1
|
Kang Z, Zhang Z, Zhang Y, Chen S, Wang J, Yuan MS. Di-(2-picolyl)amine functionalized tetraphenylethylene as multifunctional chemosensor. Anal Chim Acta 2022; 1196:339543. [DOI: 10.1016/j.aca.2022.339543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/01/2022]
|
2
|
Feng H, Wang Y, Jia H, Zhang R, Han Q, Meng Q, Zhang Z. Selective detection of inorganic phosphates in live cells based on a responsive fluorescence probe. NEW J CHEM 2017. [DOI: 10.1039/c7nj01983a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new activatable fluorescence probe has been designed and synthesized for inorganic phosphate detection in buffer and live cells.
Collapse
Affiliation(s)
- Huan Feng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Yue Wang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Hongmin Jia
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Run Zhang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
- Australian Institute for Bioengineering and Nanotechnology
| | - Qian Han
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Qingtao Meng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan 114044
- P. R. China
| |
Collapse
|
3
|
Mizuno M, Mitchell JH, Crawford S, Huang CL, Maalouf N, Hu MC, Moe OW, Smith SA, Vongpatanasin W. High dietary phosphate intake induces hypertension and augments exercise pressor reflex function in rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R39-48. [PMID: 27170660 PMCID: PMC4967233 DOI: 10.1152/ajpregu.00124.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/06/2016] [Indexed: 01/14/2023]
Abstract
An increasing number of studies have linked high dietary phosphate (Pi) intake to hypertension. It is well established that the rise in sympathetic nerve activity (SNA) and blood pressure (BP) during physical exertion is exaggerated in many forms of hypertension, which are primarily mediated by an overactive skeletal muscle exercise pressor reflex (EPR). However, it remains unknown whether high dietary Pi intake potentiates the EPR-mediated SNA and BP response to exercise. Accordingly, we measured renal SNA (RSNA) and mean BP (MBP) in normotensive Sprague-Dawley rats fed a normal Pi diet (0.6%, n = 13) or high Pi diet (1.2%, n = 13) for 3 mo. As previously reported, we found that resting BP was significantly increased by 1.2% Pi diet in both conscious and anesthetized animals. Activation of the EPR by electrically induced hindlimb contraction triggered greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (126 ± 25 vs. 42 ± 9%; 44 ± 5 vs. 14 ± 2 mmHg, respectively, P < 0.01). Activation of the muscle mechanoreflex, a component of the EPR, by passively stretching hindlimb muscle also evoked greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (109 ± 27 vs. 24 ± 7%, 38 ± 7 vs. 8 ± 2 mmHg, respectively, P < 0.01). A similar response was produced by hindlimb intra-arterial capsaicin administration to stimulate the metaboreflex arm of the EPR. Thus, our data demonstrate a novel action of dietary Pi loading in augmenting EPR function through overactivation of both the muscle mechanoreflex and metaboreflex.
Collapse
Affiliation(s)
- Masaki Mizuno
- Department of Health Care Sciences, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jere H Mitchell
- Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott Crawford
- Department of Health Care Sciences, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chou-Long Huang
- Nephrology Division, University of Texas Southwestern Medical Center, Dallas, Texas; Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Naim Maalouf
- Mineral Metabolism Division, University of Texas Southwestern Medical Center, Dallas, Texas; and Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ming-Chang Hu
- Mineral Metabolism Division, University of Texas Southwestern Medical Center, Dallas, Texas; and Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W Moe
- Nephrology Division, University of Texas Southwestern Medical Center, Dallas, Texas; Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott A Smith
- Department of Health Care Sciences, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wanpen Vongpatanasin
- Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas; Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas; Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Oster M, Just F, Büsing K, Wolf P, Polley C, Vollmar B, Muráni E, Ponsuksili S, Wimmers K. Toward improved phosphorus efficiency in monogastrics-interplay of serum, minerals, bone, and immune system after divergent dietary phosphorus supply in swine. Am J Physiol Regul Integr Comp Physiol 2016; 310:R917-25. [PMID: 26962023 PMCID: PMC4896080 DOI: 10.1152/ajpregu.00215.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 03/07/2016] [Indexed: 12/20/2022]
Abstract
Phosphorus (P) is of vital importance for many aspects of metabolism, including bone mineralization, blood buffering, and energy utilization. In order to identify molecular routes affecting intrinsic P utilization, we address processes covering P intake, uptake, metabolism, and excretion. In particular, the interrelation of bone tissue and immune features is of interest to approximate P intake to animal's physiology and health status. German Landrace piglets received different levels of digestible phosphorus: recommended, higher, or lower amounts. At multiple time points, relevant serum parameters were analyzed and radiologic studies on bone characteristics were performed. Peripheral blood mononuclear cells were collected to assess differential gene expression. Dietary differences were reflected by serum phosphorus, calcium, parathyroid hormone, and vitamin D. Bone reorganization was persistently affected as shown by microstructural parameters, cathepsin K levels, and transcripts associated with bone formation. Moreover, blood expression patterns revealed a link to immune response, highlighting bidirectional loops comprising bone formation and immune features, where the receptor-activator of NF-κB ligand/receptor-activator of NF-κB kinase system may play a prominent role. The modulated P supplementation provoked considerable organismal plasticity. Genes found to be differentially expressed due to variable P supply are involved in pathways relevant to P utilization and are potential candidate genes for improved P efficiency.
