1
|
Xu J, Shen L, You H, Liu Y. An Aminobenzenethiol-Functionalized Gold Nanocolorimetric Sensor for Formaldehyde Detection. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6087. [PMID: 39769687 PMCID: PMC11677906 DOI: 10.3390/ma17246087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
The determination of formaldehyde is of paramount importance, as it is present in numerous locations throughout life. In this study, aminophenol-modified gold nanoparticles (ATP-AuNPs) with different relative positions of hydroxyl and amino groups were synthesized for the detection of formaldehyde. They were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy and Fourier transform infrared (FTIR) spectroscopy tests. The results demonstrated that the position plays a crucial role in the composites, which exhibit good stability when the sulfhydryl group and amino group transition from the para position to the neighboring position. Furthermore, the para position was identified as the optimal configuration for formaldehyde detection. When it was used to detect formaldehyde in ultrapure and Li River water, the limit of detection (LOD) was calculated to be 1.03/1.15 mM, respectively. This work not only provides a novel ATP-AuNP sensor but also highlights its practical situations.
Collapse
Affiliation(s)
| | | | | | - Yuanli Liu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (J.X.); (L.S.); (H.Y.)
| |
Collapse
|
2
|
Du H, Zhang H, Fan Y, Zheng Y, Yuan S, Jia TT, Li M, Hou J, Li Z, Li Y, Ma Z, Wang Y, Niu H, Ye Y. A novel fluorescent probe for the detection of formaldehyde in real food samples, animal serum samples and gaseous formaldehyde. Food Chem 2023; 411:135483. [PMID: 36708641 DOI: 10.1016/j.foodchem.2023.135483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Formaldehyde (FA) is widely used as an adhesion promoter and dyeing aid in industrial production. Ingestion of a certain amount of formaldehyde may cause corrosive burns in the mouth, throat, and digestive tract. Therefore, it is very necessary to use simple and effective detection methods to ensure human health and food safety. Herein, a novel fluorescent probe NFD based on naphthalimide for the detection of formaldehyde in food was designed and synthesized. The probe had a remarkable fluorescence response to formaldehyde at 554 nm. And it exhibited fascinating advantages of good selectivity, high sensitivity, and low detection limit. In addition, the solid sensor prepared by loading the probe on the filter paper was successfully realized the visual detection of liquid and gaseous formaldehyde. More importantly, the probe possessed excellent stability in the detection of formaldehyde in real food samples and animal serum samples.
Collapse
Affiliation(s)
- Hetuan Du
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Haoyue Zhang
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Yibo Fan
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Yekun Zheng
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Shuang Yuan
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Tong-Tong Jia
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, PR China
| | - Mengyuan Li
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Jixiang Hou
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Zhaozhou Li
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China.
| | - Yanfei Li
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Zhanqiang Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Yao Wang
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China
| | - Huawei Niu
- College of Food and Bioengineering, and Henan International Joint Laboratory of Food Green Processing and Safety Control, Henan University of Science and Technology, Luoyang 471000, PR China.
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
3
|
Zang X, Qin W, Xiong Y, Xu A, Huang H, Fang T, Zang X, Chen M. Using three statistical methods to analyze the association between aldehyde exposure and markers of inflammation and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27717-4. [PMID: 37286832 DOI: 10.1007/s11356-023-27717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/13/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Exposure to aldehydes has been linked to adverse health outcomes such as inflammation and oxidative stress, but research on the effects of these compounds is limited. This study is aimed at assessing the association between aldehyde exposure and markers of inflammation and oxidative stress. METHODS The study used data from the NHANES 2013-2014 survey (n = 766) and employed multivariate linear models to investigate the relationship between aldehyde compounds and various markers of inflammation (alkaline phosphatase (ALP) level, absolute neutrophil count (ANC), and lymphocyte count) and oxidative stress (bilirubin, albumin, and iron levels) while controlling for other relevant factors. In addition to generalized linear regression, weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) analyses were applied to examine the single or overall effect of aldehyde compounds on the outcomes. RESULTS In the multivariate linear regression model, each 1 standard deviation (SD) change in propanaldehyde and butyraldehyde was significantly associated with increases in serum iron levels (beta and 95% confidence interval, 3.25 (0.24, 6.27) and 8.40 (0.97, 15.83), respectively) and the lymphocyte count (0.10 (0.04, 0.16) and 0.18 (0.03, 0.34), respectively). In the WQS regression model, a significant association was discovered between the WQS index and both the albumin and iron levels. Furthermore, the results of the BKMR analysis showed that the overall impact of aldehyde compounds was significantly and positively correlated with the lymphocyte count, as well as the levels of albumin and iron, suggesting that these compounds may contribute to increased oxidative stress. CONCLUSIONS This study reveals the close association between single or overall aldehyde compounds and markers of chronic inflammation and oxidative stress, which has essential guiding value for exploring the impact of environmental pollutants on population health.
