1
|
Kubatka P, Bojkova B, Nosalova N, Huniadi M, Samuel SM, Sreenesh B, Hrklova G, Kajo K, Hornak S, Cizkova D, Bubnov R, Smokovski I, Büsselberg D, Golubnitschaja O. Targeting the MAPK signaling pathway: implications and prospects of flavonoids in 3P medicine as modulators of cancer cell plasticity and therapeutic resistance in breast cancer patients. EPMA J 2025; 16:437-463. [PMID: 40438489 PMCID: PMC12106287 DOI: 10.1007/s13167-025-00407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/21/2025]
Abstract
Cancer drug resistance poses a significant challenge in oncology, primarily driven by cancer cell plasticity, which promotes tumor initiation, progression, metastasis, and therapeutic evasion in many different cancers. Breast cancers (BCs) are a prominent example of that, with an estimated 2.3 million new cases and 670,000 BC-related deaths registered worldwide annually. Triple-negative BC is especially challenging for treatments demonstrating particularly aggressive disease course, an early manifestation of metastatic disease, frequent drug-resistant cancer types, and poor individual outcomes. Although chemosensitizing agents have been developed, their clinical utility in oncology remains unproven. The mitogen-activated protein kinase (MAPK) pathway is considered a critical regulator of intracellular and extracellular signaling highly relevant for both - genetic and epigenetic modifications. Dysregulation of the MAPK signaling pathways plays a significant role in conferring chemoresistance in BC. Contextually, targeting the MAPK pathway represents a promising strategy for overcoming drug resistance and enhancing the therapeutic efficacy of anticancer agents in BC treatment. On the other hand, flavonoids, a prominent class of phytochemicals, are key modulators of MAPK signaling. Flavonoids interact with the ERK, JNK, p38, and ERK5 pathways of the MAPK signaling cascade and present a promising avenue for developing novel anti-cancer therapies and re-sensitizing agents for the treatment of BC. Compounds such as quercetin, kaempferol, genistein, luteolin, myricetin, EGCG, baicalein, baicalin, nobiletin, morin, delphinidin, acacetin, isorhamnetin, apigenin, silymarin, among others, have been identified as specific modulators of MAPK signaling, exerting complex downstream effects in BC cells increasing therewith drug efficacy and suppressing tumor growth and aggressivity. These properties reflect mechanisms of great clinical relevance to overcome therapeutic resistance in overall BC management. This article highlights corresponding mechanisms and provides clinically relevant illustrations in the framework of 3P medicine for primary (protection of individuals at high risk against health-to-disease transition) and secondary care (protection against metastatic BC progression). 3PM novelty makes good use of patient phenotyping and stratification, predictive multi-level diagnostics, and application of Artificial Intelligence (AI) tools to the individualized interpretation of big data - all proposed for cost-effective treatments tailored to individualized patient profiles with clear benefits to patients and advanced BC management.
Collapse
Affiliation(s)
- Peter Kubatka
- Centre of Experimental and Clinical Regenerative Medicine, Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovakia
- Department of Biology and Ecology, Pedagogical Faculty, Catholic University in Ružomberok, 034 01 Ružomberok, Slovakia
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, 040 01 Slovakia
| | - Natalia Nosalova
- Centre of Experimental and Clinical Regenerative Medicine, Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovakia
| | - Mykhailo Huniadi
- Centre of Experimental and Clinical Regenerative Medicine, Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, 24144 Doha, Qatar
| | - Bini Sreenesh
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, 24144 Doha, Qatar
| | - Gabriela Hrklova
- Department of Biology and Ecology, Pedagogical Faculty, Catholic University in Ružomberok, 034 01 Ružomberok, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, 812 50 Bratislava, Slovakia
| | - Slavomir Hornak
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovakia
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Rostyslav Bubnov
- Clinical Hospital “Pheophania”, Kyiv, Ukraine
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ivica Smokovski
- University Clinic of Endocrinology, Diabetes and Metabolic Disorders, Skopje, North Macedonia
- Faculty of Medical Sciences, University Goce Delcev, Stip, North Macedonia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, 24144 Doha, Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
2
|
Choudhary MK, Pancholi B, Kumar M, Babu R, Garabadu D. A review on endoplasmic reticulum-dependent anti-breast cancer activity of herbal drugs: possible challenges and opportunities. J Drug Target 2025; 33:206-231. [PMID: 39404107 DOI: 10.1080/1061186x.2024.2417189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.Breast cancer (BC) is a major cause of cancer-related mortality across the globe and is especially highly prevalent in females. Based on the poor outcomes and several limitations of present management approaches in BC, there is an urgent need to focus and explore an alternate target and possible drug candidates against the target in the management of BC. The accumulation of misfolded proteins and subsequent activation of unfolded protein response (UPR) alters the homeostasis of endoplasmic reticulum (ER) lumen that ultimately causes oxidative stress in ER. The UPR activates stress-detecting proteins such as IRE1α, PERK, and ATF6, these proteins sometimes may lead to the activation of pro-apoptotic signaling pathways in cancerous cells. The ER stress-dependent antitumor activity could be achieved either through suppressing the adaptive UPR to make cells susceptible to ER stress or by causing chronic ER stress that may lead to triggering of pro-apoptotic signaling pathways. Several herbal drugs trigger ER-dependent apoptosis in BC cells. Therefore, this review discussed the role of fifty-two herbal drugs and their active constituents, focusing on disrupting the balance of the ER within cancer cells. Further, several challenges and opportunities have also been discussed in ER-dependent management in BC.
Collapse
Affiliation(s)
- Mayank Kumar Choudhary
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Bhaskaranand Pancholi
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Manoj Kumar
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Raja Babu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
3
|
Sameh S, Elissawy AM, Al-Sayed E, Labib RM, Chang HW, Yu SY, Chang FR, Yang SC, Singab ANB. Family Malvaceae: a potential source of secondary metabolites with chemopreventive and anticancer activities supported with in silico pharmacokinetic and pharmacodynamic profiles. Front Pharmacol 2024; 15:1465055. [PMID: 39478959 PMCID: PMC11521888 DOI: 10.3389/fphar.2024.1465055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Cancer is the second most widespread cause of mortality following cardiovascular disorders, and it imposes a heavy global burden. Nowadays, herbal nutraceutical products with a plethora of bioactive metabolites represent a foundation stone for the development of promising chemopreventive and anticancer agents. Certain members of the family Malvaceae have traditionally been employed to relieve tumors. The literature concerning the chemopreventive and anticancer effects of the plant species along with the isolated cytotoxic phytometabolites was reviewed. Based on the findings, comprehensive computational modelling studies were performed to explore the pharmacokinetic and pharmacodynamic profiles of the reported cytotoxic metabolites to present basis for future plant-based anticancer drug discovery. Methods All the available information about the anticancer research in family Malvaceae and its cytotoxic phytometabolites were retrieved from official sources. Extensive search was carried out using the keywords Malvaceae, cancer, cytotoxicity, mechanism and signalling pathway. Pharmacokinetic study was performed on the cytotoxic metabolites using SWISS ADME model. Acute oral toxicity expressed as median lethal dose (LD50) was predicted using Pro Tox 3.0 web tool. The compounds were docked using AutoDock Vina platform against epidermal growth factor receptor (EGFR kinase enzyme) obtained from the Protein Data Bank. Molecular dynamic simulations and MMGBSA calculations were performed using GROMACS 2024.2 and gmx_MMPBSA tool v1.5.2. Results One hundred forty-five articles were eligible in the study. Several tested compounds showed safe pharmacokinetic properties. Also, the molecular docking study showed that the bioactive metabolites possessed agreeable binding affinities to EGFR kinase enzyme. Tiliroside (25), boehmenan (30), boehmenan H (31), and isoquercetin (22) elicited the highest binding affinity toward the enzyme with a score of -10.4, -10.4, -10.2 and -10.1 Kcal/mol compared to the reference drug erlotinib having a binding score equal to -9 Kcal/mol. Additionally, compounds 25 and 31 elicited binding free energies equal to -42.17 and -42.68 Kcal/mol, respectively, comparable to erlotinib. Discussion Overall, the current study presents helpful insights into the pharmacokinetic and pharmacodynamic properties of the reported cytotoxic metabolites belonging to family Malvaceae members. The molecular docking and dynamic simulations results intensify the roles of secondary metabolites from medicinal plants in fighting cancer.
Collapse
Affiliation(s)
- Salma Sameh
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Ahmed M. Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Rola M. Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, and PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Yin Yu
- School of Pharmacy and Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- School of Pharmacy and Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyh-Chyun Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Abdel Nasser B. Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Martiniakova M, Penzes N, Biro R, Sarocka A, Kovacova V, Mondockova V, Ciernikova S, Omelka R. Sea buckthorn and its flavonoids isorhamnetin, quercetin, and kaempferol favorably influence bone and breast tissue health. Front Pharmacol 2024; 15:1462823. [PMID: 39444603 PMCID: PMC11497132 DOI: 10.3389/fphar.2024.1462823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Bone tissue and breast tissue are interrelated, as demonstrated by breast microcalcifications, breast cancer bone metastases, bone morphogenetic proteins, and Wnt signaling. In addition, osteoblasts and osteoclasts represent an important switch of tumor cell dormancy during bone metastasis. Damage to both types of tissues mentioned above is highly prevalent, especially in postmenopausal women, and manifests itself in osteoporosis and breast cancer. Sea buckthorn (Elaeagnus rhamnoides L.), a botanical drug with high antioxidant, antitumor, anti-inflammatory, immunomodulatory, and regenerative properties, has great therapeutic potential due to the unique composition of its bioactive metabolites. This review aimed to summarize the current knowledge from in vitro and in vivo studies on the effect of sea buckthorn, as well as its most widespread flavonoids isorhamnetin, quercetin, and kaempferol, on bone and breast tissue health. In vitro studies have revealed the beneficial impacts of sea buckthorn and aforementioned flavonoids on both bone health (bone remodeling, mineralization, and oxidative stress) and breast tissue health (cancer cell proliferation, apoptosis, tumor growth, and metastatic behavior). In vivo studies have documented their protective effects against disturbed bone microarchitecture and reduced bone strength in animal models of osteoporosis, as well as against tumor expansion and metastatic properties in animal xenograft models. In any case, further research and clinical trials are needed to carefully evaluate the potential therapeutic benefits of sea buckthorn and its flavonoids. Based on the available information, however, it can be concluded that these bioactive metabolites favorably affect both bone and breast tissue health.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| |
Collapse
|
5
|
Kaur S, Mendonca P, Soliman KFA. The Anticancer Effects and Therapeutic Potential of Kaempferol in Triple-Negative Breast Cancer. Nutrients 2024; 16:2392. [PMID: 39125273 PMCID: PMC11314279 DOI: 10.3390/nu16152392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer is the second-leading cause of cancer death among women in the United States. Triple-negative breast cancer (TNBC), a subtype of breast cancer, is an aggressive phenotype that lacks estrogen (ER), progesterone (PR), and human epidermal growth (HER-2) receptors, which is challenging to treat with standardized hormonal therapy. Kaempferol is a natural flavonoid with antioxidant, anti-inflammatory, neuroprotective, and anticancer effects. Besides anti-tumorigenic, antiproliferative, and apoptotic effects, kaempferol protects non-cancerous cells. Kaempferol showed anti-breast cancer effects by inducing DNA damage and increasing caspase 3, caspase 9, and pAMT expression, modifying ROS production by Nrf2 modulation, inducing apoptosis by increasing cleaved PARP and Bax and downregulating Bcl-2 expression, inducing cell cycle arrest at the G2/M phase; inhibiting immune evasion by modulating the JAK-STAT3 pathway; and inhibiting the angiogenic and metastatic potential of tumors by downregulating MMP-3 and MMP-9 levels. Kaempferol holds promise for boosting the efficacy of anticancer agents, complementing their effects, or reversing developed chemoresistance. Exploring novel TNBC molecular targets with kaempferol could elucidate its mechanisms and identify strategies to overcome limitations for clinical application. This review summarizes the latest research on kaempferol's potential as an anti-TNBC agent, highlighting promising but underexplored molecular pathways and delivery challenges that warrant further investigation to achieve successful clinical translation.