Collapse
Affiliation(s)
- Michael Oster
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Dummerstorf, Germany
| | - Franziska Just
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Dummerstorf, Germany
| | - Kirsten Büsing
- University of Rostock, Nutrition Physiology and Animal Nutrition, Rostock, Germany; and
| | - Petra Wolf
- University of Rostock, Nutrition Physiology and Animal Nutrition, Rostock, Germany; and
| | - Christian Polley
- University of Rostock, Institute for Experimental Surgery, Rostock, Germany
| | - Brigitte Vollmar
- University of Rostock, Institute for Experimental Surgery, Rostock, Germany
| | - Eduard Muráni
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Dummerstorf, Germany;
| |
Collapse
|
5
|
Bosco C, Wulaningsih W, Melvin J, Santaolalla A, De Piano M, Arthur R, Van Hemelrijck M. Metabolic serum biomarkers for the prediction of cancer: a follow-up of the studies conducted in the Swedish AMORIS study. Ecancermedicalscience 2015; 9:555. [PMID: 26284119 PMCID: PMC4531132 DOI: 10.3332/ecancer.2015.555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
The Swedish Apolipoprotein MOrtality RISk study (AMORIS) contains information on more than 500 biomarkers collected from 397,443 men and 414,630 women from the greater Stockholm area during the period 1985–1996. Using a ten-digit personal identification code, this database has been linked to Swedish national registries, which provide data on socioeconomic status, vital status, cancer diagnosis, comorbidity, and emigration. Within AMORIS, 18 studies assessing risk of overall and site-specific cancers have been published, utilising a range of serum markers representing glucose and lipid metabolism, immune system, iron metabolism, liver metabolism, and bone metabolism. This review briefly summarises these findings in relation to more recently published studies and provides an overview of where we are today and the challenges of observational studies when studying cancer risk prediction. Overall, more recent observational studies supported previous findings obtained in AMORIS, although no new results have been reported for serum fructosamine and inorganic phosphate with respect to cancer risk. A drawback of using serum markers in predicting cancer risk is the potential fluctuations following other pathological conditions, resulting in non-specificity and imprecision of associations observed. Utilisation of multiple combination markers may provide more specificity, as well as give us repeated instead of single measurements. Associations with other diseases may also necessitate further analytical strategies addressing effects of serum markers on competing events in addition to cancer. Finally, delineating the role of serum metabolic markers may generate valuable information to complement emerging clinical studies on preventive effects of drugs and supplements targeting metabolic disorders against cancer.
Collapse
Affiliation(s)
- Cecilia Bosco
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK ; Both authors contributed equally
| | - Wahyu Wulaningsih
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK ; Both authors contributed equally
| | - Jennifer Melvin
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Aida Santaolalla
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Mario De Piano
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Rhonda Arthur
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| | - Mieke Van Hemelrijck
- King's College London, Division of Cancer Studies, Cancer Epidemiology Group, Research Oncology, 3rd floor, Bermondsey wing, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
6
|
Meng Q, Wang Y, Yang M, Zhang R, Wang R, Zhang Z. A new fluorescent chemosensor for highly selective and sensitive detection of inorganic phosphate (Pi) in aqueous solution and living cells. RSC Adv 2015. [DOI: 10.1039/c5ra08712k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new fluorescein-based chemosensor, FP-Fe3+, was developed for the detection of inorganic phosphate (Pi) in aqueous solution and living cells.
