1
|
Prajapati SK, Ahmed S, Rai V, Gupta SC, Krishnamurthy S. Suvorexant improves mitochondrial dynamics with the regulation of orexinergic and mTOR activation in rats exhibiting PTSD-like symptoms. J Affect Disord 2024; 350:24-38. [PMID: 38185385 DOI: 10.1016/j.jad.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Increasing evidence suggests that mitochondrial dysfunction plays a significant role in PTSD. However, the exact mechanism is still unclear. Mitochondrial dynamics could be one of the mechanisms, as it is crucial for mitochondrial homeostasis and is widely affected in traumatic situations. Mitochondrial dynamics regulate mitochondrial homeostasis via orexinergic receptors, and it is shown that antagonism of orexinergic receptors attenuates PTSD-like symptoms. Therefore, the present study aimed to determine how orexin antagonists affect mitochondrial dynamics in rats exhibiting PTSD-like symptoms. METHODS Using rats, a stress-re-stress (SRS) model with PTSD-like symptoms was established. On day 2 (D-2), the animals were exposed to variable stressors including 2 h of restraint followed by brief mild foot shock and exposure to 4%halothane. Foot shock was performed as a re-stress from D-8 to D-32 at six-day intervals. RESULTS SRS exposure caused PTSD-like phenotype, hypothalamic-pituitary-adrenal axis dysfunction, activation of mammalian target of rapamycin (mTOR), and mitochondrial-fission-process-1 (MTFP-1). SRS-subjected rats exhibited enhanced expression of fission-regulating proteins, including dynamin-related protein-1 and mitochondrial-fission-protein-1 and reduced expression of fusion-regulating proteins, including optic-atrophy-1 and mitofusin-2, in the amygdala. TEM analysis revealed that SRS exposure further damaged the mitochondria. Treatment with suvorexant with rapamycin significantly mitigated PTSD-like symptoms and improved mitochondrial dynamics in SRS-exposed rats. However, their combination showed a more pronounced effect. Further, suvorexant in combination with rapamycin significantly mitigated mTOR and MTFP-1 activation. Sertraline attenuated PTSD-like symptoms without affecting SRS-induced activation of mTOR and disparity in mitochondrial dynamics. Suvorexant pharmacological effects on mitochondrial biogenesis also involve the mTOR pathway. LIMITATION The role of orexinergic pathway in SRS-induced mitochondrial mitophagy was not explored. CONCLUSIONS Targeting both the orexinergic and mTOR pathways might exert a beneficial synergistic effect for treating PTSD.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, U.P., India; Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33613, USA
| | - Sahabuddin Ahmed
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Vipin Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Subhas Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, U.P., India.
| |
Collapse
|
2
|
Badu-Mensah A, Guo X, Mendez R, Parsaud H, Hickman JJ. The Effect of Skeletal Muscle-Specific Creatine Treatment on ALS NMJ Integrity and Function. Int J Mol Sci 2023; 24:13519. [PMID: 37686322 PMCID: PMC10487911 DOI: 10.3390/ijms241713519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Although skeletal muscle (hSKM) has been proven to be actively involved in Amyotrophic Lateral Sclerosis (ALS) neuromuscular junction (NMJ) dysfunction, it is rarely considered as a pharmacological target in preclinical drug discovery. This project investigated how improving ALS hSKM viability and function effects NMJ integrity. Phenotypic ALS NMJ human-on-a-chip models developed from patient-derived induced pluripotent stem cells (iPSCs) were used to study the effect of hSKM-specific creatine treatment on clinically relevant functional ALS NMJ parameters, such as NMJ numbers, fidelity, stability, and fatigue index. Results indicated comparatively enhanced NMJ numbers, fidelity, and stability, as well as reduced fatigue index, across all hSKM-specific creatine-treated systems. Immunocytochemical analysis of the NMJs also revealed improved post-synaptic nicotinic Acetylcholine receptor (AChR) clustering and cluster size in systems supplemented with creatine relative to the un-dosed control. This work strongly suggests hSKM as a therapeutic target in ALS drug discovery. It also demonstrates the need to consider all tissues involved in multi-systemic diseases, such as ALS, in drug discovery efforts. Finally, this work further establishes the BioMEMs NMJ platform as an effective means of performing mutation-specific drug screening, which is a step towards personalized medicine for rare diseases.
Collapse
Affiliation(s)
- Agnes Badu-Mensah
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (A.B.-M.); (X.G.); (R.M.); (H.P.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Xiufang Guo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (A.B.-M.); (X.G.); (R.M.); (H.P.)
| | - Roxana Mendez
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (A.B.-M.); (X.G.); (R.M.); (H.P.)
| | - Hemant Parsaud
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (A.B.-M.); (X.G.); (R.M.); (H.P.)
| | - James J. Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; (A.B.-M.); (X.G.); (R.M.); (H.P.)
