1
|
Shapiro ALB, Coughlan C, Bettcher BM, Pauley ME, Kim J, Bjornstad P, Rajic B, Truong J, Bell C, Choi YJ, Walker KA, Potter H, Liese AD, Dabelea D, Whitlow CT. Biomarkers of Neurodegeneration and Alzheimer's Disease Neuropathology in Adolescents and Young Adults with Youth-Onset Type 1 or Type 2 Diabetes: A Proof-of-Concept Study. ENDOCRINES 2024; 5:197-213. [PMID: 38764894 PMCID: PMC11101213 DOI: 10.3390/endocrines5020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024] Open
Abstract
Adult-onset diabetes increases one's risk of neurodegenerative disease including Alzheimer's disease (AD); however, the risk associated with youth-onset diabetes (Y-DM) remains underexplored. We quantified plasma biomarkers of neurodegeneration and AD in participants with Y-DM from the SEARCH cohort at adolescence and young adulthood (Type 1, n = 25; Type 2, n = 25; 59% female; adolescence, age = 15 y/o [2.6]; adulthood, age = 27.4 y/o [2.2]), comparing them with controls (adolescence, n = 25, age = 14.8 y/o [2.7]; adulthood, n = 21, age = 24.9 y/o [2.8]). Plasma biomarkers, including glial fibrillary acidic protein (GFAP), neurofilament light chain protein (NfL), phosphorylated tau-181 (pTau181), and amyloid beta (Aβ40, Aβ42), were measured via Simoa. A subset of participants (n = 7; age = 27.5 y/o [5.7]) and six controls (age = 25.1 y/o [4.5]) underwent PET scans to quantify brain amyloid and tau densities in AD sensitive brain regions. Y-DM adolescents exhibited lower plasma levels of Aβ40, Aβ42, and GFAP, and higher pTau181 compared to controls (p < 0.05), a pattern persisting into adulthood (p < 0.001). All biomarkers showed significant increases from adolescence to adulthood in Y-DM (p < 0.01), though no significant differences in brain amyloid or tau were noted between Y-DM and controls in adulthood. Preliminary evidence suggests that preclinical AD neuropathology is present in young people with Y-DM, indicating a potential increased risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Allison L. B. Shapiro
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado at Anschutz (CU-Anschutz), Aurora, CO 80045, USA
- Section of Endocrinology, Department of Pediatrics, School of Medicine (SOM), CU-Anschutz, Aurora, CO 80045, USA
| | - Christina Coughlan
- University of Colorado Alzheimer’s and Cognition Center, CU-Anschutz, Aurora, CO 80045, USA
- Department of Neurology, SOM, CU-Anschutz, Aurora, CO 80045, USA
| | | | - Meghan E. Pauley
- Barbara Davis Center for Diabetes, CU-Anschutz, Aurora, CO 80045, USA
| | - Jeongchul Kim
- Radiology Informatics and Image Processing Laboratory, Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Petter Bjornstad
- Section of Endocrinology, Department of Pediatrics, School of Medicine (SOM), CU-Anschutz, Aurora, CO 80045, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, SOM, CU-Anschutz, Aurora, CO 80045, USA
| | - Benjamin Rajic
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado at Anschutz (CU-Anschutz), Aurora, CO 80045, USA
| | - Jennifer Truong
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado at Anschutz (CU-Anschutz), Aurora, CO 80045, USA
| | - Christopher Bell
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado at Anschutz (CU-Anschutz), Aurora, CO 80045, USA
| | - Ye Ji Choi
- Section of Endocrinology, Department of Pediatrics, School of Medicine (SOM), CU-Anschutz, Aurora, CO 80045, USA
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD 20814, USA
| | - Huntington Potter
- University of Colorado Alzheimer’s and Cognition Center, CU-Anschutz, Aurora, CO 80045, USA
- Department of Neurology, SOM, CU-Anschutz, Aurora, CO 80045, USA
| | - Angela D. Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado at Anschutz (CU-Anschutz), Aurora, CO 80045, USA
| | - Christopher T. Whitlow
- Radiology Informatics and Image Processing Laboratory, Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
2
|
Yu F, Pituch KA, Maxfield M, Baena E, Geda YE, Pruzin JJ, Coon DW, Shaibi GQ. The associations between type 2 diabetes and plasma biomarkers of Alzheimer's disease in the Health and Aging Brain Study: Health Disparities (HABS-HD). PLoS One 2024; 19:e0295749. [PMID: 38558059 PMCID: PMC10984470 DOI: 10.1371/journal.pone.0295749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/28/2023] [Indexed: 04/04/2024] Open
Abstract
