1
|
Santana TM, Caria SJ, Carlini GCG, Rogero MM, Donato J, Tavares MR, Castro IA. Trans-resveratrol reduced hepatic oxidative stress in an animal model without inducing an upregulation of nuclear factor erythroid 2-related factor 2. J Clin Biochem Nutr 2024; 75:40-45. [PMID: 39070534 PMCID: PMC11273272 DOI: 10.3164/jcbn.23-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/09/2024] [Indexed: 07/30/2024] Open
Abstract
Trans-resveratrol, a widely used supplement for humans, aims to enhance the body's antioxidant defense. Studies suggest that it exerts anti-inflammatory and antioxidant effects by activating the nuclear factor erythroid 2-related factor 2 (Nrf2). In order to evaluate this hypothesis, LDLr(-/-) mice were fed a Western diet to induce liver inflammation and oxidative stress. One group was fed a diet containing 0.60 mg/day of trans-resveratrol (RESV), while another group received no dietary supplementation (CONT). Oxidative stress biomarkers and inflammatory cytokines were assessed in liver homogenates. It was observed that trans-resveratrol decreased hepatic oxidative stress by increasing the GSH/GSSG ratio and reducing malondialdehyde (MDA) concentration. However, the RESV group exhibited a reduction in Nrf2 relative expression compared to CONT. Additionally, trans-resveratrol supplementation reduced nuclear factor-κB (NF-κB) expression but led to an increase in IL-6, with no significant changes observed in tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) concentrations. Overall, these findings indicate that the in vivo antioxidant impact induced by trans-resveratrol supplementation in hepatic tissue did not correlate with increase of inflammatory cytokines and Nrf2 relative expression. Further exploration of alternative mechanisms, such as direct radical scavenger activity, is warranted to elucidate the antioxidant effect.
Collapse
Affiliation(s)
- Tamires M. Santana
- LADAF. Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
| | - Sarah J. Caria
- LADAF. Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
| | - Giovanna C. G. Carlini
- LADAF. Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
| | - Marcelo M. Rogero
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo 01246-904, Brazil
| | - José Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 2415, São Paulo 05508-900, Brazil
| | - Mariana R. Tavares
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 2415, São Paulo 05508-900, Brazil
| | - Inar A. Castro
- LADAF. Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
- Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, Av. Lineu Prestes, 580, B14, São Paulo 05508-900, Brazil
| |
Collapse
|
2
|
Mosavi SS, Rabizadeh S, Yadegar A, Seifouri S, Mohammadi F, Qahremani R, Salehi SS, Rajab A, Esteghamati A, Nakhjavani M. Therapeutic effects of resveratrol and Omega-3 in mice atherosclerosis: focus on histopathological changes. BMC Complement Med Ther 2023; 23:81. [PMID: 36932392 PMCID: PMC10024363 DOI: 10.1186/s12906-023-03899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Resveratrol and omega-3 have been shown to prevent atherosclerosis. However, histopathological changes and their comparison have not been studied well. This study investigated the therapeutic effects of resveratrol and omega-3 in experimental atherosclerosis of mice. METHODS We divided sixty 6-week-old male C57BL/6 mice into six groups and followed for 10 weeks: (1) standard diet, (2) atherogenic diet, (3) atherogenic diet along with resveratrol from the start of the sixth week, (4) atherogenic diet along with omega-3 from the start of the sixth week, (5) standard diet along with resveratrol from the start of the sixth week, (6) standard diet along with omega-3 from the start of the sixth week. RESULTS The mice fed on an atherogenic diet had a larger fat area and a thicker aortic wall thickness than mice fed on a standard diet. The use of omega-3 and resveratrol in the mice with an atherogenic diet resulted in a significantly reduced fat area (p-value = 0.003), and resveratrol had a significantly higher effect. Omega-3 or resveratrol induced a significant reduction in aortic wall thickness in mice on an atherogenic diet, and there was no significant difference between them. Among the mice with a standard diet, this study did not observe any significant changes in the fat area or the aortic wall thickness with the consumption of omega-3 or resveratrol. CONCLUSIONS Resveratrol and omega-3 had a regressive and therapeutic role in atherosclerosis, with a more significant effect in favor of resveratrol.
