1
|
García-Beltrán A, Lozano Melero A, Martínez Martínez R, Porres Foulquie JM, López Jurado Romero de la Cruz M, Kapravelou G. A Systematic Review of the Beneficial Effects of Berry Extracts on Non-Alcoholic Fatty Liver Disease in Animal Models. Nutr Rev 2024:nuae132. [PMID: 39365946 DOI: 10.1093/nutrit/nuae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in Western countries and is strongly associated with several metabolic disorders. Plant-derived bioactive extracts, such as berry extracts, with high antioxidant capacity have been used for the treatment and prevention of this pathology. Moreover, they promote circular economy and sustainability. OBJECTIVE To study the beneficial effects of extracts from different parts of berry plants in animal models of NAFLD. DATA SOURCES A systematic research of the MEDLINE (via PubMed), Cochrane, and Scopus databases was conducted to identify relevant studies published after January 2011. In vivo animal studies of NAFLD were included in which berry extracts of different parts of the plant were administered and significantly improved altered biomarkers related to the pathology, such as lipid metabolism and hepatic steatosis, glucose and glycogen metabolism, and antioxidant and anti-inflammatory biomarkers. DATA EXTRACTION Of a total of 203 articles identified, 31 studies were included after implementation of the inclusion and exclusion criteria. DATA ANALYSIS Most of the studies showed a decrease in steatosis and a stimulation of genes related to β-oxidation and downregulation of lipogenic genes, with administration of berry extracts. Berry extracts also attenuated inflammation and oxidative stress. CONCLUSIONS Administration of berry extracts seems to have promising potential in the design of enriched foodstuffs or nutraceuticals for the treatment of NAFLD.
Collapse
Affiliation(s)
- Alejandro García-Beltrán
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | - Aida Lozano Melero
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | - Rosario Martínez Martínez
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | | | | | - Garyfallia Kapravelou
- Department of Physiology, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52005 Granada, Spain
| |
Collapse
|
2
|
Omidkhoda N, Mahdiani S, Hayes AW, Karimi G. Natural compounds against nonalcoholic fatty liver disease: A review on the involvement of the LKB1/AMPK signaling pathway. Phytother Res 2023; 37:5769-5786. [PMID: 37748097 DOI: 10.1002/ptr.8020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/18/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Although various therapeutic approaches are used to manage nonalcoholic fatty liver disease (NAFLD), the best approach to NAFLD management is unclear. NAFLD is a liver disorder associated with obesity, metabolic syndrome, and diabetes mellitus. NAFLD progression can lead to cirrhosis and end-stage liver disease. Hepatic kinase B1 (LKB1) is an upstream kinase of 5'-adenosine monophosphate-activated protein kinase (AMPK), a crucial regulator in hepatic lipid metabolism. Activation of LKB1/AMPK inhibits fatty acid synthesis, increases mitochondrial β-oxidation, decreases the expression of genes encoding lipogenic enzymes, improves nonalcoholic steatohepatitis, and suppresses NAFLD progression. One potential opening for new and safe chemicals that can tackle the NAFLD pathogenesis through the LKB1-AMPK pathway includes natural bioactive compounds. Accordingly, we summarized in vitro and in vivo studies regarding the effect of natural bioactive compounds such as a few members of the polyphenols, terpenoids, alkaloids, and some natural extracts on NAFLD through the LKB1/AMPK signaling pathway. This manuscript may shed light on the way to finding a new therapeutic agent for NAFLD management.