Alzheimer's disease (AD) affects Latinos disproportionately. One of the reasons underlying this disparity may be type 2 diabetes (T2D) that is a risk factor for AD. The purpose of this study was to examine the associations of T2D and AD blood biomarkers and the differences in these associations between Mexican Americans and non-Hispanic Whites. This study was a secondary analysis of baseline data from the observational Health and Aging Brain Study: Health Disparities (HABS-HD) that investigated factors underlying health disparities in AD in Mexican Americans in comparison to non-Hispanic Whites. HABS-HD participants were excluded if they had missing data or were large outliers (z-scores >|4|) on a given AD biomarker. Fasting blood glucose and glycosylated hemoglobin (HbA1c) levels were measured from clinical labs. T2D was diagnosed by licensed clinicians. Plasma amyloid-beta 42 and 40 (Aβ42/42) ratio, total tau (t-tau), and neurofilament light (NfL) were measured via ultra-sensitive Simoa assays. The sample sizes were 1,552 for Aβ42/40 ratio, 1,570 for t-tau, and 1,553 for NfL. Mexican Americans were younger (66.6±8.7 vs. 69.5±8.6) and had more female (64.9% female vs. 55.1%) and fewer years of schooling (9.5±4.6 vs. 15.6±2.5) than non-Hispanic Whites. Mexican Americans differed significantly from non-Hispanic Whites in blood glucose (113.5±36.6 vs. 99.2±17.0) and HbA1c (6.33±1.4 vs. 5.51±0.6) levels, T2D diagnosis (35.3% vs. 11.1%), as well as blood Aβ42/40 ratio (.051±.012 vs. .047±.011), t-tau (2.56±.95 vs. 2.33±.90), and NfL levels (16.3±9.5 vs. 20.3±10.3). Blood glucose, blood HbA1c, and T2D diagnosis were not related to Aβ42/40 ratio and t-tau but explained 3.7% of the variation in NfL (p < .001). Blood glucose and T2D diagnosis were not, while HbA1c was positively (b = 2.31, p < .001, β = 0.26), associated with NfL among Mexican Americans. In contrast, blood glucose, HbA1c, and T2D diagnosis were negatively (b = -0.09, p < .01, β = -0.26), not (b = 0.34, p = .71, β = 0.04), and positively (b = 3.32, p < .01, β = 0.33) associated with NfL, respectively in non-Hispanic Whites. To conclude, blood glucose and HbA1c levels and T2D diagnosis are associated with plasma NfL levels, but not plasma Aβ and t-tau levels. These associations differ in an ethnicity-specific manner and need to be further studied as a potential mechanism underlying AD disparities.
Collapse
Affiliation(s)
- Fang Yu
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Keenan A. Pituch
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Molly Maxfield
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Elsa Baena
- Clinical Neuropsychology Department, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Yonas E. Geda
- Department of Neurology and the Franke Neursciene Education Center, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Jeremy J. Pruzin
- Department of Neurology, Banner Alzheimer’s Institute, Phoenix, Arizona, United States of America
| | - David W. Coon
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Gabriel Q. Shaibi
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | | |
Collapse
|
3
|
Cui Y, Tang TY, Lu CQ, Ju S. Insulin Resistance and Cognitive Impairment: Evidence From Neuroimaging. J Magn Reson Imaging 2022; 56:1621-1649. [PMID: 35852470 DOI: 10.1002/jmri.28358] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/04/2023] Open
Abstract
Insulin is a peptide well known for its role in regulating glucose metabolism in peripheral tissues. Emerging evidence from human and animal studies indicate the multifactorial role of insulin in the brain, such as neuronal and glial metabolism, glucose regulation, and cognitive processes. Insulin resistance (IR), defined as reduced sensitivity to the action of insulin, has been consistently proposed as an important risk factor for developing neurodegeneration and cognitive impairment. Although the exact mechanism of IR-related cognitive impairment still awaits further elucidation, neuroimaging offers a versatile set of novel contrasts to reveal the subtle cerebral abnormalities in IR. These imaging contrasts, including but not limited to brain volume, white matter (WM) microstructure, neural function and brain metabolism, are expected to unravel the nature of the link between IR, cognitive decline, and brain abnormalities, and their changes over time. This review summarizes the current neuroimaging studies with multiparametric techniques, focusing on the cerebral abnormalities related to IR and therapeutic effects of IR-targeting treatments. According to the results, brain