals older than 50 years. The disorder is slowly progressive, and although many therapies have been investigated, response has generally been poor. Clinical heterogeneity may influence treatment responsiveness; however, data regarding heterogeneity in IBM are limited and often conflicting. We aim to identify clinically distinct subgroups within a large IBM cohort and prognostic factors for disease progression. METHODS Clinical, histologic, radiologic, and electrophysiologic data were analyzed for all patients with IBM and other forms of myositis enrolled in a longitudinal cohort from The Johns Hopkins Myositis Center from 2003 to 2018. Patients with IBM were included if they met at least one of the following criteria: Griggs possible, European Neuromuscular Centre 2011 probable, or Lloyd-Greenberg data-derived criteria for IBM. Univariate, multivariate, and graphical analyses were used to identify prognostic factors in patients with IBM. Thus, linear and logistic regressions were used to adjust for potential confounding variables. The evolution of creatine kinase and muscle strength was studied using multilevel linear regression models. Nonmodifiable risk factors (sex, race, disease duration, and age at the onset of first symptoms) were used as adjusting covariates for the regression analyses. RESULTS Among the 335 patients meeting the inclusion criteria for IBM, 64% were male with an average age of disease onset of 58.7 years and delay to diagnosis of 5.2 years. Initial misdiagnosis (52%) and immunosuppressant treatment (42%) were common. Less than half (43%) of muscle biopsies demonstrated all 3 pathologic hallmarks: endomysial inflammation, mononuclear cell invasion, and rimmed vacuoles. Black patients had significantly weaker arm abductors, hip flexors, and knee flexors compared with non-Black patients. Female patients had stronger finger flexors and knee extensors compared with their male counterparts. Younger age (<50 years) at onset was not associated with increased weakness. DISCUSSION Our study demonstrates that female and Black patients have distinct clinical phenotypes and trajectories within the overarching IBM clinical phenotype. These subgroups may have different responses to therapies, which may influence the design of future clinical trials in IBM.
Collapse
Affiliation(s)
- Elizabeth Harlan Michelle
- From the Departments of Neurology (E.H.M., I.P.-F., M.C.-D., A.L.M., T.E.L.), and Medicine (J.A., J.J.P., E.T., B.A., C.A.M., S.K.D., L.C.-S.), Johns Hopkins University School of Medicine, Baltimore, MD; Muscle Disease Unit (I.P.-F., M.C.-D., A.L.M.), Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD; and Faculty of Health Sciences and Faculty of Computer Science (I.P.-F.), Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Iago Pinal-Fernandez
- From the Departments of Neurology (E.H.M., I.P.-F., M.C.-D., A.L.M., T.E.L.), and Medicine (J.A., J.J.P., E.T., B.A., C.A.M., S.K.D., L.C.-S.), Johns Hopkins University School of Medicine, Baltimore, MD; Muscle Disease Unit (I.P.-F., M.C.-D., A.L.M.), Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD; and Faculty of Health Sciences and Faculty of Computer Science (I.P.-F.), Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Maria Casal-Dominguez
- From the Departments of Neurology (E.H.M., I.P.-F., M.C.-D., A.L.M., T.E.L.), and Medicine (J.A., J.J.P., E.T., B.A., C.A.M., S.K.D., L.C.-S.), Johns Hopkins University School of Medicine, Baltimore, MD; Muscle Disease Unit (I.P.-F., M.C.-D., A.L.M.), Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD; and Faculty of Health Sciences and Faculty of Computer Science (I.P.-F.), Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Jemima Albayda
- From the Departments of Neurology (E.H.M., I.P.-F., M.C.-D., A.L.M., T.E.L.), and Medicine (J.A., J.J.P., E.T., B.A., C.A.M., S.K.D., L.C.-S.), Johns Hopkins University School of Medicine, Baltimore, MD; Muscle Disease Unit (I.P.-F., M.C.-D., A.L.M.), Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD; and Faculty of Health Sciences and Faculty of Computer Science (I.P.-F.), Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Julie J Paik
- From the Departments of Neurology (E.H.M., I.P.-F., M.C.-D., A.L.M., T.E.L.), and Medicine (J.A., J.J.P., E.T., B.A., C.A.M., S.K.D., L.C.-S.), Johns Hopkins University School of Medicine, Baltimore, MD; Muscle Disease Unit (I.P.-F., M.C.-D., A.L.M.), Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD; and Faculty of Health Sciences and Faculty of Computer Science (I.P.-F.), Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Eleni Tiniakou
- From the Departments of Neurology (E.H.M., I.P.-F., M.C.-D., A.L.M., T.E.L.), and Medicine (J.A., J.J.P., E.T., B.A., C.A.M., S.K.D., L.C.-S.), Johns Hopkins University School of Medicine, Baltimore, MD; Muscle Disease Unit (I.P.-F., M.C.-D., A.L.M.), Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD; and Faculty of Health Sciences and Faculty of Computer Science (I.P.-F.), Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Brittany Adler
- From the Departments of Neurology (E.H.M., I.P.-F., M.C.-D., A.L.M., T.E.L.), and Medicine (J.A., J.J.P., E.T., B.A., C.A.M., S.K.D., L.C.-S.), Johns Hopkins University School of Medicine, Baltimore, MD; Muscle Disease Unit (I.P.-F., M.C.-D., A.L.M.), Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD; and Faculty of Health Sciences and Faculty of Computer Science (I.P.-F.), Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Christopher A Mecoli