Collapse
Affiliation(s)
- Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- College of Public Health, University of South Florida, Tampa, Florida, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Silveira JTD, Rosa APCD, Morais MGD, Victoria FN, Costa JAV. An integrative review of Açaí (Euterpe oleracea and Euterpe precatoria): Traditional uses, phytochemical composition, market trends, and emerging applications. Food Res Int 2023; 173:113304. [PMID: 37803612 DOI: 10.1016/j.foodres.2023.113304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
The increasing trade and popularity of açaí prompt this review. Therefore, it is imperative to provide an overview of the fruit's characteristics and the available data on its marketing, research, and products derived from its pulp and seeds to comprehend the current state of the açaí industry. Concerning food applications, it was observed that there is still room for developing processes that effectively preserve the bioactive compounds of the fruit while also being economically feasible, which presents an opportunity for future research. A notable research trend has been focused on utilizing the fruit's seeds, a byproduct of açaí processing, which is still considered a significant technological challenge. Furthermore, the studies compiled in this review attest to the industry's considerable progress and ongoing efforts to demonstrate the various properties of açaí, driving the sector's exponential growth in Brazil and worldwide.
Collapse
Affiliation(s)
- Jéssica Teixeira da Silveira
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, CEP 96201-900 Rio Grande, RS, Brazil
| | - Ana Priscila Centeno da Rosa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, CEP 96201-900 Rio Grande, RS, Brazil
| | - Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, 96203-900 Rio Grande, RS, Brazil
| | - Francine Novack Victoria
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, P.O. Box 354, 96010-900 Pelotas, RS, Brazil
| | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, P.O. Box 474, CEP 96201-900 Rio Grande, RS, Brazil.
| |
Collapse
|
4
|
da Costa Silva Kindelan S, Queiroz MP, Barbosa MQ, Viera VB, Guerra GC, Fernandes de Souza Araújo D, Jacielly dos Santos J, Lucia de Azevedo Oliveira M, Milhomens Ferreira Melo PC, Rufino Freitas JC, Gomes Dutra LM, Frazão Tavares de Melo MF, Barbosa Soares JK. Maternal rat prenatal and neonatal treatment with pequi pulp reduces anxiety and lipid peroxidation in brain tissue of rat offspring at adolescence. Heliyon 2023; 9:e19757. [PMID: 37809698 PMCID: PMC10559064 DOI: 10.1016/j.heliyon.2023.e19757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
The Pequi fruit (Caryocar Brasiliense cambess), typical of the Brazilian cerrado or savannah, is a source of essential fatty acids, carotenoids, and phenolic compounds. The aim of this study was to analyze the effects of consuming this fruit on anxiety behavior and lipid peroxidation in the brains of rats whose mothers were treated (by gavage) during pregnancy and lactation with Pequi fruit (pulp or nuts) at 2000 mg/kg of body weight. Anxiety parameters were assessed using the open field (OF), elevated plus maze (EPM), and light/dark box (LDB) tests. The brain was removed to measure malondialdehyde (MDA) levels. Data were analyzed using One-way Anova (p < 0.05). In the OF, the animals in the pulp group presented more time spent in the central area (20.37 ± 0.73 vs Control: 12.51 ± 0.39; Nuts: 8.28 ± 0.40) and increased locomotion (159.7 ± 6.10) compared to the other groups (Control: 127.3 ± 5.54; Nuts: 139.08 ± 6.57). In the EPM, the pulp group entered into the open arms (8.57 ± 0.36) and stayed more time in the central area (19.44 ± 1.17) compared to the Nuts group (7.14 ± 0.34; 13.00 ± 1.57). In the LDB the pulp group entered more (8.00 ± 0.42 vs Control: 7.16 ± 0.16 and Nuts: 7.42 ± 0.75) and stayed longer in the clear light side (92.18 ± 6.42) than all the other groups (Control: 71.44 ± 3.53; Nuts: 80.57 ± 6.50), respectively. Pulp group presented lower MDA in the brain (55.34 ± 3.04) compared to Control (72.06 ± 4.66) and Nuts (66.57 ± 2.45). We conclude that Pequi pulp consumption during pregnancy and lactation reduces lipid peroxidation in brain tissue and induces anxiolytic-like behavior in rat offspring. These effects were not observed in the Pequi nuts group.
