1
|
Saito S, Nakajima K, Komatsu J, Shibutani T, Wakabayashi H, Mori H, Takata A, Ono K, Kinuya S. Absolute quantitation of sympathetic nerve activity using [ 123I] metaiodobenzylguanidine SPECT-CT in neurology. EJNMMI REPORTS 2024; 8:15. [PMID: 38822219 PMCID: PMC11143090 DOI: 10.1186/s41824-024-00205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND AND PURPOSE The ability of [123I]metaiodobenzylguanidine (MIBG) sympathetic nerve imaging with three-dimensional (3D) quantitation to clinically diagnose neurological disorders has not been evaluated. This study compared absolute heart counts calculated as mean standardized uptake values (SUVmean) using conventional planar imaging and assessed the contribution of [123I]MIBG single-photon emission computed tomography (SPECT)-CT to the diagnosis of neurological diseases. METHODS Seventy-two patients with neurological diseases were consecutively assessed using early and delayed [123I]MIBG SPECT-CT and planar imaging. Left ventricles were manually segmented in early and delayed SPECT-CT images, then the SUVmean and washout rates (WRs) were calculated. Heart-to-mediastinum ratios (HMRs) and WRs on planar images were conventionally computed. We investigated correlations between planar HMRs and SPECT-CT SUVmeans and between WRs obtained from planar and SPECT-CT images. The cutoff for SPECT-CT WRs defined by linear regression and that of normal planar WRs derived from a database were compared with neurological diagnoses of the patients. We assigned the patients to groups according to clinical diagnoses as controls (n = 6), multiple system atrophy (MSA, n = 7), progressive supranuclear palsy (PSP, n = 17), and Parkinson's disease or dementia with Lewy bodies (PD/DLB, n = 19), then compared SPECT-CT and planar image parameters. RESULTS We found significant correlations between SPECT-CT SUVmean and planar HMR on early and delayed images (R2 = 0.69 and 0.82, p < 0.0001) and between SPECT-CT and planar WRs (R2 = 0.79, p < 0.0001). A threshold of 31% for SPECT-CT WR based on linear regression resulted in agreement between planar and SPECT-CT WR in 67 (93.1%) of 72 patients. Compared with controls, early and delayed SUVmean in patients with PSP and MSA tended more towards significance than planar HMR. This trend was similar for SPECT-CT WRs in patients with PSP. CONCLUSIONS Absolute heart counts and SUVmean determined using [123I]MIBG SPECT-CT correlated with findings of conventional planar images in patients with neurological diseases. Three-dimensional quantitation with [123I]MIBG SPECT-CT imaging might differentiate patients with PSP and MSA from controls.
Collapse
Affiliation(s)
- Shintaro Saito
- Department of Nuclear Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
| | - Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Kanazawa University, Kanazawa, Japan
| | - Junji Komatsu
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takayuki Shibutani
- Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Hiroshi Mori
- Department of Nuclear Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Aki Takata
- Department of Nuclear Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| |
Collapse
|
2
|
Koga T, Kida H, Yamasaki Y, Feril LB, Endo H, Itaka K, Abe H, Tachibana K. Intracranial Gene Delivery Mediated by Albumin-Based Nanobubbles and Low-Frequency Ultrasound. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:285. [PMID: 38334557 PMCID: PMC10856598 DOI: 10.3390/nano14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Research in the field of high-intensity focused ultrasound (HIFU) for intracranial gene therapy has greatly progressed over the years. However, limitations of conventional HIFU still remain. That is, genes are required to cross the blood-brain barrier (BBB) in order to reach the neurological disordered lesion. In this study, we introduce a novel direct intracranial gene delivery method, bypassing the BBB using human serum albumin-based nanobubbles (NBs) injected through a less invasive intrathecal route via lumbar puncture, followed by intracranial irradiation with low-frequency ultrasound (LoFreqUS). Focusing on both plasmid DNA (pDNA) and messenger RNA (mRNA), our approach utilizes LoFreqUS for deeper tissue acoustic penetration and enhancing gene transfer efficiency. This drug delivery method could be dubbed as the "Spinal Back-Door Approach", an alternative to the "front door" BBB opening method. Experiments showed that NBs effectively responded to LoFreqUS, significantly improving gene transfer in vitro using U-87 MG cell lines. In vivo experiments in mice demonstrated significantly increased gene expression with pDNA; however, we were unable to obtain conclusive results using mRNA. This novel technique, combining albumin-based NBs and LoFreqUS offers a promising, efficient, targeted, and non-invasive solution for central nervous system gene therapy, potentially transforming the treatment landscape for neurological disorders.