- From the Departments of Neurology (E.H.M., I.P.-F., M.C.-D., A.L.M., T.E.L.), and Medicine (J.A., J.J.P., E.T., B.A., C.A.M., S.K.D., L.C.-S.), Johns Hopkins University School of Medicine, Baltimore, MD; Muscle Disease Unit (I.P.-F., M.C.-D., A.L.M.), Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD; and Faculty of Health Sciences and Faculty of Computer Science (I.P.-F.), Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Sonye K Danoff
- From the Departments of Neurology (E.H.M., I.P.-F., M.C.-D., A.L.M., T.E.L.), and Medicine (J.A., J.J.P., E.T., B.A., C.A.M., S.K.D., L.C.-S.), Johns Hopkins University School of Medicine, Baltimore, MD; Muscle Disease Unit (I.P.-F., M.C.-D., A.L.M.), Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD; and Faculty of Health Sciences and Faculty of Computer Science (I.P.-F.), Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Lisa Christopher-Stine
- From the Departments of Neurology (E.H.M., I.P.-F., M.C.-D., A.L.M., T.E.L.), and Medicine (J.A., J.J.P., E.T., B.A., C.A.M., S.K.D., L.C.-S.), Johns Hopkins University School of Medicine, Baltimore, MD; Muscle Disease Unit (I.P.-F., M.C.-D., A.L.M.), Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD; and Faculty of Health Sciences and Faculty of Computer Science (I.P.-F.), Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Andrew L Mammen
- From the Departments of Neurology (E.H.M., I.P.-F., M.C.-D., A.L.M., T.E.L.), and Medicine (J.A., J.J.P., E.T., B.A., C.A.M., S.K.D., L.C.-S.), Johns Hopkins University School of Medicine, Baltimore, MD; Muscle Disease Unit (I.P.-F., M.C.-D., A.L.M.), Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD; and Faculty of Health Sciences and Faculty of Computer Science (I.P.-F.), Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Thomas E Lloyd
- From the Departments of Neurology (E.H.M., I.P.-F., M.C.-D., A.L.M., T.E.L.), and Medicine (J.A., J.J.P., E.T., B.A., C.A.M., S.K.D., L.C.-S.), Johns Hopkins University School of Medicine, Baltimore, MD; Muscle Disease Unit (I.P.-F., M.C.-D., A.L.M.), Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD; and Faculty of Health Sciences and Faculty of Computer Science (I.P.-F.), Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain.
| |
Collapse
|
4
|
Tawara N, Yamashita S, Kawakami K, Kurashige T, Zhang Z, Tasaki M, Yamamoto Y, Nishikami T, Doki T, Zhang X, Matsuo Y, Kimura E, Tawara A, Maeda Y, Hauschka SD, Maruyama H, Ando Y. Muscle-dominant wild-type TDP-43 expression induces myopathological changes featuring tubular aggregates and TDP-43-positive inclusions. Exp Neurol 2018; 309:169-180. [PMID: 30130494 DOI: 10.1016/j.expneurol.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 11/15/2022]
Abstract
Muscle histology of sporadic inclusion body myositis (sIBM) demonstrates inflammatory findings and degenerative features including accumulation of TAR DNA-binding protein of 43 kDa (TDP-43). However, whether sarcoplasmic accumulation of TDP-43 is a primary trigger of muscle degeneration or a secondary event resulting from muscle degeneration in the pathophysiology of sIBM remained unclear. Our study aimed to discover whether muscle-dominant expression of TDP-43 is a primary cause of muscle degeneration. We generated several lines of wild-type TDP-43 transgenic mice driven by a creatine kinase 8 promoter, and analyzed the phenotypes via biochemical, histological, and proteomic techniques. The mice showed increased serum levels of myogenic enzymes. Muscle histology demonstrated myopathic changes including fiber size variation, abundant tubular aggregates, and TDP-43 aggregation with upregulation of endoplasmic reticulum (ER) stress. Proteomic analysis with aggregated materials in degenerative myofibers identified increased sarcoplasmic reticulum (SR)/ER-resident proteins that regulated calcium homeostasis, as well as cytosolic 5'-nucleotidase 1A. Muscle-dominant wild-type TDP-43 expression indeed caused myotoxicity featuring tubular aggregates and TDP-43-positive inclusions. Our observation suggested that TDP-43 aggregates might not be sufficient to trigger the pathogenesis of sIBM although myofiber sarcoplasmic aggregation of TDP-43 led to myofiber degeneration via ER stress and possibly calcium dysregulation, independently of inflammatory process.
Collapse
Affiliation(s)
- Nozomu Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Satoshi Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Kensuke Kawakami
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takashi Kurashige
- Department of Neurology, National Hospital Organization Kure Medical Centre, 3-1 Aoyama-cho, Kure, Hiroshima 737-0023, Japan; Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Ziwei Zhang
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Masayoshi Tasaki
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasuhiro Yamamoto
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tomo Nishikami
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Tsukasa Doki
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Xiao Zhang
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yoshimasa Matsuo
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - En Kimura
- Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira 187-8551, Japan
| | - Akie Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yasushi Maeda
- Department of Clinical Research, and Department of Neurology, National Hospital Organization Kumamoto Saishunso National Hospital, 2659 Suya, Koshi, Kumamoto 861-1196, Japan
| | - Stephen D Hauschka
- Department of Biochemistry, University of Washington, 1705 NE Pacific St., Seattle, WA 98195-7350, USA
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|