Collapse
Affiliation(s)
- Qingtao Meng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- China
| | - Yue Wang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- China
| | - Ming Yang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- China
| | - Run Zhang
- Department of Chemistry and Biomolecular Sciences
- Faculty of Science and Engineering
- Macquarie University
- Sydney
- Australia
| | - Renjie Wang
- School of Chemistry and Molecular Biosciences
- The University of Queensland Brisbane
- Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- China
| |
Collapse
|
7
|
Hong SH, Park SJ, Lee S, Kim S, Cho MH. Biological effects of inorganic phosphate: potential signal of toxicity. J Toxicol Sci 2015; 40:55-69. [DOI: 10.2131/jts.40.55] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Seong-Ho Hong
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Sung-Jin Park
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Somin Lee
- Graduate Group of Tumor Biology, Seoul National University, Korea
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Sanghwa Kim
- Graduate Group of Tumor Biology, Seoul National University, Korea
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Myung-Haing Cho
- Advanced Institute of Convergence Technology, Seoul National University, Korea
- Graduate Group of Tumor Biology, Seoul National University, Korea
- Graduate School of Convergence Science and Technology, Seoul National University, Korea
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| |
Collapse
|
8
|
Wulaningsih W, Michaelsson K, Garmo H, Hammar N, Jungner I, Walldius G, Holmberg L, Van Hemelrijck M. Inorganic phosphate and the risk of cancer in the Swedish AMORIS study. BMC Cancer 2013; 13:257. [PMID: 23706176 PMCID: PMC3664604 DOI: 10.1186/1471-2407-13-257] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/21/2013] [Indexed: 01/08/2023] Open
Abstract
Background Both dietary and serum levels of inorganic phosphate (Pi) have been linked to development of cancer in experimental studies. This is the first population-based study investigating the relation between serum Pi and risk of cancer in humans. Methods From the Swedish Apolipoprotein Mortality Risk (AMORIS) study, we selected all participants (> 20 years old) with baseline measurements of serum Pi, calcium, alkaline phosphatase, glucose, and creatinine (n = 397,292). Multivariable Cox proportional hazards regression analyses were used to assess serum Pi in relation to overall cancer risk. Similar analyses were performed for specific cancer sites. Results We found a higher overall cancer risk with increasing Pi levels in men ( HR: 1.02 (95% CI: 1.00-1.04) for every SD increase in Pi), and a negative association in women (HR: 0.97 (95% CI: 0.96-0.99) for every SD increase in Pi). Further analyses for specific cancer sites showed a positive link between Pi quartiles and the risk of cancer of the pancreas, lung, thyroid gland and bone in men, and cancer of the oesophagus, lung, and nonmelanoma skin cancer in women. Conversely, the risks for developing breast and endometrial cancer as well as other endocrine cancer in both men and women were lower in those with higher Pi levels. Conclusions Abnormal Pi levels are related to development of cancer. Furthermore, the in verse association between Pi levels and risk of breast, endometrial and other endocrine cancers may indicate the role of hormonal factors in the relation between Pi metabolism and cancer.
Collapse
Affiliation(s)
- Wahyu Wulaningsih
- King's College London, School of Medicine, Division of Cancer Studies, Cancer Epidemiology Unit, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu P, Chen L, Bai X, Karaplis A, Miao D, Gu N. Impairment of spatial learning and memory in transgenic mice overexpressing human fibroblast growth factor-23. Brain Res 2011; 1412:9-17. [PMID: 21824606 DOI: 10.1016/j.brainres.2011.07.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 07/01/2011] [Accepted: 07/12/2011] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factor-23 (FGF-23) is a potent circulating phosphaturic factor associated with renal phosphate wasting. Effects of FGF-23 on skeleton, phosphate homeostasis, and cardiovascular system have been investigated; however, the effect of FGF-23 on the central nervous system (CNS) is unknown. To assess whether FGF-23 influences the function and structure of the CNS and whether the effect of FGF-23 on the CNS is mediated by FGF receptors directly or by hypophosphatemia indirectly, FGF-23 transgenic mice and their wild-type littermates were fed a normal diet or a high-phosphate diet containing a normal diet plus 1.25% phosphate in drinking water from weaning for 5weeks and the phenotypes of the CNS were compared between FGF-23 transgenic mice and their wild-type littermates on the same diet. At the end of this time period, transgenic animals on the normal diet showed impaired spatial learning and memory. Furthermore, these mice exhibited the impairment of long-term potentiation in hippocampal CA1 region, and the reduction of hippocampal adenosine-triphosphate content and of choline acetyltransferase-positive neurons in basal forebrain, possibly as pathogenetic factors contributing to the cognitive deficit. The central nervous phenotypes of transgenic mice were rescued following improved hypophosphatemia by the high-phosphate diet intake. This study demonstrates that FGF-23 overexpression can result in abnormalities in the CNS mediated by the secondary severe hypophosphatemia.
