1
|
Lyu Q, Zhang L, Ding Y, Liu Z. Genetically predicted N-Acetyl-L-Alanine mediates the association between CD3 on activated and secreting Tregs and Guillain-Barre syndrome. Front Neurosci 2024; 18:1398653. [PMID: 39371607 PMCID: PMC11450862 DOI: 10.3389/fnins.2024.1398653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
Objective This study sought to explore the potential causal relationships among immune cell traits, Guillain-Barre syndrome (GBS) and metabolites. Methods Employing a two-sample Mendelian randomization (MR) approach, the study investigated the causal associations between 731 immune cell traits, 1400 metabolite levels and GBS leveraging summary-level data from a genome-wide association study (GWAS). To ensure the reliability of our findings, we further assessed horizontal pleiotropy and heterogeneity and evaluated the stability of MR results using the Leave-one-out method. Results This study revealed a causal relationship between CD3 on activated & secreting Tregs and GBS. Higher CD3 on activated and secreting Regulatory Tregs increased the risk of GBS (primary MR analysis odds ratio (OR) 1.31/SD increase, 95% confidence interval (CI) 1.08-1.58, p = 0.005). There was no reverse causality for GBS on CD3 on activated & secreting Tregs (p = 0.36). Plasma metabolite N-Acetyl-L-Alanine (ALA) was significantly positively correlated with GBS by using the IVW method (OR = 2.04, 95% CI, 1.26-3.30; p = 0.00038). CD3 on activated & secreting Tregs was found to be positively associated with ALA risk (IVW method, OR, 1.04; [95% CI, 1.01-1.07], p = 0.0078). Mediation MR analysis indicated the mediated proportion of CD3 on activated & secreting Tregs mediated by ALA was 10% (95%CI 2.63%, 17.4%). Conclusion In conclusion, our study identified a causal relationship between the level of CD3 on activated & secreting Tregs and GBS by genetic means, with a considerable proportion of the effect mediated by ALA. In clinical practice, thus providing guidance for future clinical research.
Collapse
Affiliation(s)
- Qi Lyu
- Department of Ultrasound, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Lianlian Zhang
- Department of Ultrasonography, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng, China
| | - Yasuo Ding
- Department of Neurosurgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Zehao Liu
- Department of Neurosurgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| |
Collapse
|
2
|
Guo H, Vuille JA, Wittner BS, Lachtara EM, Hou Y, Lin M, Zhao T, Raman AT, Russell HC, Reeves BA, Pleskow HM, Wu CL, Gnirke A, Meissner A, Efstathiou JA, Lee RJ, Toner M, Aryee MJ, Lawrence MS, Miyamoto DT, Maheswaran S, Haber DA. DNA hypomethylation silences anti-tumor immune genes in early prostate cancer and CTCs. Cell 2023; 186:2765-2782.e28. [PMID: 37327786 PMCID: PMC10436379 DOI: 10.1016/j.cell.2023.05.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/09/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Cancer is characterized by hypomethylation-associated silencing of large chromatin domains, whose contribution to tumorigenesis is uncertain. Through high-resolution genome-wide single-cell DNA methylation sequencing, we identify 40 core domains that are uniformly hypomethylated from the earliest detectable stages of prostate malignancy through metastatic circulating tumor cells (CTCs). Nested among these repressive domains are smaller loci with preserved methylation that escape silencing and are enriched for cell proliferation genes. Transcriptionally silenced genes within the core hypomethylated domains are enriched for immune-related genes; prominent among these is a single gene cluster harboring all five CD1 genes that present lipid antigens to NKT cells and four IFI16-related interferon-inducible genes implicated in innate immunity. The re-expression of CD1 or IFI16 murine orthologs in immuno-competent mice abrogates tumorigenesis, accompanied by the activation of anti-tumor immunity. Thus, early epigenetic changes may shape tumorigenesis, targeting co-located genes within defined chromosomal loci. Hypomethylation domains are detectable in blood specimens enriched for CTCs.