Collapse
Affiliation(s)
- Sukhmandeep Kaur
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
6
|
He TT, Li X, Ma JZ, Yang Y, Zhu S, Zeng J, Luo L, Yin YL, Cao LY. Triclocarban and triclosan promote breast cancer progression in vitro and in vivo via activating G protein-coupled estrogen receptor signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172782. [PMID: 38679099 DOI: 10.1016/j.scitotenv.2024.172782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Triclocarban (TCC) and triclosan (TCS) have been detected ubiquitously in human body and evoked increasing concerns. This study aimed to reveal the induction risks of TCC and TCS on triple negative breast cancer through non-genomic GPER-mediated signaling pathways. Molecular simulation indicated that TCC exhibited higher GPER binding affinity than TCS theoretically. Calcium mobilization assay displayed that TCC/TCS activated GPER signaling pathway with the lowest observed effective concentrations (LOEC) of 10 nM/100 nM. TCC and TCS also upregulated MMP-2/9, EGFR, MAPK3 but downregulated MAPK8 via GPER-mediated signaling pathway. Proliferation assay showed that TCC/TCS induced 4 T1 breast cancer cells proliferation with the LOEC of 100 nM/1000 nM. Wound-healing and transwell assays showed that TCC/TCS promoted 4 T1 cells migration in a concentration-dependent manner with the LOEC of 10 nM. The effects of TCC on breast cancer cells proliferation and migration were stronger than TCS and both were regulated by GPER. TCC/TCS induced migratory effects were more significantly than proliferative effect. Mechanism study showed that TCC/TCS downregulated the expression of epithelial marker (E-cadherin) but upregulated mesenchymal markers (snail and N-cadherin), which was reversed by GPER inhibitor G15. These biomarkers results indicated that TCC/TCS-induced 4 T1 cells migration was a classic epithelial to mesenchymal transition mechanism regulated by GPER signaling pathway. Orthotopic tumor model verified that TCC promoted breast cancer in-situ tumor growth and distal tissue metastasis via GPER-mediated signaling pathway at human-exposure level of 10 mg/kg/d. TCC-induced tissue metastasis of breast cancer was more significantly than in-situ tumor growth. Overall, we demonstrated for the first time that TCC/TCS could activate the GPER signaling pathways to induce breast cancer progression.
Collapse
Affiliation(s)
- Ting-Ting He
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xin Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jie-Zhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha 410013, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Shiye Zhu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yu-Long Yin
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Lin-Ying Cao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
7
|
Wendlocha D, Kubina R, Krzykawski K, Mielczarek-Palacz A. Selected Flavonols Targeting Cell Death Pathways in Cancer Therapy: The Latest Achievements in Research on Apoptosis, Autophagy, Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis. Nutrients 2024; 16:1201. [PMID: 38674891 PMCID: PMC11053927 DOI: 10.3390/nu16081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The complex and multi-stage processes of carcinogenesis are accompanied by a number of phenomena related to the potential involvement of various chemopreventive factors, which include, among others, compounds of natural origin such as flavonols. The use of flavonols is not only promising but also a recognized strategy for cancer treatment. The chemopreventive impact of flavonols on cancer arises from their ability to act as antioxidants, impede proliferation, promote cell death, inhibit angiogenesis, and regulate the immune system through involvement in diverse forms of cellular death. So far, the molecular mechanisms underlying the regulation of apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis occurring with the participation of flavonols have remained incompletely elucidated, and the results of the studies carried out so far are ambiguous. For this reason, one of the therapeutic goals is to initiate the death of altered cells through the use of quercetin, kaempferol, myricetin, isorhamnetin, galangin, fisetin, and morin. This article offers an extensive overview of recent research on these compounds, focusing particularly on their role in combating cancer and elucidating the molecular mechanisms governing apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Assessment of the mechanisms underlying the anticancer effects of compounds in therapy targeting various types of cell death pathways may prove useful in developing new therapeutic regimens and counteracting resistance to previously used treatments.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| |
Collapse
|
8
|
de Morais EF, de Oliveira LQR, de Farias Morais HG, de Souto Medeiros MR, Freitas RDA, Rodini CO, Coletta RD. The Anticancer Potential of Kaempferol: A Systematic Review Based on In Vitro Studies. Cancers (Basel) 2024; 16:585. [PMID: 38339336 PMCID: PMC10854650 DOI: 10.3390/cancers16030585] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Given the heterogeneity of different malignant processes, planning cancer treatment is challenging. According to recent studies, natural products are likely to be effective in cancer prevention and treatment. Among bioactive flavonoids found in fruits and vegetables, kaempferol (KMP) is known for its anti-inflammatory, antioxidant, and anticancer properties. This systematic review aims to highlight the potential therapeutic effects of KMP on different types of solid malignant tumors. This review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Searches were performed in EMBASE, Medline/PubMed, Cochrane Collaboration Library, Science Direct, Scopus, and Google Scholar. After the application of study criteria, 64 studies were included. In vitro experiments demonstrated that KMP exerts antitumor effects by controlling tumor cell cycle progression, proliferation, apoptosis, migration, and invasion, as well as by inhibiting angiogenesis. KMP was also able to inhibit important markers that regulate epithelial-mesenchymal transition and enhanced the sensitivity of cancer cells to traditional drugs used in chemotherapy, including cisplatin and 5-fluorouracil. This flavonoid is a promising therapeutic compound and its combination with current anticancer agents, including targeted drugs, may potentially produce more effective and predictable results.
Collapse
Affiliation(s)
- Everton Freitas de Morais
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Lilianny Querino Rocha de Oliveira
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Hannah Gil de Farias Morais
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Maurília Raquel de Souto Medeiros
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Roseana de Almeida Freitas
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil;
| | - Ricardo D. Coletta
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| |
Collapse
|
9
|
Jayakumar R, Dash MK, Kumar P, Sharma S, Gulati S, Pandey A, Cholke K, Fatima Z, Trigun SK, Joshi N. Pharmaceutical characterization and exploration of Arkeshwara rasa in MDA-MB-231 cells. J Ayurveda Integr Med 2024; 15:100823. [PMID: 38160612 PMCID: PMC10792653 DOI: 10.1016/j.jaim.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND The diverse specificity mode of cancer treatment targets and chemo resistance demands the necessity of drug entities which can address the devastating dynamicity of the disease. OBJECTIVES To check the anti-tumour potential of traditional medicine rich in polyherbal components and metal nanoparticle namely Arkeshwara rasa (AR). MATERIAL METHODS The AR was prepared in a modified version with reference from Rasaratna Samuchaya and characterized using sophisticated instrumental analysis including XRD, SEM-EDAX, TEM, TGA-DSC, and LC-MS and tested against the MDA-MB-231 cell line to screen cell viability and the cytotoxicity with MTT, SRB and the AO assay. RESULTS XRD pattern shows cubic tetrahedrite structure with Sb, Cu, S peaks and trace elements like Fe, Mg, etc. The particle size of AR ranges between 20 and 30 nm. The TGA points thermal decomposition at 210 °C and the metal sulphide peaks in DSC. LC-MS analysis reveals the components of the formulation more on the flavonoid portion. The IC50 value of MTT and SRB are 25.28 μg/mL and 31.7 μg/mL respectively. The AO colorimeter substantiated the cell viability and the apoptosis figures of the same cell line. The AR exhibits cytotoxicity and reaffirms the apoptosis fraction with SRB assay. CONCLUSIONS The Hesperidine, Neohesperidin, Rutin components in the phytochemical pool can synergize the anti-tumour potential with either influencing cellular pathways or decreasing chemo resistance to conventional treatment. AR need to be further experimented with reverse transcription, flow cytometry, western blotting, etc.
Collapse
Affiliation(s)
- Remya Jayakumar
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj Kumar Dash
- Department of Rasashastra and Bhaishajya Kalpana, Government Ayurveda College, Raipur, India.
| | - Pankaj Kumar
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Shiwakshi Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Gulati
- Dept of Rasashastra and Bhaishjya Kalpana, Babu Yugraj Singh Ayurvedic Medical College and Hospital, Gomtinagar Extension, Sector 6 Lucknow, Uttar Pradesh, 226010, India
| | - Akanksha Pandey
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kaushavi Cholke
- Amity Lipidomics Research Facility (ALRF), Amity University, Haryana, Manesar, Gurugram, 122413, India; Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Switzerland
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia; Amity Institute of Biotechnology, Amity University, Haryana, Manesar, Gurugram, 122413, India
| | - S K Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Namrata Joshi
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
10
|
Ma X, Zhang X, Wang X, Wang C, Ma Y. The role of kaempferol in gynaecological malignancies: progress and perspectives. Front Pharmacol 2023; 14:1310416. [PMID: 38143502 PMCID: PMC10748757 DOI: 10.3389/fphar.2023.1310416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Kaempferol, a flavonoid derived from various herbs such as cocoyam, propolis, and grapefruit, has garnered interest due to its numerous pharmacological benefits, including anti-inflammatory, antioxidant, and anti-diabetic properties. Kaempferol has been shown to possess notable anti-tumour bioactivity, indicating potential for treating gynaecological malignancies. To date, numerous studies have demonstrated the potential of kaempferol to induce tumour cell apoptosis, inhibit proliferation, and prevent metastasis and invasion in several gynaecological malignancies, including breast, ovarian and endometrial cancers. However, there is currently insufficient research investigating the efficacy of kaempferol for the treatment of gynaecological malignancies, and a lack of systematic review of its mechanism of action. Therefore, this review is founded on a literature analysis of the anticancer effects of kaempferol on gynaecological malignancies. The goal is to provide valuable reference material for scientific researchers and medical practitioners.
