1
|
A Novel Homozygous Variant in DYSF Gene Is Associated with Autosomal Recessive Limb Girdle Muscular Dystrophy R2/2B. Int J Mol Sci 2022; 23:ijms23168932. [PMID: 36012197 PMCID: PMC9408934 DOI: 10.3390/ijms23168932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in the DYSF gene, encoding dysferlin, are responsible for Limb Girdle Muscular Dystrophy type R2/2B (LGMDR2/2B), Miyoshi myopathy (MM), and Distal Myopathy with Anterior Tibialis onset (MDAT). The size of the gene and the reported inter and intra familial phenotypic variability make early diagnosis difficult. Genetic analysis was conducted using Next Gene Sequencing (NGS), with a panel of 40 Muscular Dystrophies associated genes we designed. In the present study, we report a new missense variant c.5033G>A, p.Cys1678Tyr (NM_003494) in the exon 45 of DYSF gene related to Limb Girdle Muscular Dystrophy type R2/2B in a 57-year-old patient affected with LGMD from a consanguineous family of south Italy. Both healthy parents carried this variant in heterozygosity. Genetic analysis extended to two moderately affected sisters of the proband, showed the presence of the variant c.5033G>A in both in homozygosity. These data indicate a probable pathological role of the variant c.5033G>A never reported before in the onset of LGMDR2/2B, pointing at the NGS as powerful tool for identifying LGMD subtypes. Moreover, the collection and the networking of genetic data will increase power of genetic-molecular investigation, the management of at-risk individuals, the development of new therapeutic targets and a personalized medicine.
Collapse
|
2
|
Lee SJ, Choi E, Shin S, Park J. Genetically confirmed limb-girdle muscular dystrophy type 2B with DYSF mutation using gene panel sequencing: A case report. Medicine (Baltimore) 2020; 99:e20810. [PMID: 32664072 PMCID: PMC7360247 DOI: 10.1097/md.0000000000020810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE The limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of disorders characterized by progressive proximal muscle weakness and have more than 30 different subtypes linked to specific gene loci, which manifest as highly overlapping and heterogeneous phenotypes. PATIENT CONCERNS A 59-year-old male presented for evaluation of progressive muscle weakness since his late twenties. When he was 38 years old, he had muscle weakness in the upper extremities and had a waddling gait, hyper lordosis of lower back, and anterior pelvic tilt. His gait disturbance and muscle weakness slowly progressed. When he was 55 years old, he could not walk at all and had to use a wheelchair for ambulation. DIAGNOSIS Next-generation sequencing using a custom target capture-based gene panel including specific genes responsible for muscular dystrophy was performed. As a result, the proband was genetically diagnosed as LGMD type 2B, carrying 2 compound heterozygous mutations (NM_003494.3:c.1663C>T, p.Arg555Trp; rs377735262 and NM_003494.3:c.2997G>T, p.Trp999Cys; rs28937581) of the DYSF gene. INTERVENTIONS Physical and occupational therapy were prescribed properly for the first time Bracing and assistive devices were adapted specifically to the patient's deficiencies to preserve mobility and function and prevent contractures. OUTCOMES The patient with LGMD has periodic assessments of physical and occupational therapy for the prevention and management of comorbidities. However, in the 3 years after the gene panel sequencing diagnoses, his weakness was slowly progress and the patient still could not walk. LESSONS Gene panel sequencing allows for the correct recognition of different LGMD subtypes, improving timely treatment, management, and enrolment of molecularly diagnosed individuals in clinical trials.
Collapse
Affiliation(s)
| | - Eunseok Choi
- Department of Physical Medicine and Rehabilitation
| | - Soyoung Shin
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Lin XD, He JJ, Lin F, Chen HZ, Xu LQ, Hu W, Cai NQ, Lin MT, Wang N, Wang ZQ, Xu GR. A "Triple Trouble" Case of Facioscapulohumeral Muscular Dystrophy Accompanied by Peripheral Neuropathy and Myoclonic Epilepsy. Chin Med J (Engl) 2018; 131:2164-2171. [PMID: 30203790 PMCID: PMC6144853 DOI: 10.4103/0366-6999.240797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD) is characterized by asymmetric muscular deficit of facial, shoulder-girdle muscles, and descending to lower limb muscles, but it exists in several extramuscular manifestations or overlapping syndromes. Herein, we report a "complex disease plus" patient with FSHD1, accompanied by peripheral neuropathy and myoclonic epilepsy. Methods Standard clinical assessments, particular auxiliary examination, histological analysis, and molecular analysis were performed through the new Comprehensive Clinical Evaluation Form, pulsed-field gel electrophoresis-based Southern blot, Multiplex Ligation-dependent Probe Amplification (MLPA), whole exome sequencing (WES), and targeted methylation sequencing. Results The patient presented with mild facial weakness, humeral poly-hill sign, scapular winging, peroneal weakness, drop foot, pes cavus, and myoclonic epilepsy. Furthermore, electrophysiology revealed severely demyelinated and axonal injury. The muscle and nerve biopsy revealed broadly fiber Type II grouping atrophy and myelinated nerve fibers that significantly decreased with thin myelinated fibers and onion bulbs changes. Generalized sharp and sharp-slow wave complexes on electroencephalography support the diagnosis toward myoclonic epilepsy. In addition, molecular testing demonstrated a co-segregated 20-kb 4q35-EcoRI fragment and permissive allele A, which corresponded with D4Z4 hypomethylation status in the family. Both the patient's mother and brother only presented the typical FSHD but lacked overlapping syndromes. However, no mutations for hereditary peripheral neuropathy and myoclonic epilepsy were discovered by MLPA and WES. Conclusions The present study described a "tripe trouble" with FSHD, peripheral neuropathy, and myoclonic epilepsy, adding the spectrum of overlapping syndromes and contributing to the credible diagnosis of atypical phenotype. It would provide a direct clue on medical care and genetic counseling.