Collapse
Affiliation(s)
- Suedna da Costa Silva Kindelan
- Program of Natural Sciences and Biotechnology, Federal University of Campina Grande, Cuité, Paraiba, Brazil
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Michelly Pires Queiroz
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Mayara Queiroga Barbosa
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Vanessa Bordin Viera
- Program of Natural Sciences and Biotechnology, Federal University of Campina Grande, Cuité, Paraiba, Brazil
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | - Gerlane Coelho Guerra
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Jany Jacielly dos Santos
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | | | | | - Juliano Carlo Rufino Freitas
- Program of Natural Sciences and Biotechnology, Federal University of Campina Grande, Cuité, Paraiba, Brazil
- Education and Health Center, Academic Unit of Biology and Chemistry, Federal University of Campina Grande, Cuité, Pariba, Brazil
| | - Larissa Maria Gomes Dutra
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| | | | - Juliana Kessia Barbosa Soares
- Program of Natural Sciences and Biotechnology, Federal University of Campina Grande, Cuité, Paraiba, Brazil
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, Paraiba, Brazil
| |
Collapse
|
5
|
Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, Bishayee A. Açaí ( Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients 2023; 15:989. [PMID: 36839349 PMCID: PMC9965320 DOI: 10.3390/nu15040989] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília, Marília 17519-030, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Gabrielle Bachtel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
6
|
de Oliveira EDF, Brasil A, Herculano AM, Rosa MA, Gomes BD, Rocha FADF. Neuroprotective effects of açaí ( Euterpe oleracea Mart.) against diabetic retinopathy. Front Pharmacol 2023; 14:1143923. [PMID: 37144218 PMCID: PMC10151476 DOI: 10.3389/fphar.2023.1143923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: Diabetes mellitus describes a metabolic disorder of multiple etiologies, characterized by chronic hyperglycemia, which induces a series of molecular events capable of leading to microvascular damage, affecting the blood vessels of the retina, causing diabetic retinopathy. Studies indicate that oxidative stress plays a central role in complications involving diabetes. Açaí (Euterpe oleracea) has attracted much attention given its antioxidant capacity and potential associated health benefits in preventing oxidative stress, one of the causes of diabetic retinopathy. The objective of this work was to evaluate the possible protective effect of açaí (E. oleracea) on the retinal function of mice with induced diabetes, based on full field electroretinogram (ffERG). Methods: We opted for mouse models with induced diabetes by administration of a 2% alloxan aqueous solution and treatment with feed enriched with açaí pulp. The animals were divided into 4 groups: CTR (received commercial ration), DM (received commercial ration), DM + açaí (E. oleracea-enriched ration) and CTR + açaí (E. oleracea-enriched ration). The ffERG was recorded three times, 30, 45 and 60 days after diabetes induction, under scotopic and photopic conditions to access rod, mixed and cone responses, in addition to monitoring the weight and blood glucose of the animals during the study period. Statistical analysis was performed using the two-way ANOVA test with Tukey's post-test. Results: Our work obtained satisfactory results with the ffERG responses in diabetic animals treated with açaí, where it was observed that there was no significant decrease in the b wave ffERG amplitude of this group over time when compared to the results of the Diabetic group not treated with açaí, which showed a significant reduction of this ffERG component. Discussion: The results of the present study show, for the first time, that treatment with an açaí-enriched diet is effective against the decrease in the amplitude of visual electrophysiological responses in animals with induced diabetes, which opens a new horizon for the prevention of retinal damage in diabetic individuals from treatment with açaí base. However, it is worth mentioning that our findings consist of a preliminary study and further researches and clinical trials are needed to examine açaí potential as an alternative therapy for diabetic retinopathy.