Collapse
Affiliation(s)
- Xijun Ma
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuan Wang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Congan Wang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Upadhaya P, Lamenza FF, Shrestha S, Roth P, Jagadeesha S, Pracha H, Horn NA, Oghumu S. Berry Extracts and Their Bioactive Compounds Mitigate LPS and DNFB-Mediated Dendritic Cell Activation and Induction of Antigen Specific T-Cell Effector Responses. Antioxidants (Basel) 2023; 12:1667. [PMID: 37759970 PMCID: PMC10525528 DOI: 10.3390/antiox12091667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Berries have gained widespread recognition for their abundant natural antioxidant, anti-inflammatory, and immunomodulatory properties. However, there has been limited research conducted thus far to investigate the role of the active constituents of berries in alleviating contact hypersensitivity (CHS), the most prevalent occupational dermatological disease. Our study involved an ex vivo investigation aimed at evaluating the impact of black raspberry extract (BRB-E) and various natural compounds found in berries, such as protocatechuic acid (PCA), proanthocyanidins (PANT), ellagic acid (EA), and kaempferol (KMP), on mitigating the pathogenicity of CHS. We examined the efficacy of these natural compounds on the activation of dendritic cells (DCs) triggered by 2,4-dinitrofluorobenzene (DNFB) and lipopolysaccharide (LPS). Specifically, we measured the expression of activation markers CD40, CD80, CD83, and CD86 and the production of proinflammatory cytokines, including Interleukin (IL)-12, IL-6, TNF-α, and IL-10, to gain further insights. Potential mechanisms through which these phytochemicals could alleviate CHS were also investigated by investigating the role of phospho-ERK. Subsequently, DCs were co-cultured with T-cells specific to the OVA323-339 peptide to examine the specific T-cell effector responses resulting from these interactions. Our findings demonstrated that BRB-E, PCA, PANT, and EA, but not KMP, inhibited phosphorylation of ERK in LPS-activated DCs. At higher doses, EA significantly reduced expression of all the activation markers studied in DNFB- and LPS-stimulated DCs. All compounds tested reduced the level of IL-6 in DNFB-stimulated DCs in Flt3L as well as in GM-CSF-derived DCs. However, levels of IL-12 were reduced by all the tested compounds in LPS-stimulated Flt3L-derived BMDCs. PCA, PANT, EA, and KMP inhibited the activated DC-mediated Interferon (IFN)-γ and IL-17 production by T-cells. Interestingly, PANT, EA, and KMP significantly reduced T-cell proliferation and the associated IL-2 production. Our study provides evidence for differential effects of berry extracts and natural compounds on DNFB and LPS-activated DCs revealing potential novel approaches for mitigating CHS.
Collapse
Affiliation(s)
- Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Felipe F. Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Sushmitha Jagadeesha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Natalie A. Horn
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.U.); (F.F.L.); (S.S.); (P.R.); (S.J.); (H.P.); (N.A.H.)
| |
Collapse
|
12
|
Farani MR, Sarlak M, Gholami A, Azaraian M, Binabaj MM, Kakavandi S, Tambuwala MM, Taheriazam A, Hashemi M, Ghasemi S. Epigenetic drugs as new emerging therapeutics: What is the scale's orientation of application and challenges? Pathol Res Pract 2023; 248:154688. [PMID: 37494800 DOI: 10.1016/j.prp.2023.154688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Epigenetics is the study of heritable changes in gene expression or function without altering the DNA sequence. Important factors are part of epigenetic events, such as methylation, DNA histone rearrangements, nucleosome transposition, and non-coding RNAs. Dysregulated epigenetic mechanics are associated with various cancers' initiation, development, and metastasis. It is known that the occurrence and development of cancer can be controlled by regulating unexpected epigenetic events. Epi-drugs are used singly or in combination with chemotherapy and enhance antitumor activity, reduce drug resistance, and stimulate the host immune response. Despite these benefits, epigenetic therapy as a single therapy or in combination with other drugs leads to adverse effects. This review article introduces and compares the advantages, disadvantages, and side effects of using these drugs for the first time since their introduction. Also, this article describes the mechanism of action of various epigenetic drugs. Recommendations for future use of epigenetic drugs as cancer therapeutics are suggested as an overall conclusion.
Collapse
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Maryam Sarlak
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Amir Gholami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Azaraian
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maryam Moradi Binabaj
- Clinical Biochemistry, Department of Biochemistry and Nutrition, School of Medicine, Sabzevar University of Medical Science, Sabzevar, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, 0United Kingdom
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
13
|
Wendlocha D, Krzykawski K, Mielczarek-Palacz A, Kubina R. Selected Flavonols in Breast and Gynecological Cancer: A Systematic Review. Nutrients 2023; 15:2938. [PMID: 37447264 DOI: 10.3390/nu15132938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The consumption of foods that are rich in phenolic compounds has chemopreventive effects on many cancers, including breast cancer, ovarian cancer, and endometrial cancer. A wide spectrum of their health-promoting properties such as antioxidant, anti-inflammatory, and anticancer activities, has been demonstrated. This paper analyzes the mechanisms of the anticancer action of selected common flavonols, including kemferol, myricetin, quercetin, fisetin, galangin, isorhamnetin, and morin, in preclinical studies, with particular emphasis on in vitro studies in gynecological cancers and breast cancer. In the future, these compounds may find applications in the prevention and treatment of gynecological cancers and breast cancer, but this requires further, more advanced research.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
14
|
Almatroudi A, Allemailem KS, Alwanian WM, Alharbi BF, Alrumaihi F, Khan AA, Almatroodi SA, Rahmani AH. Effects and Mechanisms of Kaempferol in the Management of Cancers through Modulation of Inflammation and Signal Transduction Pathways. Int J Mol Sci 2023; 24:8630. [PMID: 37239974 PMCID: PMC10218111 DOI: 10.3390/ijms24108630] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is the principal cause of death and its incidence is increasing continuously worldwide. Various treatment approaches are in practice to treat cancer, but these treatment strategies may be associated with severe side effects and also produce drug resistance. However, natural compounds have established their role in cancer management with minimal side effects. In this vista, kaempferol, a natural polyphenol, mainly found in vegetables and fruits, has been revealed to have many health-promoting effects. Besides its health-promoting potential, its anti-cancer potential has also been described in in vivo as well as in in vitro studies. The anti-cancer potential of kaempferol has been proven through modulation of cell signaling pathways in addition to the induction of apoptosis and cell cycle arrest in cancer cells. It leads to the activation of tumor suppressor genes, inhibition of angiogenesis, PI3K/AKT pathways, STAT3, transcription factor AP-1, Nrf2 and other cell signaling molecules. Poor bioavailability of this compound is one of the major limitations for its proper and effective disease management actions. Recently, some novel nanoparticle-based formulations have been used to overcome these limitations. The aim of this review is to provide a clear picture regarding the mechanism of action of kaempferol in different cancers through the modulation of cell signaling molecules. Besides this, strategies to improve the efficacy and synergistic effects of this compound have also been described. However, more studies are needed based on clinical trials to fully explore the therapeutic role of this compound, especially in cancer treatment.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Wanian M. Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Basmah F. Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.)
| |
Collapse
|
15
|
Gasmi A, Gasmi Benahmed A, Shanaida M, Chirumbolo S, Menzel A, Anzar W, Arshad M, Cruz-Martins N, Lysiuk R, Beley N, Oliinyk P, Shanaida V, Denys A, Peana M, Bjørklund G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit Rev Food Sci Nutr 2023; 64:8054-8072. [PMID: 37129118 DOI: 10.1080/10408398.2023.2195493] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The use of natural bioactive constituents from various food sources for anticancer purposes has become increasingly popular worldwide. Broccoli (Brassica oleracea var. italica) is on the top of the consumed vegetables by the masses. Its raw matrix contains a plethora of phytochemicals, such as glucosinolates and phenolic compounds, along with rich amounts of vitamins, and minerals. Consumption of broccoli-derived phytochemicals provides strong antioxidant effects, particularly due to its sulforaphane content, while modulating numerous molecules involved in cell cycle regulation, control of apoptosis, and tuning enzyme activity. Thus, the inclusion of broccoli in the daily diet lowers the susceptibility to developing cancers. Numerous studies have underlined the undisputable role of broccoli in the diet as a chemopreventive raw food, owing to the content in sulforaphane, an isothiocyanate produced as a result of hydrolysis of precursor glucosinolates called glucoraphanin. This review will provide evidence supporting the specific role of fresh florets and sprouts of broccoli and its key bioactive constituents in the prevention and treatment of different cancers; a number of studies carried out in the in vitro and in vivo conditions as well as clinical trials were analyzed.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
- International Congress of Nutritional Sciences, Casablanca, Morocco
- Société Marocaine de Micronutrition et de Nutrigénétique Appliquée, Casablanca, Morocco
| | | | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | | | - Wajiha Anzar
- Dow University of Health Sciences, Karachi, Pakistan
| | - Mehreen Arshad
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, Gandra PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
16
|
Li Q, Qiao Y, Wang F, Zhao J, Wu L, Ge H, Xu S. Prenatal triclosan exposure impairs mammalian lung branching morphogenesis through activating Bmp4 signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114896. [PMID: 37054474 DOI: 10.1016/j.ecoenv.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Triclosan (TCS) is a commonly used antibacterial agent present in personal care and household products. Recently, there have been increasing concerns about the association between children's health and TCS exposure during gestation, but the toxicological effects of TCS exposure on embryonic lung development remain undetermined. In this study, through using an ex vivo lung explant culture system, we found that prenatal exposure to TCS resulted in impaired lung branching morphogenesis and altered proximal-distal airway patterning. These TCS-induced dysplasias are accompanied by significantly reduced proliferation and increased apoptosis within the developing lung, as a consequence of activated Bmp4 signaling. Inhibition of Bmp4 signaling by Noggin partially rescues the lung branching morphogenesis and cellular defects in TCS-exposed lung explants. In addition, we provided in vivo evidence that administration of TCS during gestation leads to compromised branching formation and enlarged airspace in the lung of offspring. Thus, this study provides novel toxicological information on TCS and indicated a strong/possible association between TCS exposure during pregnancy and lung dysplasia in offspring.
Collapse
Affiliation(s)
- Qiuling Li
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Yulong Qiao
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Feifei Wang
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jian Zhao
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Honghua Ge
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
17
|
Abstract
Flavonoids are polyphenolic phytochemicals, which occur naturally in plants and possess both anti-oxidant and pro-oxidant properties. Flavonoids are gaining increasing popularity in the pharmaceutical industry as healthy and cost-effective compounds. Flavonoids show beneficial pharmacological activities in the treatment and prevention of various types of diseases. They are natural and less toxic agents for cancer chemotherapy and radiotherapy via regulation of multiple cell signaling pathways and pro-oxidant effects. In this review, we have summarized the mechanisms of action of selected flavonoids, and their pharmacological implications and potential therapeutic applications in cancer therapy.