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
3
|
Tempol Alters Antioxidant Enzyme Function, Modulates Multiple Genes Expression, and Ameliorates Hepatic and Renal Impairment in Carbon Tetrachloride (CCl4)-Intoxicated Rats. LIVERS 2023. [DOI: 10.3390/livers3010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
The purpose of this study was to determine the effect of the superoxide dismutase mimic compound “tempol” on liver and renal damage in Long Evans male rats administered with carbon tetrachloride (CCl4). Methods: The antioxidant enzyme activity and oxidative stress parameters were investigated in the liver, kidney, and plasma tissues. Histological examination of the liver and kidney sections affirmed inflammatory cell infiltration, collagen deposition, and iron deposition. RT-PCR was also employed to evaluate the expression of oxidative stress and inflammatory genes. Results: The CCl4-administered rats exhibited increased plasma activities of ALT, AST, and ALP compared to the control rats. The tempol treatment in the CCl4-administered rats significantly lowered ALT, AST, and ALP enzyme activities compared to the CCl4 group. Oxidative stress parameters, such as the MDA, NO, and APOP levels in various tissues of the CCl4-administered rats, showed increased concentrations, whereas tempol significantly lowered the level of oxidative stress. Moreover, CCl4 administration decreased the antioxidant enzyme activities, which were further significantly restored by the tempol treatment. The control rats that underwent treatment with tempol did not present with any abnormality or toxicity. Furthermore, the tempol treatment in the CCl4-administered rats increased Nrf-2-HO-1-mediated gene expression and enhanced related antioxidant enzyme gene expressions. The tempol treatment in the CCl4-administered rats also decreased anti-inflammatory gene expressions in the liver. In histological sections of the liver, CCl4 increased inflammatory cell infiltration, collagen deposition, and iron deposition, which were reduced significantly due to the tempol treatment. Conclusion: The results of this investigation revealed that tempol could protect against liver and kidney damage in CCl4-administered rats by modulating antioxidant gene expressions and restoring antioxidant defense mechanisms.
Collapse
|
4
|
Ramakrishna K, Krishnamurthy S. Indole-3-carbinol ameliorated the neurodevelopmental deficits in neonatal anoxic injury in rats. Int J Dev Neurosci 2023; 83:31-43. [PMID: 36259087 DOI: 10.1002/jdn.10234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023] Open
Abstract
Neonatal anoxia is linked to long-lasting neurodevelopmental deficits. Due to the lack of pharmacological intervention to treat neonatal anoxia, there is interest in finding new molecules for its treatment. Indole-3-carbinol (I3C) has shown neuroprotective effects in some disease conditions. However, the neuroprotective role of I3C in neonatal anoxia has not been explored. Consequently, we have investigated the effect of I3C on neonatal anoxia-induced brain injury and neurodevelopmental deficits. Rat pups after 30 h of birth were subjected to two episodes of anoxia (10 min in each) at a time interval of 24 h by flowing 100% nitrogen. I3C was administered within 30 min of the second episode of anoxia on a postnatal day (PND) 3 and continued for PND 9. Neurodevelopmental deficits, cortical mitochondrial membrane potential (MMP), opening of mitochondrial permeability transition pore (MPTP), electron transport chain (ETC) enzyme activities, oxidative stress, hypoxia-inducible factor-1α (HIF-1α) levels, histopathological changes, and apoptosis were measured. I3C treatment dose-dependently ameliorated the neurodevelopmental deficits and somatic growth in anoxic pups. I3C improved mitochondrial function by enhancing the MMP, mitochondrial ETC enzymes, and antioxidants. It blocked the MPTP opening and release of cytochrome C in anoxic pups. Further, I3C reduced the elevated cortical HIF-1α in neonatal anoxic pups. Furthermore, I3C ameliorated histopathological abnormalities and mitochondrial-mediated apoptotic indicators Cyt C, caspase-9, and caspase-3. Our study concludes that I3C improved neuronal development in anoxic pups by enhancing mitochondrial function, reducing HIF-1α, and mitigating apoptosis.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, India.,Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, India
| |
Collapse
|
5
|
Evidence for Oxidative Pathways in the Pathogenesis of PD: Are Antioxidants Candidate Drugs to Ameliorate Disease Progression? Int J Mol Sci 2022; 23:ijms23136923. [PMID: 35805928 PMCID: PMC9266756 DOI: 10.3390/ijms23136923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that arises due to a complex and variable interplay between elements including age, genetic, and environmental risk factors that manifest as the loss of dopaminergic neurons. Contemporary treatments for PD do not prevent or reverse the extent of neurodegeneration that is characteristic of this disorder and accordingly, there is a strong need to develop new approaches which address the underlying disease process and provide benefit to patients with this debilitating disorder. Mitochondrial dysfunction, oxidative damage, and inflammation have been implicated as pathophysiological mechanisms underlying the selective loss of dopaminergic neurons seen in PD. However, results of studies aiming to inhibit these pathways have shown variable success, and outcomes from large-scale clinical trials are not available or report varying success for the interventions studied. Overall, the available data suggest that further development and testing of novel therapies are required to identify new potential therapies for combating PD. Herein, this review reports on the most recent development of antioxidant and anti-inflammatory approaches that have shown positive benefit in cell and animal models of disease with a focus on supplementation with natural product therapies and selected synthetic drugs.