Collapse
Affiliation(s)
- Hongshan Guo
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Joanna A Vuille
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Emily M Lachtara
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yu Hou
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maoxuan Lin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ting Zhao
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ayush T Raman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hunter C Russell
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Brittany A Reeves
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Haley M Pleskow
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Chin-Lee Wu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander Meissner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Jason A Efstathiou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Richard J Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mehmet Toner
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Engineering in Medicine and Shriners Hospital for Children, Harvard Medical School, Boston, MA 02114, USA
| | - Martin J Aryee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David T Miyamoto
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Genetic basis of Guillain-Barre syndrome. J Neuroimmunol 2021; 358:577651. [PMID: 34246981 DOI: 10.1016/j.jneuroim.2021.577651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/05/2021] [Accepted: 06/27/2021] [Indexed: 01/13/2023]
Abstract
Guillain-Barré syndrome (GBS) is an autoimmune disease in which the peripheral nerves are affected. GBS has different subtypes, such as acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN). Infections, e.g. Campylobacter jejuni, influenza, etc., can lead to GBS. Both environmental and genetic factors play a major role in the occurrence of GBS. Several studies have investigated the genetic basis of GBS. Human leukocyte antigens (HLA) genes, Cluster of Differentiation (CD) 1A, FAS, Fc gamma receptors (FcGR), Intercellular adhesion molecule-1 (ICAM1), different interleukins, Nucleotide oligomerization domain (NOD), Toll-like receptor 4 (TLR4), Tumor necrosis factor-α (TNF-α) are among the genes reported to be involved in susceptibility to the disease. Dysregulation and dysfunction of the mentioned gene products, even though their role in the pathogenesis of GBS is controversial, play a role in inflammatory pathways, regulation of immune cells and system, antigen presentation, axonal degeneration, apoptosis, and cross-reaction. This review aims to summarize associated genes with GBS to contribute to better understanding of GBS pathogenesis and discover the gene pathways that play role in GBS occurrence.
Collapse
|
4
|
A review of the role of genetic factors in Guillain–Barré syndrome. J Mol Neurosci 2020; 71:902-920. [DOI: 10.1007/s12031-020-01720-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
|
5
|
Zhao Y, Zhu R, Tian D, Liu X. Genetic polymorphisms in Guillain-Barré Syndrome: A field synopsis and systematic meta-analysis. Autoimmun Rev 2020; 19:102665. [PMID: 32949724 DOI: 10.1016/j.autrev.2020.102665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Guillain-Barré Syndrome (GBS) is considered to be a complex immune-mediated neuropathy. In the past few years, numerous studies were performed to detect the association between genetic polymorphisms and GBS risk. However, the findings of these studies were controversial. Thus, we conducted this field synopsis and systematic meta-analysis for further evaluating the possible associations between all available genetic polymorphisms and GBS susceptibility. METHODS Relevant studies focusing on the association between all genetic polymorphisms and GBS risk were obtained by a comprehensive literature search. The pooled odds ratios (ORs) as well as 95% confidence intervals (CIs) were used for assessing the strength of association. Subgroup analyses stratified by ethnicity and GBS subtype were further performed. Moreover, sensitive analysis and publication bias were conducted for evaluating the reliability of the results. RESULTS Among the initial identified 333 articles, 41 articles reporting on 220 genetic polymorphisms were extracted for conducting this systematic review. Then, we performed 95 primary and 94 subgroup meta-analyses for 59 variants with at least three independent studies available. The results showed significant association between four variants (FcγR IIA rs1801274, TNF-α rs1800629, HLA DRB1*0401 and HLA DRB1*1301) and GBS susceptibility. In the subgroup analysis, three (TNF-α rs1800629, TNF-α rs1800630 and TLR4 rs4986790) and two (FcγR IIA rs1801274, HLA DRB1*14) variants showed association with increased GBS risk in Asian and Caucasian population, respectively. Also, TNF-α rs1800629 was significant associated with AMAN subtypes of GBS. Furthermore, sensitivity analysis, funnel plots and Egger's test displayed robust results, except for FcγR IIA rs1801274. Additionally, for 161 variants with less than three studies, 17 genetic variants have been found to be significantly related with GBS risk in our systematic review. INTERPRETATION In our study, we assessed the association between all available genetic polymorphisms and GBS susceptibility. We hope our findings would be helpful for identifying novel genetic biomarkers and potential therapeutic targets for GBS.