Collapse
Affiliation(s)
- Prabha Tiwari
- Riken Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kaushala Prasad Mishra
- Ex Bhabha Atomic Research Center, Foundation for Education and Research, Mumbai, Maharashtra, India
| |
Collapse
|
18
|
Wu C, Sun C, Han X, Ye Y, Qin Y, Liu S. Sanyin Formula Enhances the Therapeutic Efficacy of Paclitaxel in Triple-Negative Breast Cancer Metastases through the JAK/STAT3 Pathway in Mice. Pharmaceuticals (Basel) 2022; 16:9. [PMID: 36678509 PMCID: PMC9867389 DOI: 10.3390/ph16010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Sanyin formula (SYF) is used as a complementary treatment for triple-negative breast cancer (TNBC). The purpose of this study was to identify the potential functional components and clarify the underlying molecular mechanisms of SYF in TNBC. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to identify the main components of SYF extracts. Network pharmacology and bioinformatic analyses were carried out to identify potential candidate targets of SYF in TNBC. Cell proliferation was determined with a Celigo imaging cytometer. Wound-healing and Transwell assays were adopted to evaluate cell migration. A Transwell cell-invasion assay was performed with Matrigel-coated membranes. In vivo bioluminescence imaging (BLI) and pathological analyses illustrated the effect of SYF on cancer cell metastasis in tumour-bearing mice. The inhibitory mechanism of SYF was investigated via quantitative PCR (qPCR) and Western blotting. We found that 3,4-dihydroxyphenyllactic acid, kaempferol, p-coumaric acid, and vanillic acid may be the active components of SYF. Molecular docking confirmed that kaempferol, p-coumaric acid, vanillic acid, and 3,4-dihydroxyphenyllactic acid bound stably to proteins such as AKR1C3, MMPs, and STAT3. SYF extract suppressed TNBC cell proliferation, migration, invasion, and metastasis by inhibiting JAK/STAT3 signalling and then regulating downstream genes, such as MMP-2/MMP-9. SYF regulates the expression of genes involved in cell proliferation, migration, and invasion by regulating the JAK/STAT3 signalling pathway and finally inhibits tumour cell metastasis in TNBC. The present study clarifies the mechanism by which SYF inhibits TNBC metastasis and lays an experimental foundation for the continued clinical development of SYF targeting the JAK/STAT3 pathway.
Collapse
Affiliation(s)
- Chunyu Wu
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Chenping Sun
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Xianghui Han
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Yiyi Ye
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Yuenong Qin
- Department of Breast Surgery (Integrated Traditional and Western Medicine), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Sheng Liu
- Longhua Hospital, Institute of Chinese Traditional Surgery, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| |
Collapse
|
19
|
Qattan MY, Khan MI, Alharbi SH, Verma AK, Al-Saeed FA, Abduallah AM, Al Areefy AA. Therapeutic Importance of Kaempferol in the Treatment of Cancer through the Modulation of Cell Signalling Pathways. Molecules 2022; 27:8864. [PMID: 36557997 PMCID: PMC9788613 DOI: 10.3390/molecules27248864] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-derived flavonoids are considered natural nontoxic chemo-preventers and have been widely studied for cancer treatment in recent decades. Mostly all flavonoid compounds show significant anti-inflammatory, anticancer and antioxidant properties. Kaempferol (Kmp) is a well-studied compound and exhibits remarkable anticancer and antioxidant potential. Kmp can regulate various cancer-related processes and activities such as cell cycle, oxidative stress, apoptosis, proliferation, metastasis, and angiogenesis. The anti-cancer properties of Kmp primarily occur via modulation of apoptosis, MAPK/ERK1/2, P13K/Akt/mTOR, vascular endothelial growth factor (VEGF) signalling pathways. The anti-cancer property of Kmp has been recognized in several in-vivo and in-vitro studies which also includes numerous cell lines and animal models. This flavonoid possesses toxic activities against only cancer cells and have restricted toxicity on healthy cells. In this review, we present extensive research investigations about the therapeutic potential of Kmp in the management of different types of cancers. The anti-cancer properties of Kmp are discussed by concentration on its capability to target molecular-signalling pathway such as VEGF, STAT, p53, NF-κB and PI3K-AKT signalling pathways. The anti-cancer property of Kmf has gained a lot of attention, but the accurate action mechanism remains unclear. However, this natural compound has a great pharmacological capability and is now considered to be an alternative cancer treatment.
Collapse
Affiliation(s)
- Malak Yahia Qattan
- Department of Health Sciences, College of Applied Studies and Community Service, King Saud University, KSA- 4545, Riyadh 11451, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Shudayyed Hasham Alharbi
- Pharmacy Department, Maternity and Children Hospital (MCH), Qassim Cluster, Ministry of Health, Buraydah 52384, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia University, New Delhi 110025, India
| | - Fatimah A. Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Alduwish Manal Abduallah
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Alkarj 11942, Saudi Arabia
| | - Azza A. Al Areefy
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Nutrition & Food Science Department, Faculty of Home Economics, Helwan University, P.O. Box 11795, Cairo 11281, Egypt
| |
Collapse
|
20
|
Liu WL, Wu BF, Shang JH, Wang XF, Zhao YL, Huang AX. Moringa oleifera seed ethanol extract and its active component kaempferol potentiate pentobarbital-induced sleeping behaviours in mice via a GABAergic mechanism. PHARMACEUTICAL BIOLOGY 2022; 60:810-824. [PMID: 35587996 PMCID: PMC9122383 DOI: 10.1080/13880209.2022.2056207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Moringa oleifera Lam. (Moringaceae) (MO) is an important food plant that has high nutritional and medical value. However, there is limited information on whether its seeds can improve sleep. OBJECTIVE This study investigated the effects of MO seed ethanol extracts (EEMOS) on sleep activity improvement and examined the underlying mechanisms. MATERIALS AND METHODS Male ICR mice were placed into six groups (n = 12) and treated as follows: Control (sodium carboxymethyl cellulose, 20 mL/kg), estazolam tablets (2 mg/kg), EEMOS (1, 2 g/kg) and kaempferol (1, 2 mg/kg). These samples were successively given intragastric for 14 d. Locomotor activity assay, pentobarbital-induced sleeping and pentetrazol-induced seizures tests were utilized to examine the sedative-hypnotic effects (SHE) of EEMOS. RESULTS Compared with the control group, the results revealed that EEMOS (2 g/kg) and KA (2 mg/kg) possessed good SHE and could significantly elevate the levels of γ-aminobutyric acid and reduce the levels of glutamic acid in the mouse hypothalamus (p < 0.05). Moreover, SHE was blocked by picrotoxin, flumazenil and bicuculline (p < 0.05). EEMOS (2 g/kg) and KA (2 mg/kg) significantly upregulated the protein expression levels of glutamic acid decarboxylase-65 (GAD65) and α1-subunit of GABAA receptors in the hypothalamus of mice (p < 0.05), not affecting glutamic acid decarboxylase-67 (GAD67) and γ2-subunit expression levels (p > 0.05). Additionally, they cause a significant increase in Cl- influx in human cerebellar granule cells at a concentration of 8 µg/mL (p < 0.05). DISCUSSION AND CONCLUSIONS These findings demonstrated that EEMOS could improve sleep by regulating GABAA-ergic systems, and encourage further clinical trials to treat insomnia.
Collapse
Affiliation(s)
- Wei-Liang Liu
- Yunnan Engineering Research Center of Fruit Wine, QuJing Normal University, QuJing, People’s Republic of China
| | - Bai-Fen Wu
- Yunnan University of Business Management, Kunming, People’s Republic of China
| | - Jian-Hua Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - Xue-Feng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yun-Li Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People’s Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, People’s Republic of China
| | - Ai-Xiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
21
|
Vachetta VS, Marder M, Troncoso MF, Elola MT. Opportunities, obstacles and current challenges of flavonoids for luminal and triple-negative breast cancer therapy. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 6:100077. [DOI: 10.1016/j.ejmcr.2022.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
22
|
Zunica ERM, Axelrod CL, Kirwan JP. Phytochemical Targeting of Mitochondria for Breast Cancer Chemoprevention, Therapy, and Sensitization. Int J Mol Sci 2022; 23:ijms232214152. [PMID: 36430632 PMCID: PMC9692881 DOI: 10.3390/ijms232214152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is a common and deadly disease that causes tremendous physical, emotional, and financial burden on patients and society. Early-stage breast cancer and less aggressive subtypes have promising prognosis for patients, but in aggressive subtypes, and as cancers progress, treatment options and responses diminish, dramatically decreasing survival. Plants are nutritionally rich and biologically diverse organisms containing thousands of metabolites, some of which have chemopreventive, therapeutic, and sensitizing properties, providing a rich source for drug discovery. In this study we review the current landscape of breast cancer with a central focus on the potential role of phytochemicals for treatment, management, and disease prevention. We discuss the relevance of phytochemical targeting of mitochondria for improved anti-breast cancer efficacy. We highlight current applications of phytochemicals and derivative structures that display anti-cancer properties and modulate cancer mitochondria, while describing future applicability and identifying areas of promise.
Collapse
|
23
|
El-Abid H, Amaral C, Cunha SC, Correia-da-Silva G, Fernandes JO, Moumni M, Teixeira N. Anti-cancer properties of hydroethanolic extracts of Juniperus oxycedrus L. in breast cancer cells. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Schmitt F, Eckert GP. Caenorhabditis elegans as a Model for the Effects of Phytochemicals on Mitochondria and Aging. Biomolecules 2022; 12:1550. [PMID: 36358900 PMCID: PMC9687847 DOI: 10.3390/biom12111550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
The study of aging is an important topic in contemporary research. Considering the demographic changes and the resulting shifts towards an older population, it is of great interest to preserve youthful physiology in old age. For this endeavor, it is necessary to choose an appropriate model. One such model is the nematode Caenorhabditis elegans (C. elegans), which has a long tradition in aging research. In this review article, we explore the advantages of using the nematode model in aging research, focusing on bioenergetics and the study of secondary plant metabolites that have interesting implications during this process. In the first section, we review the situation of aging research today. Conventional theories and hypotheses about the ongoing aging process will be presented and briefly explained. The second section focuses on the nematode C. elegans and its utility in aging and nutrition research. Two useful genome editing methods for monitoring genetic interactions (RNAi and CRISPR/Cas9) are presented. Due to the mitochondria's influence on aging, we also introduce the possibility of observing bioenergetics and respiratory phenomena in C. elegans. We then report on mitochondrial conservation between vertebrates and invertebrates. Here, we explain why the nematode is a suitable model for the study of mitochondrial aging. In the fourth section, we focus on phytochemicals and their applications in contemporary nutritional science, with an emphasis on aging research. As an emerging field of science, we conclude this review in the fifth section with several studies focusing on mitochondrial research and the effects of phytochemicals such as polyphenols. In summary, the nematode C. elegans is a suitable model for aging research that incorporates the mitochondrial theory of aging. Its living conditions in the laboratory are optimal for feeding studies, thus enabling bioenergetics to be observed during the aging process.