Collapse
|
6
|
Dong X, Li L, Zhang D, Su Y, Yang L, Li X, Han Y, Li W, Li W. Ginsenoside Rg1 attenuates LPS-induced cognitive impairments and neuroinflammation by inhibiting NOX2 and Ca2+–CN–NFAT1 signaling in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Bhattacharjee A, Prajapati SK, Krishnamurthy S. Supplementation of taurine improves ionic homeostasis and mitochondrial function in the rats exhibiting post-traumatic stress disorder-like symptoms. Eur J Pharmacol 2021; 908:174361. [PMID: 34297965 DOI: 10.1016/j.ejphar.2021.174361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE Current pharmacotherapy for post-traumatic stress disorder (PTSD) is limited to few antidepressants. Mitochondrial dysfunction is observed in PTSD, along with altered potassium homeostasis. Nutritional supplementation of taurine can improve ionic homeostasis and thereby treat PTSD-like symptoms in rats. AIM The purpose is to study the pharmacological effect of taurine in stress re-stress-induced PTSD in rats. METHODS As per protocol, animals were restrained for 2 h then exposed to footshock (FS) (2 mA/10 s) followed by halothane-induced anesthesia. Behavioral assessments such as elevated plus maze (EPM) and Y-maze tests were performed on days 2, 8, and 32 of experimental protocol after re-stress. In addition, daily oral administration of taurine (100, 200, and 300 mg/kg) and paroxetine (PAX) (10 mg/kg) was done from D-8 to D-32 followed by re-stress. The plasma concentration of taurine, corticosterone, and potassium was measured on Day-32 along with mitochondrial function in discrete brain regions. RESULTS Sub-chronic administration of taurine in high and medium doses significantly ameliorated PTSD-like symptoms such as hyperarousal, anxiety, and improved spatial recognition memory. Taurine in all doses restored the plasma concentration of corticosterone and potassium. SRS-induced alterations in mitochondrial bioenergetics, complex enzyme activities, and reduced mitochondrial membrane potential in different brain regions were ameliorated by taurine. CONCLUSION Nutritional supplementation of taurine improves potassium ionic homeostasis, mitochondrial function, and attenuated PTSD-like symptoms in SRS subjected rats.
Collapse
Affiliation(s)
- Anindita Bhattacharjee
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, U.P., India
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, U.P., India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, U.P., India.
| |
Collapse
|
8
|
Samaiya PK, Krishnamurthy S, Kumar A. Mitochondrial dysfunction in perinatal asphyxia: role in pathogenesis and potential therapeutic interventions. Mol Cell Biochem 2021; 476:4421-4434. [PMID: 34472002 DOI: 10.1007/s11010-021-04253-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/20/2021] [Indexed: 01/13/2023]
Abstract
Perinatal asphyxia (PA)-induced brain injury may present as hypoxic-ischemic encephalopathy in the neonatal period, and long-term sequelae such as spastic motor deficits, intellectual disability, seizure disorders and learning disabilities. The brain injury is secondary to both the hypoxic-ischemic event and oxygenation-reperfusion following resuscitation. Following PA, a time-dependent progression of neuronal insult takes place in terms of transition of cell death from necrosis to apoptosis. This transition is the result of time-dependent progression of pathomechanisms which involve excitotoxicity, oxidative stress, and ultimately mitochondrial dysfunction in developing brain. More precisely mitochondrial respiration is suppressed and calcium signalling is dysregulated. Consequently, Bax-dependent mitochondrial permeabilization occurs leading to release of cytochrome c and activation of caspases leading to transition of cell death in developing brain. The therapeutic window lies within this transition process. At present, therapeutic hypothermia (TH) is the only clinical treatment available for treating moderate as well as severe asphyxia in new-born as it attenuates secondary loss of high-energy phosphates (ATP) (Solevåg et al. in Free Radic Biol Med 142:113-122, 2019; Gunn et al. in Pediatr Res 81:202-209, 2017), improving both short- and long-term outcomes. Mitoprotective therapies can offer a new avenue of intervention alone or in combination with therapeutic hypothermia for babies with birth asphyxia. This review will explore these mitochondrial pathways, and finally will summarize past and current efforts in targeting these pathways after PA, as a means of identifying new avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Puneet K Samaiya
- Department of Pharmacy, Shri G.S. Institute of Technology and Science, Indore, MP, 452003, India.
| | - Sairam Krishnamurthy
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, BHU, Varanasi, UP, India
| |
Collapse
|