Collapse
Affiliation(s)
- Xiaodong Zang
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wengang Qin
- Department of Pediatrics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, Anhui, China
| | - Yingying Xiong
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Anlan Xu
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Hesuyuan Huang
- Orthopedics Department, Peking University Shougang Hospital, Beijing, 100144, China
| | - Tao Fang
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xiaowei Zang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mingwu Chen
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Department of Pediatrics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230001, Anhui, China.
| |
Collapse
|
4
|
Spencer PS, Palmer VS, Kisby GE, Lagrange E, Horowitz BZ, Valdes Angues R, Reis J, Vernoux JP, Raoul C, Camu W. Early-onset, conjugal, twin-discordant, and clusters of sporadic ALS: Pathway to discovery of etiology via lifetime exposome research. Front Neurosci 2023; 17:1005096. [PMID: 36860617 PMCID: PMC9969898 DOI: 10.3389/fnins.2023.1005096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023] Open
Abstract
The identity and role of environmental factors in the etiology of sporadic amyotrophic lateral sclerosis (sALS) is poorly understood outside of three former high-incidence foci of Western Pacific ALS and a hotspot of sALS in the French Alps. In both instances, there is a strong association with exposure to DNA-damaging (genotoxic) chemicals years or decades prior to clinical onset of motor neuron disease. In light of this recent understanding, we discuss published geographic clusters of ALS, conjugal cases, single-affected twins, and young-onset cases in relation to their demographic, geographic and environmental associations but also whether, in theory, there was the possibility of exposure to genotoxic chemicals of natural or synthetic origin. Special opportunities to test for such exposures in sALS exist in southeast France, northwest Italy, Finland, the U.S. East North Central States, and in the U.S. Air Force and Space Force. Given the degree and timing of exposure to an environmental trigger of ALS may be related to the age at which the disease is expressed, research should focus on the lifetime exposome (from conception to clinical onset) of young sALS cases. Multidisciplinary research of this type may lead to the identification of ALS causation, mechanism, and primary prevention, as well as to early detection of impending ALS and pre-clinical treatment to slow development of this fatal neurological disease.