Collapse
Affiliation(s)
| | - Gunter P. Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Science, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
25
|
Identification of a Hydroxygallic Acid Derivative, Zingibroside R1 and a Sterol Lipid as Potential Active Ingredients of Cuscuta chinensis Extract That Has Neuroprotective and Antioxidant Effects in Aged Caenorhabditis elegans. Nutrients 2022; 14:nu14194199. [PMID: 36235851 PMCID: PMC9570774 DOI: 10.3390/nu14194199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
We examined the effects of the extracts from two traditional Chinese medicine plants, Cuscuta chinensis and Eucommia ulmoides, on the healthspan of the model organism Caenorhabditis elegans. C. chinensis increased the short-term memory and the mechanosensory response of aged C. elegans. Furthermore, both extracts improved the resistance towards oxidative stress, and decreased the intracellular level of reactive oxygen species. Chemical analyses of the extracts revealed the presence of several bioactive compounds such as chlorogenic acid, cinnamic acid, and quercetin. A fraction from the C. chinensis extract enriched in zingibroside R1 improved the lifespan, the survival after heat stress, and the locomotion in a manner similar to the full C. chinensis extract. Thus, zingibroside R1 could be (partly) responsible for the observed health benefits of C. chinensis. Furthermore, a hydroxygallic acid derivative and the sterol lipid 4-alpha-formyl-stigmasta-7,24(241)-dien-3-beta-ol are abundantly present in the C. chinensis extract and its most bioactive fraction, but hardly in E. ulmoides, making them good candidates to explain the overall healthspan benefits of C. chinensis compared to the specific positive effects on stress resistance by E. ulmoides. Our findings highlight the overall anti-aging effects of C. chinensis in C. elegans and provide first hints about the components responsible for these effects.
Collapse
|
26
|
Bzainia A, Dias RCS, Costa MRPFN. Enrichment of Quercetin from Winemaking Residual Diatomaceous Earth via a Tailor-Made Imprinted Adsorbent. Molecules 2022; 27:molecules27196406. [PMID: 36234945 PMCID: PMC9570924 DOI: 10.3390/molecules27196406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022] Open
Abstract
Residual diatomaceous earth (RDE) from winemaking activities is a rich and currently underexploited source of phenolic compounds which ought to be recycled from the perspective of circular bioeconomy. In this work, we demonstrate the feasibility of molecularly imprinted polymers (MIPs) for the enrichment of quercetin, a flavonoid at a fairly high content in residual diatomaceous earth. These MIPs were synthesized through free radical polymerization. FTIR confirmed the integration of the functional monomers into the polymeric chains. Batch adsorption experiments were used to assess the retention and selectivity of those MIPs towards quercetin. Commercial resins were compared with the synthesized materials using the same procedures. These adsorption experiments allowed the selection of the best performing MIP for the valorization of RDE extract. This treatment consisted of saturating the selected MIP with the extract and then desorbing the retained compounds using solvents of selected compositions. The desorbed fractions were analyzed using liquid chromatography, and the results demonstrated an increase in quercetin’s fractional area from 5% in the RDE extract to more than 40% in some fractions, which is roughly an eightfold enrichment of quercetin. Moreover, other flavonoids of close chemical structure to quercetin have been rather retained and enriched by the MIP.
Collapse
Affiliation(s)
- Amir Bzainia
- Polytechnic Institute of Bragança, Mountain Research Center (CIMO), 5300-253 Bragança, Portugal
- LSRE-LCM-Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Rolando C. S. Dias
- Polytechnic Institute of Bragança, Mountain Research Center (CIMO), 5300-253 Bragança, Portugal
- Correspondence:
| | - Mário Rui P. F. N. Costa
- LSRE-LCM-Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
27
|
The Content Variation of Four Active Components in Amygdalus persica L. during Different Harvesting Periods. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1017674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, a quantitative method for the content determination of rutin, 5-O-coumaroylquinic acid methyl ester, chlorogenic acid butyl ester, and kaempferol in Amygdalus persica L. flowers during different harvest periods was established to investigate its various rules and determine the optimal harvesting period. The determination was performed on the XTERRA MS C18 column with a mobile phase consisting of 0.1% formic acid aqueous solution and acetonitrile (gradient elution) at a flow rate of 1.0 mL/min. In combination with other validation data, including precision, stability, and recovery tests, this method demonstrated good reliability and sensitivity. The results showed that the contents of rutin, 5-O-coumaroylquinic acid methyl ester, chlorogenic acid butyl ester, and kaempferol in A. persica flowers during different harvest periods were quite different, and the content in samples at the early blooming stage was the highest. The method is simple, accurate, and rapid for determining the contents of four active ingredients in A. persica flowers.
Collapse
|
28
|
Molecular docking and in vitro experiments verified that kaempferol induced apoptosis and inhibited human HepG2 cell proliferation by targeting BAX, CDK1, and JUN. Mol Cell Biochem 2022; 478:767-780. [PMID: 36083512 DOI: 10.1007/s11010-022-04546-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Hepatocellular carcinoma, as a common liver cirrhosis complication, has become the sixth most common cancer worldwide, and its increasing incidence has resulted in considerable medical and economic burdens. As a natural polyphenolic compound, kaempferol has exhibits a wide range of antitumor activities against multiple cancer targets. In this study, the Autodock software was used for molecular docking to simulate the interaction process between kaempferol and HCC targets and the PyMOL software was used for visualization. Proliferation of kaempferol HepG2 cells under the effect of kaempferol was detected using Cell Counting Kit-8 (CCK-8) assay, and the apoptosis rate of HepG2 cells was detected using flow cytometry. The expressions of proteins BAX, CDK1, and JUN protein expressions were detected by Western blot. Molecular docking found that the kaempferol ligand has 3 rotatable bonds, 6 nonpolar hydrogen atoms, and 12 aromatic carbon atoms, and can form complexes with the kaempferol targets P53, BAX, AR, CDK1, and JUN through electrostatic energy. GO (Gene Ontology) enrichment analysis suggests that kaempferol regulates the biological function of hepatocellular carcinoma cells and is related to apoptosis. Cell Counting Kit-8 assay suggested that Kaempferol can significantly inhibited HepG2 cell proliferation, and the inhibition rate increased with the increase in drug concentration and incubation time. Moreover, kaempferol can promoted HepG2 cell apoptosis in a dose-dependent manner. This compound upregulated BAX and JUN expression and downregulated CDK1 expression. Thus, Kaempferol can promote HepG2 cell apoptosis, and the regulatory mechanism may be related to the regulation of the expression levels of the apoptosis-related proteins BAX, CDK1, and JUN.
Collapse
|
29
|
Nandi SK, Pradhan A, Das B, Das B, Basu S, Mallick B, Dutta A, Sarkar DK, Mukhopadhyay A, Mukhopadhyay S, Bhattacharya R. Kaempferol attenuates viability of ex-vivo cultured post-NACT breast tumor explants through downregulation of p53 induced stemness, inflammation and apoptosis evasion pathways. Pathol Res Pract 2022; 237:154029. [PMID: 35961057 DOI: 10.1016/j.prp.2022.154029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/15/2023]
Abstract
Early onset of chemotherapy evasion is a therapeutic challenge. Chemotherapy-induced upregulation of stem cell markers imparts invasiveness and metastatic property to the resident tumor. The efficacy of Kaempferol in attenuating epithelial to mesenchymal transition has earlier been established in the breast cancer cell. In our study population, progression-free survival was observed to be statistically more significant in post-NACT low-grade tumors than the high-grade tumors. Further, in post-NACT TNBCs, high-grade tumors showed a preponderance of strong nuclear p53 expression and very low expression of Caspase 3, indicating that, altered p53 expression predisposes these tumors to apoptosis escape and up-regulation of stemness markers. Herein, we report the robust efficacy of Kaempferol on ex-vivo grown breast tumors, derived from post-NACT TNBC patients, through downregulation of nuclear p53, CD44, ALDH1, NANOG, MDR1, Ki67, BCL2 and upregulation of Caspase 3. Such tumors also showed concurrent deregulated RNA and protein expression of CD44, NANOG, ALDH1 and MDR1 with upregulation of Caspase 3 and cleaved Caspase 3, upon Kaempferol treatment. Validation of efficacy of the treatment dosage of Kaempferol through immunophenotyping on MDA-MB-231, suggested that Kaempferol at its IC-50 dosage was effective against CD44 and CD326 positive breast cancer through deregulating their expression. Protein-protein interaction network through STRING pathway analysis and co-expression study of candidate proteins showed the highest degree of co-expression of p53 and KI-67, CD44, NF- kappaB, ALDH1, NANOG, MDR1, and BCL2. Thus, potentially targetable oncogenic protein markers, that are susceptible to downregulation by Kaempferol, provides insight into biomarker-driven therapeutic approaches with it.
Collapse
Affiliation(s)
- Sourav Kumar Nandi
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | - Ayan Pradhan
- Department of General Surgery, Institute of Post graduate Medical Education & Research and SSKM Hospital, 244B AJC Bose Road, Kolkata 700020, India
| | - Basudeb Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Biswajit Das
- Department of Pathology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | - Sudarshana Basu
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | - Bibekanand Mallick
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Amitava Dutta
- Department of Pathology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | - Diptendra Kumar Sarkar
- Department of General Surgery, Institute of Post graduate Medical Education & Research and SSKM Hospital, 244B AJC Bose Road, Kolkata 700020, India
| | - Ashis Mukhopadhyay
- Department of Haematooncology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India
| | - Soma Mukhopadhyay
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India.
| | - Rittwika Bhattacharya
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata 700094, India.
| |
Collapse
|
30
|
A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound. Cancer Cell Int 2022; 22:260. [PMID: 35986346 PMCID: PMC9392350 DOI: 10.1186/s12935-022-02673-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022] Open
Abstract
It has been shown in multiple experimental and biological investigations that kaempferol, an edible flavonoid generated from plants, may be used as an anti-cancer drug and has been shown to have anti-cancer properties. Many signaling pathways are altered in cancer cells, resulting in cell growth inhibition and death in various tumor types. Cancer is a multifaceted illness coordinated by multiple external and internal mechanisms. Natural extracts with the fewest side effects have piqued the attention of researchers in recent years, attempting to create cancer medicines based on them. An extensive array of natural product-derived anti-cancer agents have been examined to find a successful method. Numerous fruits and vegetables have high levels of naturally occurring flavonoid kaempferol, and its pharmacological and biological effects have been studied extensively. Certain forms of cancer are sensitive to kaempferol-mediated anti-cancer activity, although complete research is needed. We have endeavored to concentrate our review on controlling carcinogenic pathways by kaempferol in different malignancies. Aside from its extraordinary ability to modify cell processes, we have also discussed how kaempferol has the potential to be an effective therapy for numerous tumors.