Collapse
Affiliation(s)
- Xiao-Dan Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Jun-Jie He
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Feng Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Hai-Zhu Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Liu-Qing Xu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Wei Hu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Nai-Qing Cai
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University; Fujian Key Laboratory of Molecular Neurology, Fuzhou, Fujian 350005, China
| | - Zhi-Qiang Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University; Fujian Key Laboratory of Molecular Neurology, Fuzhou, Fujian 350005, China
| | - Guo-Rong Xu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
4
|
Nallamilli BRR, Chakravorty S, Kesari A, Tanner A, Ankala A, Schneider T, da Silva C, Beadling R, Alexander JJ, Askree SH, Whitt Z, Bean L, Collins C, Khadilkar S, Gaitonde P, Dastur R, Wicklund M, Mozaffar T, Harms M, Rufibach L, Mittal P, Hegde M. Genetic landscape and novel disease mechanisms from a large LGMD cohort of 4656 patients. Ann Clin Transl Neurol 2018; 5:1574-1587. [PMID: 30564623 PMCID: PMC6292381 DOI: 10.1002/acn3.649] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
Objective Limb‐girdle muscular dystrophies (LGMDs), one of the most heterogeneous neuromuscular disorders (NMDs), involves predominantly proximal‐muscle weakness with >30 genes associated with different subtypes. The clinical‐genetic overlap among subtypes and with other NMDs complicate disease‐subtype identification lengthening diagnostic process, increases overall costs hindering treatment/clinical‐trial recruitment. Currently seven LGMD clinical trials are active but still no gene‐therapy‐related treatment is available. Till‐date no nation‐wide large‐scale LGMD sequencing program was performed. Our objectives were to understand LGMD genetic basis, different subtypes’ relative prevalence across US and investigate underlying disease mechanisms. Methods A total of 4656 patients with clinically suspected‐LGMD across US were recruited to conduct next‐generation sequencing (NGS)‐based gene‐panel testing during June‐2015 to June‐2017 in CLIA‐CAP‐certified Emory‐Genetics‐Laboratory. Thirty‐five LGMD‐subtypes‐associated or LGMD‐like other NMD‐associated genes were investigated. Main outcomes were diagnostic yield, gene‐variant spectrum, and LGMD subtypes’ prevalence in a large US LGMD‐suspected population. Results Molecular diagnosis was established in 27% (1259 cases; 95% CI, 26–29%) of the patients with major contributing genes to LGMD phenotypes being: CAPN3(17%), DYSF(16%), FKRP(9%) and ANO5(7%). We observed an increased prevalence of genetically confirmed late‐onset Pompe disease, DNAJB6‐associated LGMD subtype1E and CAPN3‐associated autosomal‐dominant LGMDs. Interestingly, we identified a high prevalence of patients with pathogenic variants in more than one LGMD gene suggesting possible synergistic heterozygosity/digenic/multigenic contribution to disease presentation/progression that needs consideration as a part of diagnostic modality. Interpretation Overall, this study has improved our understanding of the relative prevalence of different LGMD subtypes, their respective genetic etiology, and the changing paradigm of their inheritance modes and novel mechanisms that will allow for improved timely treatment, management, and enrolment of molecularly diagnosed individuals in clinical trials.