Collapse
Affiliation(s)
- Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Valerie S. Palmer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Glen E. Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, OR, United States
| | - Emmeline Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS Consultations, Grenoble University Hospital, Grenoble, France
| | - B. Zane Horowitz
- Department of Emergency Medicine, Oregon-Alaska Poison Center, Oregon Health and Science University, Portland, OR, United States
| | - Raquel Valdes Angues
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Jacques Reis
- University of Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Jean-Paul Vernoux
- Normandie Université, UNICAEN, Unité de Recherche Aliments Bioprocédés Toxicologie Environnements, Caen, France
| | - Cédric Raoul
- INM, University of Montpellier, INSERM, Montpellier, France
| | - William Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
5
|
Quan W, Zhang G, Li Y, Song W, Zhan J, Lin W. Upregulation of Formaldehyde in Parkinson's Disease Found by a Near-Infrared Lysosome-Targeted Fluorescent Probe. Anal Chem 2023; 95:2925-2931. [PMID: 36688921 DOI: 10.1021/acs.analchem.2c04567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Parkinson's disease (PD) is one of the major neurodegenerative diseases caused by complex pathological processes. As a signal molecule, formaldehyde is closely linked to nervous systems, but the relationship between PD and formaldehyde levels remains largely unclear. We speculated that formaldehyde might be a potential biomarker for PD. To prove it, we constructed the first near-infrared (NIR) lysosome-targeted formaldehyde fluorescent probe (named NIR-Lyso-FA) to explore the relationship between formaldehyde and PD. The novel fluorescent probe achieves formaldehyde detection in vitro and in vivo, thanks to its excellent properties such as NIR emission, large Stokes shift, and fast response to formaldehyde. Crucially, utilizing the novel probe NIR-Lyso-FA, formaldehyde overexpression was discovered for the first time in cellular, zebrafish, and mouse PD models, supporting our guess that formaldehyde can function as a possible biomarker for PD. We anticipate that this finding will offer insightful information for PD pathophysiology, diagnosis, medication development, and treatment.
Collapse
Affiliation(s)
- Wei Quan
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Guihua Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yanxia Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wenhui Song
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jingting Zhan
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
6
|
Edgar JA, Molyneux RJ, Colegate SM. 1,2-Dehydropyrrolizidine Alkaloids: Their Potential as a Dietary Cause of Sporadic Motor Neuron Diseases. Chem Res Toxicol 2022; 35:340-354. [PMID: 35238548 DOI: 10.1021/acs.chemrestox.1c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sporadic motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), can be caused by spontaneous genetic mutations. However, many sporadic cases of ALS and other debilitating neurodegenerative diseases (NDDs) are believed to be caused by environmental factors, subject to considerable debate and requiring intensive research. A common pathology associated with MND development involves progressive mitochondrial dysfunction and oxidative stress in motor neurons and glial cells of the central nervous system (CNS), leading to apoptosis. Consequent degeneration of skeletal and respiratory muscle cells can lead to death from respiratory failure. A significant number of MND cases present with cancers and liver and lung pathology. This Perspective explores the possibility that MNDs could be caused by intermittent, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids (1,2-dehydroPAs) that are increasingly recognized as contaminants of many foods consumed throughout the world. Nontoxic, per se, 1,2-dehydroPAs are metabolized, by particular cytochrome P450 (CYP450) isoforms, to 6,7-dihydropyrrolizines that react with nucleophilic groups (-NH, -SH, -OH) on DNA, proteins, and other vital biochemicals, such as glutathione. Many factors, including aging, gender, smoking, and alcohol consumption, influence CYP450 isoform activity in a range of tissues, including glial cells and neurons of the CNS. Activation of 1,2-dehydroPAs in CNS cells can be expected to cause gene mutations and oxidative stress, potentially leading to the development of MNDs and other NDDs. While relatively high dietary exposure to 1,2-dehydroPAs causes hepatic sinusoidal obstruction syndrome, pulmonary venoocclusive disease, neurotoxicity, and diverse cancers, this Perspective suggests that, at current intermittent, low levels of dietary exposure, neurotoxicity could become the primary pathology that develops over time in susceptible individuals, along with a tendency for some of them to also display liver and lung pathology and diverse cancers co-occurring with some MND/NDD cases. Targeted research is recommended to investigate this proposal.