Collapse
|
31
|
Muhammad N, Usmani D, Tarique M, Naz H, Ashraf M, Raliya R, Tabrez S, Zughaibi TA, Alsaieedi A, Hakeem IJ, Suhail M. The Role of Natural Products and Their Multitargeted Approach to Treat Solid Cancer. Cells 2022; 11:cells11142209. [PMID: 35883653 PMCID: PMC9318484 DOI: 10.3390/cells11142209] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
Natural products play a critical role in the discovery and development of numerous drugs for the treatment of various types of cancer. These phytochemicals have demonstrated anti-carcinogenic properties by interfering with the initiation, development, and progression of cancer through altering various mechanisms such as cellular proliferation, differentiation, apoptosis, angiogenesis, and metastasis. Treating multifactorial diseases, such as cancer with agents targeting a single target, might lead to limited success and, in many cases, unsatisfactory outcomes. Various epidemiological studies have shown that the steady consumption of fruits and vegetables is intensely associated with a reduced risk of cancer. Since ancient period, plants, herbs, and other natural products have been used as healing agents. Likewise, most of the medicinal ingredients accessible today are originated from the natural resources. Regardless of achievements, developing bioactive compounds and drugs from natural products has remained challenging, in part because of the problem associated with large-scale sequestration and mechanistic understanding. With significant progress in the landscape of cancer therapy and the rising use of cutting-edge technologies, we may have come to a crossroads to review approaches to identify the potential natural products and investigate their therapeutic efficacy. In the present review, we summarize the recent developments in natural products-based cancer research and its application in generating novel systemic strategies with a focus on underlying molecular mechanisms in solid cancer.
Collapse
Affiliation(s)
- Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, Saint Louis, MO 63130, USA;
| | | | - Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, MO 65211, USA;
| | - Huma Naz
- Department of Internal Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Mohammad Ashraf
- Department of Chemistry, Bundelkhand University Jhansi, Jhansi 284128, Uttar Pradesh, India;
| | - Ramesh Raliya
- IFFCO Nano Biotechnology Research Center, Kalol 382423, Gujarat, India;
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Israa J. Hakeem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.T.); (T.A.Z.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence:
| |
Collapse
|
32
|
Sinicropi MS, Iacopetta D, Ceramella J, Catalano A, Mariconda A, Pellegrino M, Saturnino C, Longo P, Aquaro S. Triclosan: A Small Molecule with Controversial Roles. Antibiotics (Basel) 2022; 11:735. [PMID: 35740142 PMCID: PMC9220381 DOI: 10.3390/antibiotics11060735] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent, has been widely used in personal care products, medical products, plastic cutting boards, and food storage containers. Colgate Total® toothpaste, containing 10 mM TCS, is effective in controlling biofilm formation and maintaining gingival health. Given its broad usage, TCS is present ubiquitously in the environment. Given its strong lipophilicity and accumulation ability in organisms, it is potentially harmful to biohealth. Several reports suggest the toxicity of this compound, which is inserted in the class of endocrine disrupting chemicals (EDCs). In September 2016, TCS was banned by the U.S. Food and Drug Administration (FDA) and the European Union in soap products. Despite these problems, its application in personal care products within certain limits is still allowed. Today, it is still unclear whether TCS is truly toxic to mammals and the adverse effects of continuous, long-term, and low concentration exposure remain unknown. Indeed, some recent reports suggest the use of TCS as a repositioned drug for cancer treatment and cutaneous leishmaniasis. In this scenario it is necessary to investigate the advantages and disadvantages of TCS, to understand whether its use is advisable or not. This review intends to highlight the pros and cons that are associated with the use of TCS in humans.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| |
Collapse
|
33
|
Naeem M, Iqbal MO, Khan H, Ahmed MM, Farooq M, Aadil MM, Jamaludin MI, Hazafa A, Tsai WC. A Review of Twenty Years of Research on the Regulation of Signaling Pathways by Natural Products in Breast Cancer. Molecules 2022; 27:3412. [PMID: 35684353 PMCID: PMC9182524 DOI: 10.3390/molecules27113412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of death among women, and it has become a global health issue due to the increasing number of cases. Different treatment options, including radiotherapy, surgery, chemotherapy and anti-estrogen therapy, aromatase inhibitors, anti-angiogenesis drugs, and anthracyclines, are available for BC treatment. However, due to its high occurrence and disease progression, effective therapeutic options for metastatic BC are still lacking. Considering this scenario, there is an urgent need for an effective therapeutic strategy to meet the current challenges of BC. Natural products have been screened as anticancer agents as they are cost-effective, possess low toxicity and fewer side effects, and are considered alternative therapeutic options for BC therapy. Natural products showed anticancer activities against BC through the inhibition of angiogenesis, cell migrations, proliferations, and tumor growth; cell cycle arrest by inducing apoptosis and cell death, the downstream regulation of signaling pathways (such as Notch, NF-κB, PI3K/Akt/mTOR, MAPK/ERK, and NFAT-MDM2), and the regulation of EMT processes. Natural products also acted synergistically to overcome the drug resistance issue, thus improving their efficacy as an emerging therapeutic option for BC therapy. This review focused on the emerging roles of novel natural products and derived bioactive compounds as therapeutic agents against BC. The present review also discussed the mechanism of action through signaling pathways and the synergistic approach of natural compounds to improve their efficacy. We discussed the recent in vivo and in vitro studies for exploring the overexpression of oncogenes in the case of BC and the current status of newly discovered natural products in clinical investigations.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China;
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
- Royal Institute of Medical Sciences (RIMS), Multan 60000, Pakistan
| | - Humaira Khan
- Department of Chemistry, University of Management and Technology, Lahore 54770, Pakistan;
| | - Muhammad Masood Ahmed
- Faculty of Pharmaceutical Sciences, Times Institute, Multan 60000, Pakistan;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027, China
| | - Muhammad Farooq
- Department of Zoology, Faculty of Science, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (M.F.); (M.M.A.)
| | - Muhammad Moeen Aadil
- Department of Zoology, Faculty of Science, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (M.F.); (M.M.A.)
| | - Mohamad Ikhwan Jamaludin
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| | - Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
34
|
Bangar SP, Chaudhary V, Sharma N, Bansal V, Ozogul F, Lorenzo JM. Kaempferol: A flavonoid with wider biological activities and its applications. Crit Rev Food Sci Nutr 2022; 63:9580-9604. [PMID: 35468008 DOI: 10.1080/10408398.2022.2067121] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Kaempferol and its derivatives are naturally occurring phytochemicals with promising bioactivities. This flavonol can reduce the lipid oxidation in the human body, prevent the organs and cell structure from deterioration and protect their functional integrity. This review has extensively highlighted the antioxidant, antimicrobial, anticancer, neuroprotective, and hepatoprotective activity of kaempferol. However, poor water solubility and low bioavailability of kaempferol greatly limit its applications. The utilization of advanced delivery systems can improve its stability, efficacy, and bioavailability. This is the first review that aimed to comprehensively collate some of the vital information published on biosynthesis, mechanism of action, bioactivities, bioavailability, and toxicological potential of kaempferol. Besides, it provides insights into the future direction on the improvement of bioavailability of kaempferol for wide applications.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Vandana Chaudhary
- College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nitya Sharma
- Food Customization Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi, India
| | - Vasudha Bansal
- Department of Foods and Nutrition, Government of Home Science College, Chandigarh, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
35
|
Molecular Pathways Involved in the Anti-Cancer Activity of Flavonols: A Focus on Myricetin and Kaempferol. Int J Mol Sci 2022; 23:ijms23084411. [PMID: 35457229 PMCID: PMC9026553 DOI: 10.3390/ijms23084411] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/22/2022] Open
Abstract
Natural compounds have always represented valuable allies in the battle against several illnesses, particularly cancer. In this field, flavonoids are known to modulate a wide panel of mechanisms involved in tumorigenesis, thus rendering them worthy candidates for both cancer prevention and treatment. In particular, it was reported that flavonoids regulate apoptosis, as well as hamper migration and proliferation, crucial events for the progression of cancer. In this review, we collect recent evidence concerning the anti-cancer properties of the flavonols myricetin and kaempferol, discussing their mechanisms of action to give a thorough overview of their noteworthy capabilities, which are comparable to those of their most famous analogue, namely quercetin. On the whole, these flavonols possess great potential, and hence further study is highly advised to allow a proper definition of their pharmaco-toxicological profile and assess their potential use in protocols of chemoprevention and adjuvant therapies.
Collapse
|
36
|
Clinical Application of Bioextracts in Supporting the Reproductive System of Animals and Humans: Potential and Limitations. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4766409. [PMID: 35388312 PMCID: PMC8977292 DOI: 10.1155/2022/4766409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
There is an increasing demand of spices and herbs in developing countries due to the beneficial effects of plants and herbal preparations as medicines. The basic technological process of obtaining extracts from natural raw materials is extraction, consisting in etching with solvents. Plant extracts are extremely complex, multicomponent mixtures obtained from flowers, fruits, leaves, stems, twigs, or seeds of various plant materials. They are a rich source of polyphenols, flavonoids, phytosterols, carotenoids, and vitamins. The search for alternative methods of treatment is increasingly replacing the scientists' excessive focus on the healing properties of bioextracts. Recent research offers great hope for the development of alternative methods to improve the reproductive system. The use of animal models in experimental research has increased knowledge regarding the beneficial effects of bioextracts on both male and female reproductive systems and reproductive cells. Demonstrating the positive effect of plant extracts creates new opportunities for the use of biowaste, which is a by-product in various production sectors. The aim of this review is to present the functional properties of extracts of natural origin, a cross section of modern methods of their preparation, and a discussion of the possibilities of their use in the auxiliary reproductive system.
Collapse
|
37
|
ER and PGR targeting ability of phytocompounds derived from Centella asiatica and Andrographis paniculata: An in-silico approach. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Antiangiogenic Phytochemicals Constituent of Diet as Promising Candidates for Chemoprevention of Cancer. Antioxidants (Basel) 2022; 11:antiox11020302. [PMID: 35204185 PMCID: PMC8868078 DOI: 10.3390/antiox11020302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the extensive knowledge on cancer nature acquired over the last years, the high incidence of this disease evidences a need for new approaches that complement the clinical intervention of tumors. Interestingly, many types of cancer are closely related to dietary habits associated with the Western lifestyle, such as low fruit and vegetable intake. Recent advances around the old-conceived term of chemoprevention highlight the important role of phytochemicals as good candidates for the prevention or treatment of cancer. The potential to inhibit angiogenesis exhibited by many natural compounds constituent of plant foods makes them especially interesting for their use as chemopreventive agents. Here, we review the antitumoral potential, with a focus on the antiangiogenic effects, of phenolic and polyphenolic compounds, such as quercetin or myricetin; terpenoids, such as ursolic acid or kahweol; and anthraquinones from Aloe vera, in different in vitro and in vivo assays, and the available clinical data. Although clinical trials have failed to assess the preventive role of many of these compounds, encouraging preclinical data support the efficacy of phytochemicals constituent of diet in the prevention and treatment of cancer, but a deeper understanding of their mechanisms of action and better designed clinical trials are urgently needed.