Collapse
Affiliation(s)
- Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Dandan Tian
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| |
Collapse
|
6
|
Shou J, Peng J, Zhao Z, Huang X, Li H, Li L, Gao X, Xing Y, Liu H. CCL26 and CCR3 are associated with the acute inflammatory response in the CNS in experimental autoimmune encephalomyelitis. J Neuroimmunol 2019; 333:576967. [DOI: 10.1016/j.jneuroim.2019.576967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
|
7
|
Zhang X, Zhang H, Liu Z, Guan R, Wang J, Kong X, Chen L, Bo C, Li J, Bai M, Lu X, Shen J, Wang L, Guo M. Inferring immune-associated signatures based on a co-expression network in Guillain-Barré syndrome. Cell Prolif 2019; 52:e12634. [PMID: 31094043 PMCID: PMC6668984 DOI: 10.1111/cpr.12634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
Objectives Guillain‐Barré syndrome (GBS) is a type of acute autoimmune disease, which occurs in peripheral nerves and their roots. There is extensive evidence that suggests many immune‐associated genes have essential roles in GBS. However, the associations between immune genes and GBS have not been sufficiently examined as most previous studies have only focused on individual genes rather than their entire interaction networks. Materials and methods In this study, multiple levels of data including immune‐associated genes, GBS‐associated genes, protein‐protein interaction (PPI) networks and gene expression profiles were integrated, and an immune or GBS‐directed neighbour co‐expressed network (IOGDNC network) and a GBS‐directed neighbour co‐expressed network (GDNC network) were constructed. Results Our analysis shows the immune‐associated genes are strongly related to GBS‐associated genes whether at the interaction level or gene expression level. Five immune‐associated modules were also identified which could distinguish between GBS and normal samples. In addition, functional analysis indicated that immune‐associated genes are essential in GBS. Conclusions Overall, these results highlight a strong relationship between immune‐associated genes and GBS existed and provide a potential role for immune‐associated genes as novel diagnostic and therapeutic biomarkers for GBS.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhaojun Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruoyu Guan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixia Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunrui Bo
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ming Bai
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jia Shen
- School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Taheri M, Danesh H, Bizhani F, Bahari G, Naderi M, Hashemi M. Association between genetic variants in CD1A and CD1D genes and pulmonary tuberculosis in an Iranian population. Biomed Rep 2019; 10:259-265. [PMID: 30972222 DOI: 10.3892/br.2019.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 11/06/2022] Open
Abstract
Cluster of differentiation (CD)1 molecules are a highly conserved family of MCH-like transmembrane glycoproteins that bind lipid and glycolipid antigens and present a diverse range of microbial and self-glycolipids to antigen-specific T cells. The current study aimed to find out the impact of CD1A and CD1D polymorphisms on pulmonary tuberculosis (PTB). This case-control study encompassed 172 PTB patients and 180 healthy subjects. Genotyping of CD1A and CD1D variants was achieved using the polymerase chain reaction restriction fragment length polymorphism method. The results revealed that CD1A rs411089 variant significantly increased the risk of PTB in recessive model [odds ratio (OR)=2.71, 95% confidence interval (CI)=1.38-5.57, CC vs. TT+TC, P=0.005]. CD1D rs859009 polymorphism significantly reduced the risk of PTB in heterozygous codominant (OR=0.50, 95% CI=0.29-0.86, P=0.011, GC vs. GG) and dominant (OR=0.53, 95% CI=0.31-0.88, P=0.019, GC+CC vs. GG) inheritance model. The CD1A rs366316, CD1D rs973742 and CD1D rs859010 were not associated with the risk/protection from PTB (P>0.05). The results of the present study suggest that CD1A rs411089 and CD1D rs859009 but not CD1A rs366316, CD1D rs973742 and CD1D rs859010 polymorphisms are associated with PTB in a sample of the Iranian population. Further investigation with different ethnicities and larger sample sizes are necessary to certify the findings of the present study.