Collapse
Affiliation(s)
- Edwiges de Fátima de Oliveira
- Laboratory of Neurophysiology Eduardo Oswaldo Cruz, Institute of Biological Science, Federal University of Pará, Belém, Pará, Brazil
| | - Alódia Brasil
- Laboratory of Experimental Neuropharmacology, Institute of Biological Science, Federal University of Pará, Belém, Pará, Brazil
- Faculty of Nutrition, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Anderson Manoel Herculano
- Laboratory of Experimental Neuropharmacology, Institute of Biological Science, Federal University of Pará, Belém, Pará, Brazil
| | - Matheus A. Rosa
- Laboratory of Neurophysiology Eduardo Oswaldo Cruz, Institute of Biological Science, Federal University of Pará, Belém, Pará, Brazil
| | - Bruno Duarte Gomes
- Laboratory of Neurophysiology Eduardo Oswaldo Cruz, Institute of Biological Science, Federal University of Pará, Belém, Pará, Brazil
| | - Fernando Allan de Farias Rocha
- Laboratory of Neurophysiology Eduardo Oswaldo Cruz, Institute of Biological Science, Federal University of Pará, Belém, Pará, Brazil
- *Correspondence: Fernando Allan de Farias Rocha,
| |
Collapse
|
7
|
Figueiredo AM, Cardoso AC, Pereira BLB, Silva RAC, Ripa AFGD, Pinelli TFB, Oliveira BC, Rafacho BPM, Ishikawa LLW, Azevedo PS, Okoshi K, Fernandes AAH, Zornoff LAM, Minicucci MF, Polegato BF, Paiva SAR. Açai supplementation (Euterpe oleracea Mart.) attenuates cardiac remodeling after myocardial infarction in rats through different mechanistic pathways. PLoS One 2022; 17:e0264854. [PMID: 35245316 PMCID: PMC8896726 DOI: 10.1371/journal.pone.0264854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Myocardial infarction has a high mortality rate worldwide. Therefore, clinical intervention in cardiac remodeling after myocardial infarction is essential. Açai pulp is a natural product and has been considered a functional food because of its antioxidant/anti-inflammatory properties. The aim of the present study was to analyze the effect of açai pulp supplementation on cardiac remodeling after myocardial infarction in rats. After 7 days of surgery, male Wistar rats were assigned to six groups: sham animals fed standard chow (SA0, n = 14), fed standard chow with 2% açai pulp (SA2, n = 12) and fed standard chow with 5% açai pulp (SA5, n = 14), infarcted animals fed standard chow (IA0, n = 12), fed standard chow with 2% açai pulp (IA2, n = 12), and fed standard chow with 5% açai pulp (IA5, n = 12). After 3 months of supplementation, echocardiography and euthanasia were performed. Açai pulp supplementation, after myocardial infarction, improved energy metabolism, attenuated oxidative stress (lower concentration of malondialdehyde, P = 0.023; dose-dependent effect), modulated the inflammatory process (lower concentration of interleukin-10, P<0.001; dose-dependent effect) and decreased the deposit of collagen (lower percentage of interstitial collagen fraction, P<0.001; dose-dependent effect). In conclusion, açai pulp supplementation attenuated cardiac remodeling after myocardial infarction in rats. Also, different doses of açai pulp supplementation have dose-dependent effects on cardiac remodeling.
Collapse
Affiliation(s)
- Amanda Menezes Figueiredo
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| | - Ana Carolina Cardoso
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Leticia Buzati Pereira
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Renata Aparecida Candido Silva
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Bruna Camargo Oliveira
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Paola Murino Rafacho
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Larissa Lumi Watanabe Ishikawa
- Chemistry and Biochemistry Department, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Paula Schmidt Azevedo
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Ana Angelica Henrique Fernandes
- Chemistry and Biochemistry Department, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | - Marcos Ferreira Minicucci
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Bertha Furlan Polegato
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Sergio Alberto Rupp Paiva
- Internal Medicine Department, Botucatu Medical School, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
8
|
DOS REIS TMP, AGUIAR GG, BARBOSA-FILHO V, LIMA EDS, ROSSATO M. Effect of açai supplementation (Euterpe Oleracea Mart.) associated with exercise in animals and human: a scoping review. REV NUTR 2022. [DOI: 10.1590/1678-9865202235e210266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ABSTRACT Objective This scoping review aimed to map evidence on açai supplementation combined with exercise in animal and/or human experimental studies. Methods The search considered six electronic databases and screening of relevant references. The selection process and data extraction were performed by two independent authors. The study characteristics, and AS (e.g., form, intervention time, amount ingested) and exercise (e.g., types, intensity, and duration) strategies were summarized, as well as their reported results. Results From an initial total of 342 studies identified; 11 (5 with animal and 6 with human models) were eligible. In animals, açai supplementation and exercise led to benefits in exercise tolerance and improvements in several hemodynamic parameters, as well as significant improvements in liver markers and glucose metabolism. In humans, açai supplementation indicated positive results in increasing exhaustion time to 90% of VO2max and increasing intensity at the anaerobic threshold. Conclusion We conclude that future research involving animals and humans should examine açai supplementation and exercise with (a) obesity models to test the effect of adiponectin on body composition with analysis of histological and histochemical parameters; (b) eccentric injury protocols with the incorporation of muscle quality variables to assess recovery; (c) chronic açai supplementation and strength training; (d) comparison of different forms of açai supplementation in exercise protocols.