Collapse
|
39
|
Cai M, Zhuang W, Lv E, Liu Z, Wang Y, Zhang W, Fu W. Kaemperfol alleviates pyroptosis and microglia-mediated neuroinflammation in Parkinson's disease via inhibiting p38MAPK/NF-κB signaling pathway. Neurochem Int 2022; 152:105221. [PMID: 34780806 DOI: 10.1016/j.neuint.2021.105221] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 01/09/2023]
Abstract
The study aims to investigate whether kaemperfol (KAE) inhibits microglia pyroptosis and subsequent neuroinflammatory response to exert neuroprotective effects, along with the underlying mechanisms. The results showed KAE could ameliorate the behavioral deficits of Parkinson's disease (PD) rats, inhibit the activation of microglia and astrocytes, reduce the loss of TH-positive neurons, down-regulate levels of pyroptosis-related NOD-like receptor family pyrin domain containing 3 (NLRP3), GasderminD-N Term (GSDMD-NT), caspase1, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), interleukin (IL)-1β, and IL-18, and decrease the levels of inflammatory molecules (inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)) and p38 mitogen-activated protein kinase/nuclear factor-kappaB (p38MAPK/NF-κB) signaling pathway molecules (p38MAPK, p-p38MAPK, NF-κB, and p-NF-κB) in the substantia nigra of PD rats. Further in vitro study indicated that KAE reversed the activation of BV2 cells and down-regulated the expressions of pyrolytic proteins, inflammatory mediators and key molecules in p38MAPK/NF-κB signaling pathway. Collectively, KAE inhibits the microglia pyroptosis and subsequent neuroinflammatory response to exert neuroprotective effects on 6-hydroxydopamine (6-OHDA)-induced PD rats and lipopolysaccharide (LPS)-induced BV2 inflammatory cells through inhibiting p38MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Meiyun Cai
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wenxin Zhuang
- Center for Experimental Medical Research, Weifang Medical University, Weifang, 261053, Shandong, China
| | - E Lv
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Zhan Liu
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yanqiang Wang
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wenyi Zhang
- Department of Biotechnology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wenyu Fu
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
40
|
Lipovka Y, Alday E, Hernandez J, Velazquez C. Molecular Mechanisms of Biologically Active Compounds from Propolis in Breast Cancer: State of the Art and Future Directions. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2003380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yulia Lipovka
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Javier Hernandez
- Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, Xalapa, Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
41
|
Kumar G, Du B, Chen J. Effects and mechanisms of dietary bioactive compounds on breast cancer prevention. Pharmacol Res 2021; 178:105974. [PMID: 34818569 DOI: 10.1016/j.phrs.2021.105974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) is the most often diagnosed cancer among females globally and has become an increasing global health issue over the last decades. Despite the substantial improvement in screening methods for initial diagnosis, effective therapy remains lacking. Still, there has been high recurrence and disease progression after treatment of surgery, endocrine therapy, chemotherapy, and radiotherapy. Considering this view, there is a crucial requirement to develop safe, freely accessible, and effective anticancer therapy for BC. The dietary bioactive compounds as auspicious anticancer agents have been recognized to be active and their implications in the treatment of BC with negligible side effects. Hence, this review focused on various dietary bioactive compounds as potential therapeutic agents in the prevention and treatment of BC with the mechanisms of action. Bioactive compounds have chemo-preventive properties as they inhibit the proliferation of cancer cells, downregulate the expression of estrogen receptors, and cell cycle arrest by inducing apoptotic settings in tumor cells. Therapeutic drugs or natural compounds generally incorporate engineered nanoparticles with ideal sizes, shapes, and enhance their solubility, circulatory half-life, and biodistribution. All data of in vitro, in vivo, and clinical studies of dietary bioactive compounds and their impact on BC were collected from Science Direct, PubMed, and Google Scholar. The data of chemopreventive and anticancer activity of dietary bioactive compounds were collected and orchestrated in a suitable place in the review. These shreds of data will be extremely beneficial to recognize a series of additional diet-derived bioactive compounds to treat BC with the lowest side effects.
Collapse
Affiliation(s)
- Ganesan Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
42
|
Patel P, Shah J. Protective effects of hesperidin through attenuation of Ki67 expression against DMBA-induced breast cancer in female rats. Life Sci 2021; 285:119957. [PMID: 34530017 DOI: 10.1016/j.lfs.2021.119957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
AIMS Doxorubicin (Dox) is routinely used for breast cancer treatment but toxicity and drug resistance limit its use. The objective of the study was to investigate the protective effects of hesperidin alone and in combination with doxorubicin against experimentally induced breast cancer in female rats. METHODS Breast cancer (BC) was induced by administration of 7,12-dimethylbenz(a)anthracene (DMBA) through subcutaneous injection into the 3rd right mammary gland of female Wistar rats. Hesperidin (Hes) pretreated groups were started with Hes (200 mg/kg) two weeks prior to DMBA induction. Animals were randomly divided into nine groups namely vehicle control, DMBA-induced, Dox 4 mg/kg, Dox 2 mg/kg, Hes (200 mg/kg), Hes (200 mg/kg) plus Dox 4 mg/kg treated groups and Hes pretreated groups treated with DMBA, Dox 4 mg/kg and Dox 2 mg/kg. KEY FINDINGS Hes pretreated groups showed reduced tumor occurrence, tumor volume and increased survival rate as compared to DMBA-induced group of animals. Hes pretreated animals treated with Dox 4 mg/kg and 2 mg/kg exhibited significant reduction in malondialdehyde and improvement in levels of glutathione and inflammatory markers like IL-6, TNF-α, NF-κB, IFN-γ as compared to Dox 4 mg/kg and 2 mg/kg treated animals. Histopathology and Ki67 expression depicted better control of tumor with Hes pretreatment groups as compared to DMBA-induced. Histopathology of vital organs of Hes pretreated groups treated with Dox revealed lesser toxicity than Dox treated groups. SIGNIFICANCE Hesperidin possesses protective effect against experimentally induced breast cancer in female rats that appears to be related to attenuation of Ki67 expression.
Collapse
Affiliation(s)
- Pankti Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India.
| |
Collapse
|
43
|
Misra SK, Pathak K. Naturally occurring heterocyclic anticancer compounds. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Naturally occurring heterocyclic scaffolds are key ingredients for the development of various therapeutics employed for biomedical applications. Heterocyclic pharmacophores are widely disseminated and have been befallen in almost all categories of drugs for the alleviation of myriad ailments including diabetes, neurodegenerative, psychiatric, microbial infections, disastrous cancers etc. Countless fused heterocyclic anticancerous templates are reported to display antimetabolite, antioxidant, antiproliferative, cytostatic etc. pharmacological actions via targeting different signaling pathways (cell cycle, PI-3kinase/Akt, p53, caspase extrinsic pathway etc.), overexpressive receptors (EGRF, HER2, EGF, VEGF etc.) and physiological enzymes (topoisomerase I and II, cyclin dependent kinase etc.). A compiled description on various natural sources (plants, microbes, marine) containing anticancer agents comprising heterocyclic ring specified with presence of nitrogen (vincristine, vinblastine, indole-3-carbinol, meridianins, piperine, lamellarins etc.), oxygen (paclitaxel, halichondrin B, quercetin, myricetin, kaempferol etc.) and sulphur atoms (brugine, fucoidan, carrageenan etc.) are displayed here along with their molecular level cytotoxic action and therapeutic applications.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- University Institute of Pharmacy, Chhatrapati Shahu Ji Maharaj University , Kanpur , 208026 , India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences , Saifai , Etawah , 206130 , Uttar Pradesh , India
| |
Collapse
|
44
|
Yang L, Gao Y, Bajpai VK, El-Kammar HA, Simal-Gandara J, Cao H, Cheng KW, Wang M, Arroo RRJ, Zou L, Farag MA, Zhao Y, Xiao J. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Crit Rev Food Sci Nutr 2021; 63:2773-2789. [PMID: 34554029 DOI: 10.1080/10408398.2021.1980762] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As a major ubiquitous secondary metabolite, flavonoids are widely distributed in planta. Among flavonoids, kaempferol is a typical natural flavonol in diets and medicinal plants with myriad bioactivities, such as anti-inflammatory activity, anti-cancer activity, antioxidant activity, and anti-diabetic activity. However, the natural sources, absorption and metabolism as well as the bioactivities of kaempferol have not been reviewed comprehensively and systematically. This review highlights the latest research progress and the effect of kaempferol in the prevention and treatment of various chronic diseases, as well as its protective health effects, and provides a theoretical basis for future research to be used in nutraceuticals. Further, comparison of the different extraction and analytical methods are presented to highlight the most optimum for PG recovery and its detection in plasma and body fluids. Such review aims at improving the value-added applications of this unique dietary bioactive flavonoids at commercial scale and to provide a reference for its needed further development.
Collapse
Affiliation(s)
- Li Yang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University Seoul, Seoul, Republic of Korea
| | - Heba A El-Kammar
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | | | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo, Egypt
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
45
|
Truong VNP, Nguyen YTK, Cho SK. Ampelopsin Suppresses Stem Cell Properties Accompanied by Attenuation of Oxidative Phosphorylation in Chemo- and Radio-Resistant MDA-MB-231 Breast Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14080794. [PMID: 34451892 PMCID: PMC8400665 DOI: 10.3390/ph14080794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
Ampelopsin, also known as dihydromyricetin, is a commonly found flavonoid in medicinal plants. The cancer stem cell (CSC) population is a promising target for triple-negative breast cancer (TNBC). In this study, flavonoid screening was performed in the established MDA-MB-231/IR cell line, which is enriched in CSCs. Ampelopsin suppressed the proliferation and colony formation of stem cell-rich MDA-MB-231/IR, while inducing their apoptosis. Importantly, ampelopsin displayed an inhibitory impact on the stemness features of MDA-MB-231/IR cells, demonstrated by decreases in mammosphere formation, the CD44+/CD24-/low population, aldehyde dehydrogenase activity, and the levels of stem cell markers (e.g., CD44, MRP1, β-catenin, and KLF4). Ampelopsin also suppressed the epithelial-mesenchymal transition, as evidenced by decreases in migration, invasion capacity, and mesenchymal markers, as well as an increase in the epithelial marker E-cadherin. Moreover, ampelopsin significantly impaired oxidative phosphorylation by reducing the oxygen consumption rate and adenosine triphosphate production in MDA-MB-231/IR cells. Notably, ampelopsin treatment significantly reduced the levels of the phosphorylated forms of IκBα and NF-κB p65, as well as the levels of tumor necrosis factor (TNF)-α-stimulated phosphorylation of IκBα and NF-κB p65. These results demonstrated that ampelopsin prevents the TNF-α/NF-κB signaling axis in breast CSCs.