Collapse
Affiliation(s)
| | | | - Akanchha Kesari
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Alice Tanner
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Arunkanth Ankala
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | | | | | | | - John J Alexander
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Syed Hussain Askree
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Zachary Whitt
- Emory University Department of Human Genetics Atlanta Georgia 30322.,Augusta University Augusta Georgia 30912
| | - Lora Bean
- Emory University Department of Human Genetics Atlanta Georgia 30322.,EGL Genetics-Eurofins Tucker Atlanta Georgia 30084
| | - Christin Collins
- Emory University Department of Human Genetics Atlanta Georgia 30322
| | - Satish Khadilkar
- Department of Neurology Bombay Hospital Mumbai Maharashtra India.,Department of Neurology Sir J J Group of Hospitals Grant Medical College Mumbai Maharashtra India
| | - Pradnya Gaitonde
- Centre for Advanced Molecular Diagnostics in Neuromuscular Disorders (CAMDND) 400022 Mumbai India
| | - Rashna Dastur
- Centre for Advanced Molecular Diagnostics in Neuromuscular Disorders (CAMDND) 400022 Mumbai India
| | - Matthew Wicklund
- Neurology The University of Colorado at Denver - Anschutz Medical Campus Aurora Colorado 80045
| | - Tahseen Mozaffar
- Neurology University of California, Irvine Orange California 92868
| | - Matthew Harms
- Department of Neurology Columbia University New York New York 10032
| | | | | | - Madhuri Hegde
- Emory University Department of Human Genetics Atlanta Georgia 30322
| |
Collapse
|
5
|
Fichna JP, Macias A, Piechota M, Korostyński M, Potulska-Chromik A, Redowicz MJ, Zekanowski C. Whole-exome sequencing identifies novel pathogenic mutations and putative phenotype-influencing variants in Polish limb-girdle muscular dystrophy patients. Hum Genomics 2018; 12:34. [PMID: 29970176 PMCID: PMC6029161 DOI: 10.1186/s40246-018-0167-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
Background Limb girdle muscular dystrophies (LGMD) are a group of heterogeneous hereditary myopathies with similar clinical symptoms. Disease onset and progression are highly variable, with an elusive genetic background, and around 50% cases lacking molecular diagnosis. Methods Whole exome sequencing (WES) was performed in 73 patients with clinically diagnosed LGMD. A filtering strategy aimed at identification of variants related to the disease included integrative analysis of WES data and human phenotype ontology (HPO) terms, analysis of genes expressed in muscle, analysis of the disease-associated interactome and copy number variants analysis. Results Genetic diagnosis was possible in 68.5% of cases. On average, 36.3 rare variants in genes associated with various muscle diseases per patient were found that could relate to the clinical phenotype. The putative causative mutations were mostly in LGMD-associated genes, but also in genes not included in the current LGMD classification (DMD, COL6A2, and COL6A3). In three patients, mutations in two genes were suggested as the joint cause of the disease (CAPN3+MYH7, COL6A3+CACNA1S, DYSF+MYH7). Moreover, a variety of phenotype-influencing variants were postulated, including in patients with an identified already known primary pathogenic mutation. Conclusions We hypothesize that LGMD could be better described as oligogenic disorders in which dominant clinical presentation can result from the combined effect of mutations in a set of genes. In this view, the inter- and intrafamilial variability could reflect a specific genetic background and the presence of sets of phenotype-influencing or co-causative mutations in genes that either interact with the known LGMD-associated genes or are a part of the same pathways or structures. Electronic supplementary material The online version of this article (10.1186/s40246-018-0167-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jakub Piotr Fichna
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., 02-106, Warsaw, Poland.
| | - Anna Macias
- Department of Neurology, Medical University of Warsaw, 1a Banacha St., 02-097, Warsaw, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 31-344, Krakow, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 31-344, Krakow, Poland
| | - Anna Potulska-Chromik
- Department of Neurology, Medical University of Warsaw, 1a Banacha St., 02-097, Warsaw, Poland
| | - Maria Jolanta Redowicz
- Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Cezary Zekanowski
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., 02-106, Warsaw, Poland
| |
Collapse
|
6
|
Chakravorty S, Hegde M. Inferring the effect of genomic variation in the new era of genomics. Hum Mutat 2018; 39:756-773. [PMID: 29633501 DOI: 10.1002/humu.23427] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/20/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
Accurate and detailed understanding of the effects of variants in the coding and noncoding regions of the genome is the next big challenge in the new genomic era of personalized medicine, especially to tackle newer findings of genetic and phenotypic heterogeneity of diseases. This is necessary to resolve the gene-variant-disease relationship, the pathogenic variant spectrum of genes, pathogenic variants with variable clinical consequences, and multiloci diseases. In turn, this will facilitate patient recruitment for relevant clinical trials. In this review, we describe the trends in research at the intersection of basic and clinical genomics aiming to (a) overcome molecular diagnostic challenges and increase the clinical utility of next-generation sequencing (NGS) platforms, (b) elucidate variants associated with disease, (c) determine overall genomic complexity including epistasis, complex inheritance patterns such as "synergistic heterozygosity," digenic/multigenic inheritance, modifier effect, and rare variant load. We describe the newly emerging field of integrated functional genomics, in vivo or in vitro large-scale functional approaches, statistical bioinformatics algorithms that support NGS genomics data to interpret variants for timely clinical diagnostics and disease management. Thus, facilitating the discovery of new therapeutic or biomarker options, and their roles in the future of personalized medicine.
Collapse
Affiliation(s)
- Samya Chakravorty
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building Suite 301, Atlanta, Georgia
| | - Madhuri Hegde
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building Suite 301, Atlanta, Georgia
| |
Collapse
|