Collapse
Affiliation(s)
- Peidang Liu
- Department of Toxicology, School of Public Health, Southeast University, Nanjing 210009, PR China
| | | | | | | | | | | |
Collapse
|
10
|
Khoshniat S, Bourgine A, Julien M, Weiss P, Guicheux J, Beck L. The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell Mol Life Sci 2011; 68:205-18. [PMID: 20848155 PMCID: PMC11114507 DOI: 10.1007/s00018-010-0527-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/02/2010] [Accepted: 08/31/2010] [Indexed: 02/07/2023]
Abstract
Although considerable advances in our understanding of the mechanisms of phosphate homeostasis and skeleton mineralization have recently been made, little is known about the initial events involving the detection of changes in the phosphate serum concentrations and the subsequent downstream regulation cascade. Recent data has strengthened a long-established hypothesis that a phosphate-sensing mechanism may be present in various organs. Such a phosphate sensor would detect changes in serum or local phosphate concentration and would inform the body, the local environment, or the individual cell. This suggests that phosphate in itself could represent a signal regulating multiple factors necessary for diverse biological processes such as bone or vascular calcification. This review summarizes findings supporting the possibility that phosphate represents a signaling molecule, particularly in bone and cartilage, but also in other tissues. The involvement of various signaling pathways (ERK1/2), transcription factors (Fra-1, Runx2) and phosphate transporters (PiT1, PiT2) is discussed.
Collapse
Affiliation(s)
- Solmaz Khoshniat
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Annabelle Bourgine
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Marion Julien
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Pierre Weiss
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Jérôme Guicheux
- Group STEP (Skeletal Tissue Engineering and Physiopathology), Centre for Osteoarticular and Dental Tissue Engineering (LIOAD), INSERM, U791, 44042 Nantes, France
- UFR Odontologie, Pres UNAM, 44042 Nantes, France
| | - Laurent Beck
- Growth and Signalling Research Center, INSERM, U845, 75015 Paris, France
- Faculté de Médecine, Centre de Recherche, INSERM U845, Université Paris Descartes, 156 Rue de Vaugirard, 75015 Paris, France
| |
Collapse
|
11
|
Xu CX, Jin H, Lim HT, Ha YC, Chae CH, An GH, Lee KH, Cho MH. Low dietary inorganic phosphate stimulates lung tumorigenesis through altering protein translation and cell cycle in K-ras(LA1) mice. Nutr Cancer 2010; 62:525-32. [PMID: 20432174 DOI: 10.1080/01635580903532432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent surveys indicate that Pi intake has increased steadily as Pi-containing foods have increased. Our previous study demonstrated that high dietary Pi strongly stimulated lung tumorigeneis. In order to answer the issue whether low Pi may be chemopreventive, we examined the effects of low Pi on lung cancer. Eighteen 5-wk-old male K-ras(LA1) lung cancer model mice were randomly allocated to 2 groups. One group was fed a normal diet (0.5% Pi) and other group was fed low Pi (0.1% Pi) diet for 4 wk. Lung cancer development was evaluated by histopathological examination, Western blot, kinase assay, and immunohistochemistry. Low Pi increased the expression of sodium-dependent phosphate co-transporter 2b, and activated Akt signal with decreased PTEN expression in the lungs of K-ras(LA1) mice. Low Pi increased the Akt/mTOR-mediated protein translation through upregulating the phosphorylation of p70S6K and 4E-BP1. In addition, low Pi stimulated cell cycling as evidenced by altered cell cycle regulators such as cyclin D1 and D3. Finally, low Pi increased lung tumorigenesis in K-ras(LA1) mice compared to the normal diet group. Our results clearly demonstrated that low Pi also promoted lung tumorigenesis, thus suggesting that an appropriate intake of dietary Pi may be critical for lung cancer prevention as well as treatment.
Collapse
|
12
|
Xu CX, Jin H, Chung YS, Shin JY, Hwang SK, Kwon JT, Park SJ, Lee ES, Minai-Tehrani A, Chang SH, Woo MA, Noh MS, An GH, Lee KH, Cho MH. Low dietary inorganic phosphate affects the lung growth of developing mice. J Vet Sci 2009; 10:105-13. [PMID: 19461205 PMCID: PMC2801121 DOI: 10.4142/jvs.2009.10.2.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Inorganic phosphate (Pi) plays a critical role in diverse cellular functions, and regulating the Pi balance is accomplished by sodium-dependent Pi co-transporter (NPT). Pulmonary NPT has recently been identified in mammalian lungs. However, to date, many of the studies that have involved Pi have mainly focused on its effect on bone and kidney. Therefore, current study was performed to discover the potential effects of low Pi on the lung of developing transgenic mice expressing the renilla/firefly luciferase dual reporter gene. Two-weeks old male mice divided into 2 groups and these groups were fed either a low PI diet or a normal control diet (normal: 0.5% Pi, low: 0.1% Pi) for 4 weeks. After 4 weeks of the diet, all the mice were sacrificed. Their lungs were harvested and analyzed by performing luciferase assay, Western blotting, kinase assay and immunohistochemistry. Our results demonstrate that low Pi affects the lungs of developing mice by disturbing protein translation, the cell cycle and the expression of fibroblast growth factor-2. These results suggest that optimally regulating Pi consumption may be important to maintain health.
Collapse
Affiliation(s)
- Cheng Xiong Xu
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|