regions associated with IR pathophysiology include the medial temporal lobe, hippocampus, prefrontal lobe, cingulate cortex, precuneus, occipital lobe, and the WM tracts across the globe. Of these, alterations in the temporal lobe are highly reproducible across different imaging modalities. These structures have been known to be vulnerable to Alzheimer's disease (AD) pathology and are critical in cognitive processes such as memory and executive functioning. Comparing to asymptomatic subjects, results are more mixed in patients with metabolic disorders such as type 2 diabetes and obesity, which might be attributed to a multifactorial mechanism. Taken together, neuroimaging, especially MRI, is beneficial to reveal early abnormalities in cerebral structure and function in insulin-resistant brain, providing important evidence to unravel the underlying neuronal substrate that reflects the cognitive decline in IR. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ying Cui
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian-Yu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chun-Qiang Lu
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Jeong JH, Lee DH, Song J. HMGB1 signaling pathway in diabetes-related dementia: Blood-brain barrier breakdown, brain insulin resistance, and Aβ accumulation. Biomed Pharmacother 2022; 150:112933. [PMID: 35413600 DOI: 10.1016/j.biopha.2022.112933] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetes contributes to the onset of various diseases, including cancer and cardiovascular and neurodegenerative diseases. Recent studies have highlighted the similarities and relationship between diabetes and dementia as an important issue for treating diabetes-related cognitive deficits. Diabetes-related dementia exhibits several features, including blood-brain barrier disruption, brain insulin resistance, and Aβ over-accumulation. High-mobility group box1 (HMGB1) is a protein known to regulate gene transcription and cellular mechanisms by binding to DNA or chromatin via receptor for advanced glycation end-products (RAGE) and toll-like receptor 4 (TLR4). Recent studies have demonstrated that the interplay between HMGB1, RAGE, and TLR4 can impact both neuropathology and diabetic alterations. Herein, we review the recent research regarding the roles of HMGB1-RAGE-TLR4 axis in diabetes-related dementia from several perspectives and emphasize the importance of the influence of HMGB1 in diabetes-related dementia.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, and Chonnam National University Hwasun Hospital, Hwasun 58128, Jeollanam-do, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
5
|
Faaitiiti KL, Jupiter DC. Diabetes-Specific Dementia: A Structured Literature Review of Cognitive Assessment Methods. J Foot Ankle Surg 2022; 61:401-409. [PMID: 34893425 PMCID: PMC8936078 DOI: 10.1053/j.jfas.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Diabetes mellitus is a known risk factor for the development of multiple subtypes of dementia and mild cognitive impairment. Recent research identifies a cause-specific diabetes-related dementia with a unique set of characteristics. Currently, there is no standard cognitive assessment battery recommended to specifically assess dementia that is a direct consequence of chronic diabetes, and some evaluations have been used for decades with minimal revisions, regardless of appropriateness. We performed a systematic review of the dementia/cognition evaluation methods most commonly used in the literature for assessing diabetic patients and identified which cognitive domains are typically assessed in this setting, and whether cognitive changes were more reflective of a vascular pathology, Alzheimer's pathology, or something else entirely. Search results yielded 1089 articles. After screening for appropriateness, a total of 11 full-text articles were assessed. In general, subjects in the reviewed studies were assessed using a variety of testing methods, examining different combinations of cognitive domains. A standard, clear definition of which cognitive domains are the most important to assess in diabetic patients is needed in order to determine what combination of assessment tools are most pertinent. Given the growing subset of the US population, careful reconsideration of cognitive assessment methods is needed to create self-care plans that take into account a specific collection of cognitive challenges for those with diabetes.