Collapse
|
9
|
de Souza FG, de Araújo FF, de Paulo Farias D, Zanotto AW, Neri-Numa IA, Pastore GM. Brazilian fruits of Arecaceae family: An overview of some representatives with promising food, therapeutic and industrial applications. Food Res Int 2020; 138:109690. [PMID: 33292959 DOI: 10.1016/j.foodres.2020.109690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/07/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
The Arecaceae family is widely distributed and comprises about 2600 species, in which 48 of them are native to Brazil and occurs in transition biomes between the Amazon, Cerrado and Caatinga. In addition to being used as a source of food and subsistence, they are also rich in lipophilic bioactive compounds, mainly carotenoids, polyunsaturated fatty acids, tocopherols and vitamin A. Moreover, they have considerable content of phenolic compounds, fibers and minerals. Therefore, the objective of this review is to present the physical-chemical and nutritional aspects, the main bioactive compounds, the biological properties and the innovative potential of four Brazilian palm-tree fruits of the Arecaceae family. Due to the presence of bioactive compounds, these fruits have the potential to promote health and can be used to prevent chronic non-communicable diseases, such as obesity, type 2 diabetes and others. Furthermore, these raw materials and their by-products can be used in the development of new food, chemical, pharmaceutical and cosmetic products. To ensure better use of these crops, promote their commercial value, benefit family farming and contribute to the country's sustainable development, it is necessary to implement new cultivation, post-harvest and processing techniques. Investing in research to publicize their potential is equally important, mainly of the ones still little explored, such as the buritirana.
Collapse
Affiliation(s)
| | | | - David de Paulo Farias
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| | - Aline Wasem Zanotto
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| |
Collapse
|
10
|
Tavares TB, Santos IB, de Bem GF, Ognibene DT, da Rocha APM, de Moura RS, Resende ADC, Daleprane JB, da Costa CA. Therapeutic effects of açaí seed extract on hepatic steatosis in high-fat diet-induced obesity in male mice: a comparative effect with rosuvastatin. J Pharm Pharmacol 2020; 72:1921-1932. [PMID: 32856322 DOI: 10.1111/jphp.13356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Obesity is considered a risk factor for the development of non-alcoholic fatty liver disease (NAFLD). The hydroalcoholic extract obtained from the açai seed (ASE), rich in proanthocyanidins, has been shown a potential body weight regulator with antioxidant properties. This study aimed to investigate the therapeutic effect of ASE in obesity-associated NAFLD and compare it with Rosuvastatin. METHODS Male C57BL/6 mice received a high-fat diet or standard diet for 12 weeks. The treatments with ASE (300 mg/kg per day) or rosuvastatin (20 mg/kg per day) began in the eighth week until the 12th week. KEY FINDINGS Our data show that the treatments with ASE and rosuvastatin reduced body weight and hyperglycaemia, improved lipid profile and attenuated hepatic steatosis in HFD mice. ASE and Rosuvastatin reduced HMGCoA-Reductase and SREBP-1C and increased ABGC8 and pAMPK expressions in the liver. Additionally, ASE, but not Rosuvastatin, reduced NPC1L1 and increased ABCG5 and PPAR-α expressions. ASE and rosuvastatin increased SIRT-1 expression and antioxidant defence, although only ASE was able to decrease the oxidative damage in hepatic tissue. CONCLUSIONS The therapeutic effect of ASE was similar to that of rosuvastatin in reducing dyslipidemia and hepatic steatosis but was better in reducing oxidative damage and hyperglycaemia.