Collapse
Affiliation(s)
- John A Edgar
- CSIRO Agriculture and Food, 11 Julius Avenue, North Ryde, New South Wales 2113, Australia
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, United States
| | - Steven M Colegate
- Poisonous Plant Research Laboratory, ARS/USDA, 1150 East 1400 North, Logan, Utah 84341, United States
| |
Collapse
|
7
|
Tran TY, Younis SA, Heynderickx PM, Kim KH. Validation of two contrasting capturing mechanisms for gaseous formaldehyde between two different types of strong metal-organic framework adsorbents. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127459. [PMID: 34670171 DOI: 10.1016/j.jhazmat.2021.127459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/21/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
In this research, the adsorption behavior of formaldehyde (FA) onto two types of metal-organic frameworks (MOFs: MOF-199 [M199] and UiO-66-NH2 [U6N]) is investigated against changes in the key process variables (e.g., FA partial pressure (0.5-10 Pa), temperature (30-120 °C), and relative humidity (RH: 0%, 50%, and 100%)). The results revealed that the FA adsorption behavior onto both MOFs is exothermic in nature. Besides, their relative dominance for FA uptake varies interactively with the changes in RH and FA partial pressure levels. As the FA levels increase in dry conditions, their breakthrough volumes (BTV (100% BT)) exhibit contrasting trends: The values of U6N decreased noticeably from 5232 and 3792 L·atm·g-1, while those of M199 increased from 4152 to 5772 L·atm·g-1. The superiority of U6N over M199 in the lower FA level (at<5 Pa) is supported by the Lewis acid-base interactions with amine groups (U6N) in line with kinetic/isotherm studies. Such superiority is also persistent at higher (10 Pa) FA level under all humid conditions in line with its higher moisture stability. However, in dry conditions, the reversal of relative dominance in which M199 exhibits enhanced efficacy for 10 Pa FA uptake (relative to U6N) should reflect its breathing effects with the potent role of pore-diffusion mechanism. This study offers valuable insights into the construction of tunable adsorbents with enhanced adsorptivity toward key targets.
Collapse
Affiliation(s)
- Thi Yen Tran
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute, 11727 Nasr City, Cairo, Egypt
| | - Philippe M Heynderickx
- Center for Environmental and Energy Research (CEER) - Engineering of Materials via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840 Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent B-9000, Belgium
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
8
|
Giménez-Roldán S, Steele JC, Palmer VS, Spencer PS. Lytico-bodig in Guam: Historical links between diet and illness during and after Spanish colonization. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2021; 30:335-374. [PMID: 34197260 DOI: 10.1080/0964704x.2021.1885946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper analyses documents on health and disease among Chamorro people during and after 333 years (1565-1898) of the Spanish claim to and occupation of Guam. Here, a complex neurodegenerative disease-known locally as lytico-bodig and medically as amyotrophic lateral sclerosis and Parkinsonism-dementia complex (ALS/PDC)-reached hyperendemic proportions in the mid-twentieth century but then declined and is now disappearing. A tau-dominated polyproteinopathy, clinical phenotypes included amyotrophic lateral sclerosis (ALS or lytico), atypical parkinsonism with dementia (P-D or bodig), and dementia alone. A plausible etiology for lytico-bodig is consumption of flour derived from the incompletely detoxified seed of Cycas micronesica (fadang in Chamorro; Federico in Spanish), a poisonous gymnosperm that survives climatic extremes that can affect the island. Traditional methods for safe consumption appear to have been lost over the course of time since governors Francisco de Villalobos (1796-1862) and Felipe de la Corte (1855-1866) proposed banning consumption in view of its acute toxic effects. A death certificate issued in 1823 might suggest ALS/PDC in people dying with disability or impedidos, and premature aging and a short life was linked to food use of fadang in the mid-1850s (Guam Vital Statistics Report, 1823). During the Japanese occupation of Guam (1941-1944), Chamorro people took refuge in the jungle for months, where they relied on insufficiently processed fadang as a staple food. After World War II, traditional foods and medicines were subsequently replaced as islanders rapidly acculturated to North American life.