Collapse
Affiliation(s)
- Shamsi Sadat Mosavi
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Soghra Rabizadeh
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Amirhossein Yadegar
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Sara Seifouri
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Fatemeh Mohammadi
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Reihane Qahremani
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Salome Sadat Salehi
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Armin Rajab
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Alireza Esteghamati
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Manouchehr Nakhjavani
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| |
Collapse
|
3
|
Zhou Y, Zeng Y, Pan Z, Jin Y, Li Q, Pang J, Wang X, Chen Y, Yang Y, Ling W. A Randomized Trial on Resveratrol Supplement Affecting Lipid Profile and Other Metabolic Markers in Subjects with Dyslipidemia. Nutrients 2023; 15:nu15030492. [PMID: 36771199 PMCID: PMC9921501 DOI: 10.3390/nu15030492] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Resveratrol is a polyphenol with a well-established beneficial effect on dyslipidemia and hyperuricemia in preclinical experiments. Nonetheless, its efficacy and dose-response relationship in clinical trials remains unclear. This study examined whether resveratrol supplement improves the serum lipid profile and other metabolic markers in a dose-response manner in individuals with dyslipidemia. A total of 168 subjects were randomly assigned to placebo (n = 43) and resveratrol treatment groups of 100 mg/d (n = 41), 300 mg/d (n = 43), and 600 mg/d (n = 41). Anthropometric and biochemical parameters were analyzed at baseline and 4 and 8 weeks. Resveratrol supplementation for 8 weeks did not significantly change the lipid profile compared with the placebo. However, a significant decrease of serum uric acid was observed at 8 weeks in 300 mg/d (-23.60 ± 61.53 μmol/L, p < 0.05) and 600 mg/d resveratrol groups (-24.37 ± 64.24 μmol/L, p < 0.01) compared to placebo (8.19 ± 44.60 μmol/L). Furthermore, xanthine oxidase (XO) activity decreased significantly in the 600 mg/d resveratrol group (-0.09 ± 0.29 U/mL, p < 0.05) compared with placebo (0.03 ± 0.20 U/mL) after 8 weeks. The reduction of uric acid and XO activity exhibited a dose-response relationship (p for trend, <0.05). Furthermore, a marked correlation was found between the changes in uric acid and XO activity in the resveratrol groups (r = 0.254, p < 0.01). Resveratrol (10 μmol/L) treatment to HepG2 cells significantly reduced the uric acid levels and intracellular XO activity. Nevertheless, we failed to detect significant differences in glucose, insulin, or oxidative stress biomarkers between the resveratrol groups and placebo. In conclusion, resveratrol supplementation for 8 weeks had no significant effect on lipid profile but decreased uric acid in a dose-response manner, possibly due to XO inhibition in subjects with dyslipidemia. The trial was registered on ClinicalTrials.gov (NCT04886297).
Collapse
Affiliation(s)
- Yuqing Zhou
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yupeng Zeng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Zhijun Pan
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yufeng Jin
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Xin Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Correspondence: (Y.Y.); (W.L.)
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou 510080, China
- Correspondence: (Y.Y.); (W.L.)
| |
Collapse
|
4
|
Effect of resveratrol supplementation on biomarkers associated with atherosclerosis in humans. Complement Ther Clin Pract 2021; 46:101491. [PMID: 34731768 DOI: 10.1016/j.ctcp.2021.101491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/08/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022]
Abstract
Previous studies have suggested the beneficial effects of resveratrol against cardiovascular disease (CVD). However, there are inconsistent results on cardiovascular-related biomarkers mainly because of variable dosage, intervention time and baseline characteristics of the population. Thus, the exact effect of resveratrol remains unclear. We conducted a review to classify the studies that applied resveratrol to supplement humans according to the major biomarkers and identify which protocol characteristics would be associated with each result profile. Randomized clinical trials that assessed resveratrol effect on biomarkers related to atherosclerosis were searched in databases. Biochemical data were collected from 27 studies on the baseline and post-intervention time. We selected 12 biomarkers to compose the matrix, based on their clinical relevance and higher variation level. A total of 32 assays were obtained from these 27 studies. The net change (%) was calculated for each biomarker. Applying multivariate analysis, the assays were grouped into 3 clusters. Studies that composed Cluster II were characterized by a mean dose of 454.14 mg/day for 74.21 days and showed higher reduction of triglyceride concentration and blood pressure, while those composing Cluster III applied doses around 273.75 mg/day for about 175.33 days and showed the highest HDL increase. Thus, interventions with resveratrol could be customized according to the patient condition, in terms of "dose/time of intervention". This information can be applied to combine resveratrol with drugs to reduce blood pressure or improve lipid profile in further clinical studies.
Collapse
|
5
|
Preventive Aspects of Early Resveratrol Supplementation in Cardiovascular and Kidney Disease of Developmental Origins. Int J Mol Sci 2021; 22:ijms22084210. [PMID: 33921641 PMCID: PMC8072983 DOI: 10.3390/ijms22084210] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
The increase in the incidence of cardiovascular diseases (CVDs) and kidney disease has stimulated research for strategies that could prevent, rather than just treat, both interconnected disorders. Resveratrol, a polyphenolic compound with pleiotropic biofunctions, has shown health benefits. Emerging epidemiological data supports that early life environmental insults are regarded as increased risks of developing CVDs and kidney disease in adulthood. Conversely, both disorders could be reversed or postponed by shifting interventions from adulthood to earlier stage by so-called reprogramming. The purpose of this review is first to highlight current epidemiological studies linking cardiovascular and renal programming to resulting CVD and kidney disease of developmental origins. This will be followed by a summary of how resveratrol could exert a positive influence on CVDs and kidney disease. This review also presents an overview of the evidence documenting resveratrol as a reprogramming agent to protect against CVD and kidney disease of developmental origins from animal studies and to outline the advances in understanding the underlying molecular mechanisms. Overall, this review reveals the need for future research to further clarify the reprogramming effects of resveratrol before clinical translation.