Collapse
Affiliation(s)
- Thamires Barros Tavares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Angela de Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
de Bem GF, Okinga A, Ognibene DT, da Costa CA, Santos IB, Soares RA, Silva DLB, da Rocha APM, Isnardo Fernandes J, Fraga MC, Filgueiras CC, Manhães AC, Soares de Moura R, Resende AC. Anxiolytic and antioxidant effects of Euterpe oleracea Mart. (açaí) seed extract in adult rat offspring submitted to periodic maternal separation. Appl Physiol Nutr Metab 2020; 45:1277-1286. [PMID: 32516542 DOI: 10.1139/apnm-2020-0099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many studies suggest a protective role of phenolic compounds in mood disorders. We aimed to assess the effect of Euterpe oleracea (açaí) seed extract (ASE) on anxiety induced by periodic maternal separation (PMS) in adult male rats. Animals were divided into 6 groups: control, ASE, fluoxetine (FLU), PMS, PMS+ASE, and PMS+FLU. For PMS, pups were separated daily from the dam for 3 h between postnatal day (PN) 2 and PN21. ASE (200 mg·kg-1·day-1) and FLU (10 mg·kg-1·day-1) were administered by gavage for 34 days after stress induction, starting at PN76. At PN106 and PN108, the rats were submitted to open field (OF) and forced swim tests, respectively. At PN110, the rats were sacrificed by decapitation. ASE increased time spent in the center area in the OF test, glucocorticoid receptors in the hypothalamus, tropomyosin receptor kinase B (TRKB) levels in the hippocampus, and nitrite levels and antioxidant activity in the brain stem (PMS+ASE group compared with PMS group). ASE also reduced plasma corticotropin-releasing hormone levels, adrenal norepinephrine levels, and oxidative damage in the brain stem in adult male offspring submitted to PMS. In conclusion, ASE treatment has an anti-anxiety effect in rats submitted to PMS by reducing hypothalamic-pituitary-adrenal axis reactivity and increasing the nitric oxide (NO)-brain-derived neurotrophic factor (BDNF)-TRKB pathway and antioxidant defense in the central nervous system. Novelty ASE has anti-anxiety and antioxidant effects in early-life stress. ASE reduces hypothalamic-pituitary-adrenal axis reactivity. The anxiolytic effect of ASE may involve activation of the NO-BDNF-TRKB pathway in the central nervous system.