Collapse
Affiliation(s)
| | - John C Steele
- Resident Neurologist, Micronesia and Guam (1972-2014)
| | - Valerie S Palmer
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
9
|
Lagrange E, Vernoux JP, Reis J, Palmer V, Camu W, Spencer PS. An amyotrophic lateral sclerosis hot spot in the French Alps associated with genotoxic fungi. J Neurol Sci 2021; 427:117558. [PMID: 34216974 DOI: 10.1016/j.jns.2021.117558] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Between 1990 and 2018, 14 cases of amyotrophic lateral sclerosis (ALS) were diagnosed in residents of, and in visitors with second homes to, a mountainous hamlet in the French Alps. Systematic investigation revealed a socio-professional network that connected ALS cases. Genetic risk factors for ALS were excluded. Several known environmental factors were scrutinized and eliminated, notably lead and other chemical contaminants in soil, water or home-grown vegetation used for food, radon and electromagnetic fields. Some lifestyle-related behavioral risk factors were identified: Prior to clinical onset of motor neuron disease, some patients had a high degree of athleticism and smoked tobacco. Recent investigations on site, based on a new hypothesis, showed that all patients had ingested wild mushrooms, notably poisonous False Morels. Half of the ALS cohort reported acute illness following Gyromitra gigas mushroom consumption. This finding supports the hypothesis that genotoxins of fungal origin may induce motor neuron degeneration.
Collapse
Affiliation(s)
- E Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS consultations, Grenoble University Hospital, 38000 Grenoble, France
| | - J P Vernoux
- Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - J Reis
- Department of Neurology, University of Strasbourg, University Hospital of Strasbourg, Strasbourg, France; Association RISE, 3, rue du Loir, 67205 Oberhausbergen, France
| | - V Palmer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - W Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, Inserm UMR1051, 34000 Montpellier, France
| | - P S Spencer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA; Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97201, USA.
| |
Collapse
|
10
|
One-step synthesis of CuO nanoparticles based on flame synthesis: As a highly effective non-enzymatic sensor for glucose, hydrogen peroxide and formaldehyde. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Western Pacific ALS-PDC: Evidence implicating cycad genotoxins. J Neurol Sci 2020; 419:117185. [PMID: 33190068 DOI: 10.1016/j.jns.2020.117185] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) is a disappearing neurodegenerative disorder of apparent environmental origin formerly hyperendemic among Chamorros of Guam-USA, Japanese residents of the Kii Peninsula, Honshu Island, Japan and Auyu-Jakai linguistic groups of Papua-Indonesia on the island of New Guinea. The most plausible etiology is exposure to genotoxins in seed of neurotoxic cycad plants formerly used for food and/or medicine. Primary suspicion falls on methylazoxymethanol (MAM), the aglycone of cycasin and on the non-protein amino acid β-N-methylamino-L-alanine, both of which are metabolized to formaldehyde. Human and animal studies suggest: (a) exposures occurred early in life and sometimes during late fetal brain development, (b) clinical expression of neurodegenerative disease appeared years or decades later, and (c) pathological changes in various tissues indicate the disease was not confined to the CNS. Experimental evidence points to toxic molecular mechanisms involving DNA damage, epigenetic changes, transcriptional mutagenesis, neuronal cell-cycle reactivation and perturbation of the ubiquitin-proteasome system that led to polyproteinopathy and culminated in neuronal degeneration. Lessons learned from research on ALS-PDC include: (a) familial disease may reflect common toxic exposures across generations, (b) primary disease prevention follows cessation of exposure to culpable environmental triggers; and (c) disease latency provides a prolonged period during which to intervene therapeutically. Exposure to genotoxic chemicals ("slow toxins") in the early stages of life should be considered in the search for the etiology of ALS-PDC-related neurodegenerative disorders, including sporadic forms of ALS, progressive supranuclear palsy and Alzheimer's disease.