Collapse
Affiliation(s)
- Kelli L Faaitiiti
- Medical Student, School of Medicine, The University of Texas Medical Branch, Galveston, TX
| | - Daniel C Jupiter
- Associate Professor, Department of Preventive Medicine and Population Health, The University of Texas Medical Branch, Galveston, TX; Associate Professor, Department of Orthopaedic Surgery and Rehabilitation, The University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
6
|
Wang Y, Sun L, He G, Gang X, Zhao X, Wang G, Ning G. Cerebral perfusion alterations in type 2 diabetes mellitus - a systematic review. Front Neuroendocrinol 2021; 62:100916. [PMID: 33957174 DOI: 10.1016/j.yfrne.2021.100916] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/04/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is related to abnormal brain structure and function, increasing the risk of cognitive impairment and dementia. We systematically reviewed the published literature focusing on cerebral perfusion in patients with T2DM. Although no significant difference was found in global cerebral blood flow (CBF) between the T2DM group and the healthy control group, the regional cerebral perfusion in T2DM was significantly reduced in multiple locations, including the occipital lobe, domains involved in the default mode network and the cerebellum. The decline in regional CBF was associated with a wide range of cognitive disorders in T2DM, including learning, memory, attention, and executive processing, as well as visual function. In addition, diabetes-related biochemical indicators, such as glycated hemoglobin and insulin resistance, were negatively correlated with regional CBF. In general, these functional perfusion imaging studies indicate that decreased CBF in T2DM may be a potential cause of cognitive impairment.
Collapse
Affiliation(s)
- Yaqiong Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| | - Guangyu He
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guixia Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Guang Ning
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, Jilin, China; National Clinical Research Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Jash K, Gondaliya P, Kirave P, Kulkarni B, Sunkaria A, Kalia K. Cognitive dysfunction: A growing link between diabetes and Alzheimer's disease. Drug Dev Res 2020; 81:144-164. [DOI: 10.1002/ddr.21579] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/12/2019] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Kavya Jash
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Prathibha Kirave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Bhagyashri Kulkarni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Aditya Sunkaria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gandhinagar Gujarat India
| |
Collapse
|
8
|
Takenoshita N, Shimizu S, Kanetaka H, Sakurai H, Suzuki R, Miwa T, Odawara M, Ishii K, Shimada H, Higuchi M, Suhara T, Hanyu H. Classification of Clinically Diagnosed Alzheimer’s Disease Associated with Diabetes Based on Amyloid and Tau PET Results. J Alzheimers Dis 2019; 71:261-271. [DOI: 10.3233/jad-190620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Naoto Takenoshita
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Soichiro Shimizu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hidekazu Kanetaka
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hirofumi Sakurai
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Ryo Suzuki
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, Tokyo, Japan
| | - Takashi Miwa
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, Tokyo, Japan
| | - Masato Odawara
- Department of Diabetes, Endocrinology and Metabolism, Tokyo Medical University, Tokyo, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Chiba, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Chiba, Japan
| | - Haruo Hanyu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
9
|
Serine Phosphorylation of IRS1 Correlates with Aβ-Unrelated Memory Deficits and Elevation in Aβ Level Prior to the Onset of Memory Decline in AD. Nutrients 2019; 11:nu11081942. [PMID: 31426549 PMCID: PMC6723493 DOI: 10.3390/nu11081942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/03/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
The biological effects of insulin signaling are regulated by the phosphorylation of insulin receptor substrate 1 (IRS1) at serine (Ser) residues. In the brain, phosphorylation of IRS1 at specific Ser sites increases in patients with Alzheimer’s disease (AD) and its animal models. However, whether the activation of Ser sites on neural IRS1 is related to any type of memory decline remains unclear. Here, we show the modifications of IRS1 through its phosphorylation at etiology-specific Ser sites in various animal models of memory decline, such as diabetic, aged, and amyloid precursor protein (APP) knock-in NL-G-F (APPKINL-G-F) mice. Substantial phosphorylation of IRS1 at specific Ser sites occurs in type 2 diabetes- or age-related memory deficits independently of amyloid-β (Aβ). Furthermore, we present the first evidence that, in APPKINL-G-F mice showing Aβ42 elevation, the increased phosphorylation of IRS1 at multiple Ser sites occurs without memory impairment. Our findings suggest that the phosphorylation of IRS1 at specific Ser sites is a potential marker of Aβ-unrelated memory deficits caused by type 2 diabetes and aging; however, in Aβ-related memory decline, the modifications of IRS1 may be a marker of early detection of Aβ42 elevation prior to the onset of memory decline in AD.