Collapse
Affiliation(s)
- Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Anicet Okinga
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Ricardo Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Dafne Lopes Beserra Silva
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Ana Paula Machado da Rocha
- Department of Physiology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Jemima Isnardo Fernandes
- Department of Physiology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Mabel Carneiro Fraga
- Department of Physiology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Cláudio Carneiro Filgueiras
- Department of Physiology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Alex Christian Manhães
- Department of Physiology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ 20551-030, Brazil
| |
Collapse
|
12
|
Ghiasi R, Naderi R, Mozaffar A, Alihemmati A. The effect of swimming training on oxidative stress, SIRT1 gene expression, and histopathology of hepatic tissue in type 2 diabetic rats. Biol Futur 2019; 70:167-174. [DOI: 10.1556/019.70.2019.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/20/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Rafighe Ghiasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Asou Mozaffar
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Alihemmati
- Department of Histology and Embryology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Rahmati-Ahmadabad S, Broom DR, Ghanbari-Niaki A, Shirvani H. Effects of exercise on reverse cholesterol transport: A systemized narrative review of animal studies. Life Sci 2019; 224:139-148. [PMID: 30922848 DOI: 10.1016/j.lfs.2019.03.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022]
Abstract
AIMS Reverse Cholesterol Transport (RCTr) is the mechanism by which excess cholesterol from peripheral tissues is transported to the liver for hepatobiliary excretion, thereby inhibiting foam cell formation and the development of atherosclerosis. Exercise affects RCTr, by influencing high-density lipoprotein cholesterol (HDL) through remodeling and by promoting hepatobiliary sterol excretion. The objectives of this systematized review of animal studies is to summarize the literature and provide an overview of the effects of chronic exercise (at least two weeks) on apolipoproteins (Apo A-I, Apo-E), Paraoxonase-1 (PON1), ATP-binding cassette transporters (ABCA1, ABCG1, ABCG4, ABCG5, ABCG8), scavenger receptor class B type I (SR-BI), cholesteryl ester transfer protein (CETP), low-density lipoprotein receptor (LDLr) and cholesterol 7 alpha-hydroxylase (CYP7A1) and Niemann-Pick C1-like 1 (NPC1L1). MATERIALS AND METHODS Three electronic databases (PubMed, Science Direct and Google Scholar) were searched for eligible studies conducted from the earliest available date to August 2018. KEY FINDINGS Most of studies investigate the effects of low to moderate intensity aerobic training on RCTr elements. The majority were on exercised rats undertaking moderate intensity aerobic training. SIGNIFICANCE This review highlights that moderate intensity and longer-term training has a greater effect on RCTr elements than low intensity training. There a few studies examining high intensity training which warrants further investigation.
Collapse
Affiliation(s)
| | - David Robert Broom
- Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK
| | - Abbass Ghanbari-Niaki
- Exercise Biochemistry Division, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
de Bem GF, Costa CA, Santos IB, Cristino Cordeiro VDS, de Carvalho LCRM, de Souza MAV, Soares RDA, Sousa PJDC, Ognibene DT, Resende AC, de Moura RS. Antidiabetic effect of Euterpe oleracea Mart. (açaí) extract and exercise training on high-fat diet and streptozotocin-induced diabetic rats: A positive interaction. PLoS One 2018; 13:e0199207. [PMID: 29920546 PMCID: PMC6007924 DOI: 10.1371/journal.pone.0199207] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence suggests a protective role of polyphenols and exercise training on the disorders of type 2 diabetes mellitus (T2DM). We aimed to assess the effect of the açaí seed extract (ASE) associated with exercise training on diabetic complications induced by high-fat (HF) diet plus streptozotocin (STZ) in rats. Type 2 diabetes was induced by feeding rats with HF diet (55% fat) for 5 weeks and a single dose of STZ (35 mg/kg i.p.). Control (C) and Diabetic (D) animals were subdivided into four groups each: Sedentary, Training, ASE Sedentary, and ASE Training. ASE (200 mg/kg/day) was administered by gavage and the exercise training was performed on a treadmill (30min/day; 5 days/week) for 4 weeks after the diabetes induction. In type 2 diabetic rats, the treatment with ASE reduced blood glucose, insulin resistance, leptin and IL-6 levels, lipid profile, and vascular dysfunction. ASE increased the expression of insulin signaling proteins in skeletal muscle and adipose tissue and plasma GLP-1 levels. ASE associated with exercise training potentiated the reduction of glycemia by decreasing TNF-α levels, increasing pAKT and adiponectin expressions in adipose tissue, and IR and pAMPK expressions in skeletal muscle of type 2 diabetic rats. In conclusion, ASE treatment has an antidiabetic effect in type 2 diabetic rats by activating the insulin-signaling pathway in muscle and adipose tissue, increasing GLP-1 levels, and an anti-inflammatory action. Exercise training potentiates the glucose-lowering effect of ASE by activating adiponectin-AMPK pathway and increasing IR expression.
Collapse
Affiliation(s)
- Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Cristiane Aguiar Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Ricardo de Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | | | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
- * E-mail: ,
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| |
Collapse
|