Collapse
|
12
|
Cheng J, Ren Y, Huang Y, Li X, Huang M, Han F, Liang X, Li X. Sequentially Activated Probe Design Strategy for Analyzing Metabolite Crosstalk in a Biochemical Cascade. Anal Chem 2019; 92:1409-1415. [PMID: 31829003 DOI: 10.1021/acs.analchem.9b04576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Juan Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Ren
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Huang
- Key Laboratory of Drug Clinical Research and Evaluation Technology of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaozhuan Li
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Mingzhu Huang
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Feng Han
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xingguang Liang
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Vikrant K, Cho M, Khan A, Kim KH, Ahn WS, Kwon EE. Adsorption properties of advanced functional materials against gaseous formaldehyde. ENVIRONMENTAL RESEARCH 2019; 178:108672. [PMID: 31450145 DOI: 10.1016/j.envres.2019.108672] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Intense efforts have been made to eliminate toxic volatile organic compounds (VOCs) in indoor environments, especially formaldehyde (FA). In this study, the removal performances of gaseous FA using two metal-organic frameworks, MOF-5 and UiO-66-NH2, and two covalent-organic polymers, CBAP-1 (EDA) and CBAP-1 (DETA), along with activated carbon as a conventional reference material, were evaluated. To assess the removal capacity of FA under near-ambient conditions, a series of adsorption experiments were conducted at its concentrations/partial pressures of both low (0.1-0.5 ppm/0.01-0.05 Pa) and high ranges (5-25 ppm/0.5-2.5 Pa). Among all tested materials at the high-pressure region ㅐ (e.g., at 2.5 ppm FA), a maximum adsorption capacity of 69.7 mg g-1 was recorded by UiO-66-NH2. Moreover, UiO-66-NH2 also displayed the best 10% breakthrough volume (BTV10) of 534 L g-1 (0.5 ppm FA) to 2963 L g-1 (0.1 ppm FA). In contrast, at the high concentration test (at 5, 10, and 25 ppm FA), the maximum BTV10 values were observed as: 137 (UiO-66-NH2), 144 (CBAP-1 (DETA)), and 36.8 L g-1 (CBAP-1 (EDA)), respectively. The Langmuir isotherm model was observed to be a better fit of the adsorption data than the Freundlich model under most of the tested conditions. The superiority of UiO-66-NH2 was attributed to the van der Waals interactions between the linkers (framework) and the hydrocarbon "tail" (FA) coupled with interactions between its open metal sites and the FA carbonyl groups. This study demonstrated the good potential of these advanced functional materials toward the practical removal of gaseous FA in indoor environments.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Minkyu Cho
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Azmatullah Khan
- Department of Civil Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Wha-Seung Ahn
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05005, Republic of Korea.
| |
Collapse
|
14
|
Spencer PS. Hypothesis: Etiologic and Molecular Mechanistic Leads for Sporadic Neurodegenerative Diseases Based on Experience With Western Pacific ALS/PDC. Front Neurol 2019; 10:754. [PMID: 31417480 PMCID: PMC6685391 DOI: 10.3389/fneur.2019.00754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
Seventy years of research on Western Pacific amyotrophic lateral sclerosis and Parkinsonism-dementia Complex (ALS/PDC) have provided invaluable data on the etiology, molecular pathogenesis and latency of this disappearing, largely environmental neurodegenerative disease. ALS/PDC is linked to genotoxic chemicals (notably methylazoxymethanol, MAM) derived from seed of the cycad plant (Cycas spp.) that were used as a traditional food and/or medicine in all three disease-affected Western Pacific populations. MAM, nitrosamines and hydrazines generate methyl free radicals that damage DNA (in the form of O6-methylguanine lesions) that can induce mutations in cycling cells and degenerative changes in post-mitotic cells, notably neurons. This paper explores exposures to naturally occurring and manmade sources of nitrosamines and hydrazines in association with sporadic forms of ALS (with or without frontotemporal degeneration), progressive supranuclear palsy, and Alzheimer disease. Research approaches are suggested to examine whether these associations might have etiological significance.
Collapse
Affiliation(s)
- Peter S Spencer
- Department of Neurology, School of Medicine and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
15
|
Hydrogen Sulfide Inhibits Formaldehyde-Induced Senescence in HT-22 Cells via Upregulation of Leptin Signaling. Neuromolecular Med 2019; 21:192-203. [DOI: 10.1007/s12017-019-08536-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
|
16
|
Spencer PS, Palmer VS, Kisby GE. Cycad β-N-methylamino-L-alanine (BMAA), methylazoxymethanol, genotoxicity, and neurodegeneration. Toxicon 2018; 155:49-50. [DOI: 10.1016/j.toxicon.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022]
|