Collapse
Affiliation(s)
- Takayuki Koga
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (T.K.); (H.A.)
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Hiroshi Kida
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Yutaro Yamasaki
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Loreto B. Feril
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Hitomi Endo
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Tokyo 101-0062, Japan;
| | - Hiroshi Abe
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (T.K.); (H.A.)
| | - Katsuro Tachibana
- Department of Anatomy, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (H.K.); (Y.Y.); (L.B.F.J.); (H.E.)
| |
Collapse
|
3
|
Baschieri F, Vitiello M, Cortelli P, Calandra-Buonaura G, Morgante F. Autonomic dysfunction in progressive supranuclear palsy. J Neurol 2023; 270:109-129. [PMID: 36042018 DOI: 10.1007/s00415-022-11347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND The degree of involvement of the autonomic nervous system in progressive supranuclear palsy (PSP) has been investigated in several studies, often providing conflicting results. There is a need for a better characterization of autonomic dysfunction in PSP, to enhance our understanding of this highly disabling neurodegenerative disease including patients' needs and possibly be of value for clinicians in the differential diagnosis among Parkinsonian syndromes. METHODS We applied a systematic methodology to review existing literature on Pubmed regarding autonomic nervous system involvement in PSP. RESULTS PSP reported quite frequently symptoms suggestive of autonomic dysfunction in all domains. Cardiovascular autonomic testing showed in some cases a certain degree of impairment (never severe). There was some evidence suggesting bladder dysfunction particularly in the storage phase. Dysphagia and constipation were the most common gastrointestinal symptoms. Instrumental tests seemed to confirm sudomotor and pupillomotor disturbances. CONCLUSIONS PSP patients frequently reported visceral symptoms, however objective testing showed that not always these reflected actual autonomic impairment. Further studies are needed to better delineate autonomic profile and its prognostic role in PSP.
Collapse
Affiliation(s)
- Francesca Baschieri
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Maria Vitiello
- Neurology Unit, "M. Bufalini" Hospital, AUSL Romagna, Cesena, Italy
| | - Pietro Cortelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giovanna Calandra-Buonaura
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
- Department of Experimental and Clinical Medicine, University of Messina, Messina, Italy
| |
Collapse
|
4
|
van Eimeren T, Claßen J, Drzezga A, Eggers C, Hilker-Roggendorf R, Klucken J, Koschel J, Meyer PT, Redecker C, Theis H, Buhmann C. [Recommendation for the differentiated use of nuclear medical diagnostic for parkinsonian syndromes]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2020; 88:609-619. [PMID: 32957144 DOI: 10.1055/a-1207-0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present work provides an overview of the various nuclear medicine methods in the diagnosis of neurodegenerative parkinsonian syndromes and their respective evidence and is intended to enable practical decision-making aids in the application and interpretation of the methods and findings. The value of the procedures differs considerably in relation to the two relevant diagnostic questions. On the one hand, it is the question of whether there is a neurodegenerative parkinsonian syndrome at all, and on the other hand the question of which one. While the DAT-SPECT is undisputedly the method of choice for answering the first question (taking certain parameters into account), this method is not suitable for answering the second question. To categorise parkinsonian syndromes into idiopathic (i. e. Parkinson´s disease) or atypical, various procedures are used in everyday clinical practice including MIBG scintigraphy, and FDG-PET. We explain why FDG-PET currently is not only the most suitable of these methods to differentiate an idiopathic parkinsonian syndrome, from an atypical Parkinson's syndrome, but also enables sufficiently valid to distinguish the various atypical neurodegenerative Parkinson's syndromes (i. e. MSA, PSP and CBD) from each other and therefore should be reimbursed by health insurances.
Collapse
Affiliation(s)
- Thilo van Eimeren
- Uniklinik Köln, Klinik und Poliklinik für Nuklearmedizin; Klinik und Poliklinik für Neurologie; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)
| | - Joseph Claßen
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig
| | - Alexander Drzezga
- Uniklinik Köln, Klinik und Poliklinik für Nuklearmedizin; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE); Institut für Neurowissenschaften und Medizin (INM-2), Forschungszentrum Jülich
| | - Carsten Eggers
- Klinik für Neurologie, Universitätsklinikum Gießen und Marburg, Standort Marburg; Center for Mind, Brain & Behavior, Marburg
| | | | | | | | | | | | - Hendrik Theis
- Uniklinik Köln, Klinik und Poliklinik für Neurologie
| | - Carsten Buhmann
- Ambulanzzentrum und Neurologische Klinik, Universitätsklinikum Hamburg-Eppendorf
| |
Collapse
|