Collapse
Affiliation(s)
- Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Hiva Danesh
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Fatemeh Bizhani
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Gholamreza Bahari
- Children and Adolescent Health Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Mohammad Naderi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Mohammad Hashemi
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| |
Collapse
|
9
|
Zhang L, Liu L, Li H, Guo L, Yu Q, Teng J. Association of CD1 and FcγR gene polymorphisms with Guillain-Barré syndrome susceptibility: a meta-analysis. Neurol Sci 2018; 39:2141-2149. [PMID: 30232664 DOI: 10.1007/s10072-018-3563-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/07/2018] [Indexed: 11/26/2022]
Abstract
CD1 and immunoglobulin G Fc receptor (FcγR) genes have been proposed to be involved in the pathogenesis of Guillain-Barré syndrome (GBS). However, results of different studies are conflicting. This meta-analysis aimed to systematically examine the association between CD1 and FcγR gene polymorphisms and GBS. A comprehensive literature search through PubMed, EmBase, ScienceDirect, and Cochrane Library was performed to identify all eligible studies. The strength of association was assessed by pooled odds ratios (ORs) and corresponding 95% confidence intervals (95% CI) in allelic, dominant, recessive, homozygous and heterozygous genetic models. Four case-control studies about polymorphisms of exon 2 in CD1A and CD1E genes and GBS risk and five studies (six cohorts) about FcγR gene polymorphisms and GBS risk were included in this meta-analysis. The association between exon 2 of CD1E gene polymorphism and GBS was marginally significant in Caucasians in allelic model (OR = 1.193, 95% CI = 1.001-1.423, P = 0.049). FcγRIIA gene polymorphism was significantly associated with GBS risk in Caucasians under allelic model (OR = 1.553, 95% CI = 1.018-2.368, P = 0.041) and dominant model (OR = 1.320, 95% CI = 1.027-1.697, P = 0.030). However, no significant association was found between polymorphisms in exon 2 of CD1A, FcγRIIIA and FcγRIIIB genes and GBS susceptibility. This meta-analysis suggested that FcγRIIA gene polymorphism may contribute to GBS risk in Caucasians and revealed a certain trend toward significance in the association of exon 2 of CD1E gene with GBS in Caucasians. Further studies with larger sample size are required to validate these results.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, Shandong Province, China
| | - Lijun Liu
- Department of Neurology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, Shandong Province, China
| | - Hong Li
- Department of Neurology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, Shandong Province, China
| | - Lei Guo
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Yu
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jijun Teng
- Department of Neurology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, Shandong Province, China.
| |
Collapse
|
10
|
Peng J, Zhang H, Liu P, Chen M, Xue B, Wang R, Shou J, Qian J, Zhao Z, Xing Y, Liu H. IL-23 and IL-27 Levels in Serum are Associated with the Process and the Recovery of Guillain-Barré Syndrome. Sci Rep 2018; 8:2824. [PMID: 29434217 PMCID: PMC5809385 DOI: 10.1038/s41598-018-21025-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/29/2018] [Indexed: 12/25/2022] Open
Abstract
IL-23 and IL-27 are believed to be involved in the pathogenesis of Guillain-Barré syndrome (GBS). However, changes in these cytokines during the dynamic pathological and recovery processes of GBS are not well described. In the present study, plasma was collected from 83 patients with various stages of GBS, 70 patients with central nervous system demyelinating diseases,70 patients with other neurological diseases (OND) and 70 age- and sex-matched healthy volunteers. Serum levels of IL-23, IL-27, and Campylobacter jejuni (CJ) IgM were assessed using enzyme linked immunosorbent assay (ELISA). We found that serum IL-23 levels of patients during the acute phase of GBS were significantly higher followed by a decreasing trend during the recovery phase of the disease. Serum IL-27 levels significantly increased during the acute phase of GBS, and gradually increased during the recovery phase. Interestingly, both the severity and subtype of GBS were closely associated with the two cytokines. IL-23 levels were positively correlated with IL-27 levels, prognosis, and other clinical parameters. Our findings confirm that IL-23 may show pro-inflammatory effects, especially at the early stage of GBS. IL-27 appears to have a dual role in GBS, with initial pro-inflammatory effects, followed by anti-inflammatory properties during recovery.
Collapse
Affiliation(s)
- Jing Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hui Zhang
- Department of Neurology, Beijing Xuanwu Hospital, Affiliated to Capital Medical University, Beijing, P.R. China
| | - Peidong Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Min Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Bing Xue
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Rui Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jifei Shou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Juanfeng Qian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhikang Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yanmeng Xing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.
| |
Collapse
|
11
|
CD1A and CD1E gene polymorphisms are not associated with susceptibility to Guillain-Barré syndrome in the Bangladeshi population. J Neuroimmunol 2018; 314:8-12. [DOI: 10.1016/j.jneuroim.2017.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 12/22/2022]
|