Collapse
|
10
|
Piri R, Naghavi-Behzad M, Gerke O, Høilund-Carlsen PF, Vafaee MS. Investigations of possible links between Alzheimer’s disease and type 2 diabetes mellitus by positron emission tomography: a systematic review. Clin Transl Imaging 2019. [DOI: 10.1007/s40336-019-00339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Ogawa Y, Shimizu S, Takenoshita N, Kaneko Y, Satoto T, Hanyu H. Ambulatory glucose profile in diabetes-related dementia. Geriatr Gerontol Int 2019; 19:282-286. [PMID: 30665263 DOI: 10.1111/ggi.13612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/29/2018] [Accepted: 12/14/2018] [Indexed: 01/21/2023]
Abstract
AIM Diabetes-related dementia (DrD), a dementia subgroup associated with specific diabetes mellitus (DM)-related metabolic abnormalities rather than Alzheimer's disease (AD) pathology or cerebrovascular disease, is characterized by less well-controlled glycemia. We investigated the glucose level, variability and stability, and risk of hypoglycemia in DrD to determine characteristic ambulatory glucose profiles (AGP). METHODS We obtained AGP for 14 days of 40 patients with AD associated with DM and 19 patients with DrD using a novel sensor-based flash glucose monitoring system (FreeStyle Libre Pro). RESULTS Despite similar mean glucose and estimated A1c values, the DrD group showed significantly greater glucose variability and higher percentage of time spent in hypoglycemia than the AD associated with DM group. Glucose level and variability correlated significantly and negatively with Mini-Mental State Examination in DrD, but not in AD associated with DM The estimated A1c levels calculated from the 14 days of AGP data significantly correlated with the HbA1c levels measured within 2 months of the insertion of the sensor. CONCLUSIONS DrD has a distinctively different AGP from that of AD associated with DM. Glucose variability and hypoglycemia are more involved in the pathophysiology of DrD than in that of AD associated with DM. The AGP analysis using the flash glucose monitoring system might provide useful information undetected by HbA1c values. Geriatr Gerontol Int 2019; 19: 282-286.
Collapse
Affiliation(s)
- Yusuke Ogawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Soichiro Shimizu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | | | - Yoshitsugu Kaneko
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Tomohiko Satoto
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Haruo Hanyu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
12
|
Abstract
Type 2 diabetes mellitus (DM) has been shown to increase the risk for cognitive decline and dementia, such as in Alzheimer disease (AD) and vascular dementia (VaD). Additionally, there may be a dementia subgroup associated with specific DM-related metabolic abnormalities rather than with AD pathology or cerebrovascular diseases. This type of dementia, not showing hypoperfusion in the parietotemporal lobe on SPECT or cerebrovascular lesions on MRI, was characterized by old age, high hemoglobin A1c level, long duration of diabetes, high frequency of insulin therapy, low frequency of apolipoprotein E4 carrier, less-severe medial temporal lobe atrophy, impaired attention and executive function, less-impaired word recall, and slow progression of cognitive impairment and might be referred to as "diabetes-related dementia" (DrD). 11C-Pittsburgh compound-B PET shows often negative or equivocal amyloid accumulation in the brain, indicating different from AD pathology. In addition to insulin resistance, elevated inflammatory cytokines, oxidative stress, and advanced glycation end products were associated with cognitive impairment in this type of dementia. Glycemic controls can improve some domains of cognitive function, such as attention and executive functions, in subjects with DrD. Frequencies of frailty and sarcopenia/dynapenia are significantly higher in DrD than in AD, indicating that geriatric interventions are necessary to improve clinical outcomes for patients with DrD. DrD can be considered as a controllable or modifiable dementia. The identification of DrD, as distinct from other types of dementia, may be necessary for considering appropriate therapy and prevention in clinical practice.