Collapse
Affiliation(s)
- Vi Nguyen-Phuong Truong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (V.N.-P.T.); (Y.T.-K.N.)
| | - Yen Thi-Kim Nguyen
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (V.N.-P.T.); (Y.T.-K.N.)
| | - Somi-Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (V.N.-P.T.); (Y.T.-K.N.)
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-10-8660-1842
| |
Collapse
|
46
|
Bhattacharya T, Dutta S, Akter R, Rahman MH, Karthika C, Nagaswarupa HP, Murthy HCA, Fratila O, Brata R, Bungau S. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules 2021; 11:1176. [PMID: 34439842 PMCID: PMC8394348 DOI: 10.3390/biom11081176] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is one of the most common type of cancer and an important contributor to female mortality. Several genes and epigenetic modifications are involved in the development and progression of BC. Research in phytochemistry, nutrigenomics, and nutrigenetics has provided strong evidence that certain phytonutrients are able to modulate gene expression at transcriptional and post-transcriptional levels. Such phytonutrients may also be beneficial to prevent and treat BC. In this review, we will focus on the nutrigenomic effects of various phytochemicals including polyphenols, phytosterols, terpenoids, alkaloids, and other compounds from different sources. Overall, these phytonutrients are found to inhibit BC cell proliferation, differentiation, invasion, metastasis, angiogenesis, and induce apoptotic cell death by targeting various molecular pathways. They also alter epigenetic mechanisms and enhance the chemosensitivity and radiosensitivity of cancer cells. Such phytochemicals may be used for the effective management of BC patients in the clinical setting in the future. The present article aims to summarize the specific molecular pathways involved in the genetic effects of phytochemicals in BC.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
- Techno India NJR Institute of Technology, Udaipur, Rajasthan 313003, India
| | - Soumam Dutta
- Food and Nutrition Division, University of Calcutta, Calcutta 700027, India;
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | | | - Hanabe Chowdappa Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia;
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Roxana Brata
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (O.F.); (R.B.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
47
|
Cardoso ME, Tejería E, Zirbesegger K, Savio E, Terán M, Rey Ríos AM. Development and characterization of two novel 68 Ga-labelled neuropeptide Y short analogues with potential application in breast cancer imaging. Chem Biol Drug Des 2021; 98:182-191. [PMID: 33982434 DOI: 10.1111/cbdd.13864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/05/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
In vivo receptor targeting with radiolabelled peptide-based probes is an attractive approach for the development of novel radiotracers for molecular imaging. This work presents the development and characterization of two novel neuropeptide Y analogues labelled with a positron emitter 68 Ga, for potential use in breast cancer imaging. Both analogues share the same amino acid sequence and were derivatized with NOTA through either a lysine linker (L1) or an acetylated lysine (L2). In both cases, a single product with radiochemical purity higher than 95% was obtained. The two complexes were hydrophilic, showed remarkable in vitro stability, good cellular uptake, binding affinity in the nanomolar range and high cellular internalization rate. Biodistribution studies revealed low blood uptake and elimination through the urinary tract. The addition of an acetyl group in the spacer increased the lipophilicity of C2 and modified the reactivity of the ε-amino group of the lysine which resulted in lower protein binding and lower percentage of injected dose in bladder and urine. The tumour versus muscle ratio was (3.8 ± 0.4) for 68 Ga-L1 and (4.7 ± 0.4) for 68 Ga-L2. These results encourage performing further studies in order to complete the evaluation of both tracers as potential radiopharmaceutical for breast cancer imaging.
Collapse
Affiliation(s)
- María Elena Cardoso
- Área de Radioquímica, Departamento Estrella Campos, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
- Área de Investigación y Desarrollo Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Emilia Tejería
- Área de Radioquímica, Departamento Estrella Campos, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Kevin Zirbesegger
- Área de Investigación y Desarrollo Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Eduardo Savio
- Área de Investigación y Desarrollo Biomédico y Químico Farmacéutico, Centro Uruguayo de Imagenología Molecular (CUDIM), Montevideo, Uruguay
| | - Mariella Terán
- Área de Radioquímica, Departamento Estrella Campos, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Ana María Rey Ríos
- Área de Radioquímica, Departamento Estrella Campos, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
48
|
Zhang Z, Liu J, Liu Y, Shi D, He Y, Zhao P. Virtual screening of the multi-gene regulatory molecular mechanism of Si-Wu-tang against non-triple-negative breast cancer based on network pharmacology combined with experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113696. [PMID: 33358854 DOI: 10.1016/j.jep.2020.113696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si-Wu-Tang (SWT), a prestigious herbal formula from China, has been extensively used for centuries for female-related diseases. It has been documented that SWT has a significant inhibitory effect on non-triple-negative breast cancer (non-TNBC) cells. However, there has been limited comprehensive analysis of the targeted effects of the anticancer components of SWT and its exact biological mechanism. AIM OF THE STUDY This study aims to uncover the mechanism by which SWT treats non-TNBC by applying a network pharmacological method combined with experimental validation. MATERIALS AND METHODS First, SWT compounds were collected from the Traditional Chinese Medicines Systems Pharmacology database (TCMSP) and The Encyclopedia of Traditional Chinese Medicine (ETCM), and then the targets related to SWT were obtained from the TCMSP and SwissTarget databases. Second, a target data set of non-TNBC proteins was established by using the Online Mendelian Inheritance in Man (OMIM), GeneCards and Gene Expression Omnibus (GEO) databases. Third, based on the overlap of targets between SWT and non-TNBC, a protein-protein interaction (PPI) network was built to analyse the interactions among these targets, which focused on screening for hub targets by topology. On these hub genes, we conducted a meta-analysis and survival analysis to screen the best match targets, ESR1, PPARG, CAT, and PTGS2, which had a strong correlation with the ingredients of SWT in our verification by molecular docking. In vitro experiments further proved the reliability of the network pharmacology findings. Finally, FunRich software and the ClusterProfiler package were utilized for the enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) data. RESULTS A total of 141 active ingredients and 116 targets of SWT were selected. GO enrichment analysis showed that the biological processes through which SWT acted against non-TNBC (FDR<0.01) mainly involved modulating energy metabolism and apoptosis. According to RT-qPCR and Western blotting, the mRNA and protein expression of ESR1, PPARG and PTGS2 were upregulated (P < 0.01), and the mRNA and protein levels of CAT were downregulated (P < 0.01), suggesting a multi-gene regulatory molecular mechanism of SWT against non-triple-negative breast cancer. CONCLUSIONS This research explored the multi-gene pharmacological mechanism of action of SWT against non-TNBC through network pharmacology and in vitro experiments. The findings provide new ideas for research on the mechanism of action of Chinese medicine against breast cancer.
Collapse
Affiliation(s)
- Zeye Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| | - Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| | - Yifan Liu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Danning Shi
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| | - Yueshuang He
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| | - Piwen Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| |
Collapse
|
49
|
Lee HS, Lee IH, Kang K, Park SI, Moon SJ, Lee CH, Lee DY. A Network Pharmacology Study on the Molecular Mechanisms of FDY003 for Breast Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3919143. [PMID: 33628298 PMCID: PMC7881938 DOI: 10.1155/2021/3919143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Herbal medicines have drawn considerable attention with regard to their potential applications in breast cancer (BC) treatment, a frequently diagnosed malignant disease, considering their anticancer efficacy with relatively less adverse effects. However, their mechanisms of systemic action have not been understood comprehensively. Based on network pharmacology approaches, we attempted to unveil the mechanisms of FDY003, an herbal drug comprised of Lonicera japonica Thunberg, Artemisia capillaris Thunberg, and Cordyceps militaris, against BC at a systemic level. We found that FDY003 exhibited pharmacological effects on human BC cells. Subsequently, detailed data regarding the biochemical components contained in FDY003 were obtained from comprehensive herbal medicine-related databases, including TCMSP and CancerHSP. By evaluating their pharmacokinetic properties, 18 chemical compounds in FDY003 were shown to be potentially active constituents interacting with 140 BC-associated therapeutic targets to produce the pharmacological activity. Gene ontology enrichment analysis using g:Profiler indicated that the FDY003 targets were involved in the modulation of cellular processes, involving the cell proliferation, cell cycle process, and cell apoptosis. Based on a KEGG pathway enrichment analysis, we further revealed that a variety of oncogenic pathways that play key roles in the pathology of BC were significantly enriched with the therapeutic targets of FDY003; these included PI3K-Akt, MAPK, focal adhesion, FoxO, TNF, and estrogen signaling pathways. Here, we present a network-perspective of the molecular mechanisms via which herbal drugs treat BC.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Seung-Joon Moon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Chol Hee Lee
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
50
|
Khan YH, Uttra AM, Qasim S, Mallhi TH, Alotaibi NH, Rasheed M, Alzarea AI, Iqbal MS, Alruwaili NK, Khan SUD, Alanazi AS. Potential Role of Phytochemicals Against Matrix Metalloproteinase Induced Breast Cancer; An Explanatory Review. Front Chem 2021; 8:592152. [PMID: 33520928 PMCID: PMC7843438 DOI: 10.3389/fchem.2020.592152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/20/2020] [Indexed: 12/02/2022] Open
Abstract
World Health Organization (WHO) estimated breast cancer as one of the most prevailed malignancy around the globe. Its incident cases are gradually increasing every year, resulting in considerable healthcare burden. The heterogeneity of breast cancer accounts for its differential molecular subtyping, interaction between pathways, DNA damaging, and chronic inflammation. Matrix metalloproteinases (MMPs) are a group of zinc-containing, calcium dependent endopeptidases which play a substantial role in breast carcinogenesis through several mechanisms. These mechanisms include remodeling of extracellular matrix (ECM), cell proliferation, and angiogenesis which promote metastasis and result in tumor progression. In this context, compounds bearing MMP inhibitory potential can serve as potent therapeutic agents in combating MMPs provoked breast cancer. Current systematic review aimed to encompass the details of potent natural lead molecules that can deter MMPs-provoked breast cancer. Following the critical appraisal of literature, a total of n = 44 studies that explored inhibitory effect of phytochemicals on MMPs were included in this review. These phytoconstituents include alkaloids (n = 11), flavonoids (n = 23), terpenoids (n = 7), and lignans (n = 2). The most common inhibitory methods used to evaluate efficacy of these phytoconstituents included Gelatin Zymography, Western Blotting, and real time polymerase chain reaction (RT-PCR) analysis. Moreover, current limitations, challenges, and future directions of using such compounds have been critically discussed. This review underscores the potential implications of phytochemicals in the management of breast cancer which could lessen the growing encumbrance of disease.
Collapse
Affiliation(s)
- Yusra Habib Khan
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | | | - Sumera Qasim
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Tauqeer Hussain Mallhi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Maria Rasheed
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | | | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdullah Salah Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| |
Collapse
|