Collapse
|
13
|
Minami Y, Sonoda N, Hayashida E, Makimura H, Ide M, Ikeda N, Ohgidani M, Kato TA, Seki Y, Maeda Y, Kanba S, Takayanagi R, Ogawa Y, Inoguchi T. p66Shc Signaling Mediates Diabetes-Related Cognitive Decline. Sci Rep 2018; 8:3213. [PMID: 29453337 PMCID: PMC5816624 DOI: 10.1038/s41598-018-21426-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Accumlating evidence have suggested that diabetes mellitus links dementia, notably of Alzheimer's disease (AD). However, the underlying mechanism remains unclear. Several studies have shown oxidative stress (OS) to be one of the major factors in the pathogenesis of diabetic complications. Here we show OS involvement in brain damage in a diabetic animal model that is at least partially mediated through an AD-pathology-independent mechanism apart from amyloid-β accumulation. We investigated the contribution of the p66Shc signaling pathway to diabetes-related cognitive decline using p66Shc knockout (-/-) mice. p66Shc (-/-) mice have less OS in the brain and are resistant to diabetes-induced brain damage. Moreover, p66Shc (-/-) diabetic mice show significantly less cognitive dysfunction and decreased levels of OS and the numbers of microglia. This study postulates a p66Shc-mediated inflammatory cascade leading to OS as a causative pathogenic mechanism in diabetes-associated cognitive impairment that is at least partially mediated through an AD-pathology-independent mechanism.
Collapse
Affiliation(s)
- Yohei Minami
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Sonoda
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Innovation Center for Medical Redox Navigation, Incubation Center for Advanced Medical Science, Kyushu University, Fukuoka, Japan.
| | - Eiichi Hayashida
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Makimura
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Ide
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Ikeda
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Innovation Center for Medical Redox Navigation, Incubation Center for Advanced Medical Science, Kyushu University, Fukuoka, Japan.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Seki
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasutaka Maeda
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Innovation Center for Medical Redox Navigation, Incubation Center for Advanced Medical Science, Kyushu University, Fukuoka, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoichi Takayanagi
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Toyoshi Inoguchi
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Innovation Center for Medical Redox Navigation, Incubation Center for Advanced Medical Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 2018; 14:168-181. [PMID: 29377010 DOI: 10.1038/nrneurol.2017.185] [Citation(s) in RCA: 940] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable overlap has been identified in the risk factors, comorbidities and putative pathophysiological mechanisms of Alzheimer disease and related dementias (ADRDs) and type 2 diabetes mellitus (T2DM), two of the most pressing epidemics of our time. Much is known about the biology of each condition, but whether T2DM and ADRDs are parallel phenomena arising from coincidental roots in ageing or synergistic diseases linked by vicious pathophysiological cycles remains unclear. Insulin resistance is a core feature of T2DM and is emerging as a potentially important feature of ADRDs. Here, we review key observations and experimental data on insulin signalling in the brain, highlighting its actions in neurons and glia. In addition, we define the concept of 'brain insulin resistance' and review the growing, although still inconsistent, literature concerning cognitive impairment and neuropathological abnormalities in T2DM, obesity and insulin resistance. Lastly, we review evidence of intrinsic brain insulin resistance in ADRDs. By expanding our understanding of the overlapping mechanisms of these conditions, we hope to accelerate the rational development of preventive, disease-modifying and symptomatic treatments for cognitive dysfunction in T2DM and ADRDs alike.
Collapse
|
15
|
Tsugawa A, Ogawa Y, Takenoshita N, Kaneko Y, Hatanaka H, Jaime E, Fukasawa R, Hanyu H. Decreased Muscle Strength and Quality in Diabetes-Related Dementia. Dement Geriatr Cogn Dis Extra 2017; 7:454-462. [PMID: 29430248 PMCID: PMC5806194 DOI: 10.1159/000485177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/10/2017] [Indexed: 12/25/2022] Open
Abstract
Background/Aims Diabetes-related dementia (DrD), a dementia subgroup associated with specific diabetes mellitus (DM)-related metabolic abnormalities, is clinically and pathophysiologically different from Alzheimer disease (AD) and vascular dementia. We determined whether skeletal muscle strength, quality, and mass decrease in individuals with DrD. Methods We evaluated grip and knee extension strength, muscle mass, and gait speed in 106 patients with probable AD and without type 2 DM (AD[−DM] group), 74 patients with probable AD and with DM (AD[+DM] group), and 36 patients with DrD (DrD group). Muscle quality was defined as the ratio of muscle strength to muscle mass. Results Both female and male subjects with DrD showed significantly decreased muscle strength and quality in the upper extremities compared with the subjects with AD[−DM] or AD[+DM]. Female subjects with DrD showed significantly decreased muscle quality in the lower extremities compared with the subjects with AD[−DM]. Both female and male subjects with DrD had a significantly lower gait speed compared with the subjects with AD[−DM]. However, there were no significant differences in muscle mass and the prevalence of sarcopenia between the groups. Conclusion Subjects with DrD showed decreased muscle strength and quality, but not muscle mass, and had a low gait speed.
Collapse
Affiliation(s)
- Akito Tsugawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Ogawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Naoto Takenoshita
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yoshitsugu Kaneko
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hirokuni Hatanaka
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Eriko Jaime
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Raita Fukasawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Haruo Hanyu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
16
|
Kanetaka H, Fukasawa R, Shimizu S, Takenoshita N, Hanyu H. Cerebrospinal fluid analysis in individuals with diabetes-related dementia. eNeurologicalSci 2017; 8:9-10. [PMID: 29260028 PMCID: PMC5730891 DOI: 10.1016/j.ensci.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 11/27/2022] Open
Abstract
•CSF P-tau and Aβ42 show normal levels in diabetes-related dementia.•Diabetes-related dementia may have a different underlying pathology from AD.•CSF analysis is useful for the differentiation of diabetes-related dementia from AD.
Collapse
Affiliation(s)
| | - Raita Fukasawa
- Department of Geriatric Medicine, Tokyo Medical University, Japan
| | - Soichiro Shimizu
- Department of Geriatric Medicine, Tokyo Medical University, Japan
| | | | - Haruo Hanyu
- Department of Geriatric Medicine, Tokyo Medical University, Japan
| |
Collapse
|
17
|
Hirose D, Hanyu H, Fukusawa R, Hatanaka H, Namioka N, Okita M. Circulating Levels of Advanced Glycation End Products in Diabetes Mellitus-Related Dementia. J Am Geriatr Soc 2016; 63:2196-8. [PMID: 26480987 DOI: 10.1111/jgs.13683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daisuke Hirose
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Haruo Hanyu
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Raita Fukusawa
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hirokuni Hatanaka
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Nayuta Namioka
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | - Misa Okita
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
18
|
Hatanaka H, Hanyu H, Fukasawa R, Sato T, Shimizu S, Sakurai H. Peripheral oxidative stress markers in diabetes-related dementia. Geriatr Gerontol Int 2015; 16:1312-1318. [DOI: 10.1111/ggi.12645] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Hirokuni Hatanaka
- Department of Geriatric Medicine; Tokyo Medical University; Tokyo Japan
| | - Haruo Hanyu
- Department of Geriatric Medicine; Tokyo Medical University; Tokyo Japan
| | - Raita Fukasawa
- Department of Geriatric Medicine; Tokyo Medical University; Tokyo Japan
| | - Tomohiko Sato
- Department of Geriatric Medicine; Tokyo Medical University; Tokyo Japan
| | - Soichiro Shimizu
- Department of Geriatric Medicine; Tokyo Medical University; Tokyo Japan
| | - Hirofumi Sakurai
- Department of Geriatric Medicine; Tokyo Medical University; Tokyo Japan
| |
Collapse
|
19
|
Hanyu H, Hirose D, Fukasawa R, Hatanaka H, Namioka N, Sakurai H. Guidelines for the Clinical Diagnosis of Diabetes Mellitus-Related Dementia. J Am Geriatr Soc 2015; 63:1721-3. [DOI: 10.1111/jgs.13581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haruo Hanyu
- Department of Geriatric Medicine; Tokyo Medical University; Tokyo Japan
| | - Daisuke Hirose
- Department of Geriatric Medicine; Tokyo Medical University; Tokyo Japan
| | - Raita Fukasawa
- Department of Geriatric Medicine; Tokyo Medical University; Tokyo Japan
| | - Hirokuni Hatanaka
- Department of Geriatric Medicine; Tokyo Medical University; Tokyo Japan
| | - Nayuta Namioka
- Department of Geriatric Medicine; Tokyo Medical University; Tokyo Japan
| | - Hirofumi Sakurai
- Department of Geriatric Medicine; Tokyo Medical University; Tokyo Japan
| |
Collapse
|