Collapse
|
6
|
Lu W, Ni Z, Jiang S, Tong M, Zhang J, Zhao J, Feng C, Jia Q, Wang J, Yao T, Ning H, Shi Y. Resveratrol inhibits bile acid-induced gastric intestinal metaplasia via the PI3K/AKT/p-FoxO4 signalling pathway. Phytother Res 2021; 35:1495-1507. [PMID: 33103284 PMCID: PMC8048559 DOI: 10.1002/ptr.6915] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Gastric intestinal metaplasia (GIM) is the essential pre-malignancy of gastric cancer. Chronic inflammation and bile acid reflux are major contributing factors. As an intestinal development transcription factor, caudal-related homeobox 2 (CDX2) is key in GIM. Resveratrol has potential chemopreventive and anti-tumour effects. The aim of the study is to probe the effect of resveratrol in bile acid-induced GIM. We demonstrated that resveratrol could reduce CDX2 expression in a time- and dose-dependent manner in gastric cell lines. A Cignal Finder 45-Pathway Reporter Array and TranSignal Protein/DNA Array Kit verified that resveratrol could increase Forkhead box O4 (FoxO4) activity and that Chenodeoxycholic acid (CDCA) could reduce FoxO4 activity. Furthermore, bioinformatics analysis showed that FoxO4 could bind to the CDX2 promoter, and these conjectures were supported by chromatin-immunoprecipitation (ChIP) assays. Resveratrol can activate FoxO4 and decrease CDX2 expression by increasing phospho-FoxO4 nucleus trans-location. Resveratrol could increase FoxO4 phosphorylation through the PI3K/AKT pathway. Ectopic FoxO4 expression can up-regulate FoxO4 phosphorylation and suppress CDCA-induced GIM marker expression. Finally, we found a reverse correlation between p-FoxO4 and CDX2 in tissue arrays. This study validates that resveratrol could reduce bile acid-induced GIM through the PI3K/AKT/p-FoxO4 signalling pathway and has a potential reversing effect on GIM, especially that caused by bile acid reflux.
Collapse
Affiliation(s)
- Wenquan Lu
- Department of GastroenterologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive DiseasesAir force Military Medical UniversityXi'anChina
| | - Zhen Ni
- Department of GastroenterologyThe General Hospital of Western Theater CommandChengduChina
| | - Shuqin Jiang
- Pediatric Development and Behavior DepartmentThe third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Mingfu Tong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive DiseasesAir force Military Medical UniversityXi'anChina
- Department of GastroenterologyBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive DiseasesAir force Military Medical UniversityXi'anChina
| | - Jing Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive DiseasesAir force Military Medical UniversityXi'anChina
- Department of GastroenterologySecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Chenchen Feng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive DiseasesAir force Military Medical UniversityXi'anChina
- Postgraduate DepartmentXi'an Medical UniversityXi'anChina
| | - Qiaoyu Jia
- Department of GastroenterologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jingyun Wang
- Department of GastroenterologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Tingting Yao
- Department of GastroenterologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hanbing Ning
- Department of GastroenterologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive DiseasesAir force Military Medical UniversityXi'anChina
| |
Collapse
|
7
|
Docosahexaenoic acid nanoencapsulated with anti-PECAM-1 as co-therapy for atherosclerosis regression. Eur J Pharm Biopharm 2020; 159:99-107. [PMID: 33358940 DOI: 10.1016/j.ejpb.2020.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a non-resolving inflammatory condition that underlies major cardiovascular diseases.Recent clinical trial using an anti-inflammatory drug has showna reduction of cardiovascular mortality, but increased the susceptibility to infections. For this reason, tissue target anti-inflammatory therapies can represent a better option to regress atherosclerotic plaques. Docosahexaenoic acid (DHA) is a natural omega 3 fatty acidcomponentof algae oil and acts asaprecursor of several anti-inflammatory compounds, such the specialized proresolving lipid mediators(SPMs). During the atherosclerosis process, the inflammatory condition of the endothelium leads to the higher expression of adhesion molecules, such as Endothelial Cell Adhesion Molecule Plate 1 (PECAM-1 or CD31), as part of the innate immune response. Thus, the objective of this study was to develop lipid-core nanocapsules with DHA constituting the nucleus and anti-PECAM-1 on their surface and drive this structure to the inflamed endothelium. Nanocapsules were prepared by interfacial deposition of pre-formed polymer method. Zinc-II was added to bind anti-PECAM-1 to the nanocapsule surface by forming an organometallic complex. Swelling experiment showed that the algae oil act as non-solvent for the polymer (weight constant weight for 60 days, p > 0.428) indicating an adequate material to produce kinetically stable lipid-core nanocapsules (LNC). Five formulations were synthesized: Lipid-core nanocapsules containing DHA (LNC-DHA) or containing Medium-chain triglycerides (LNC-MCT), multi-wall nanocapsules containing DHA (MLNC-DHA) or containing MCT (MLNC-MCT) and the surface-functionalized (anti-PECAM-1) metal-complex multi-wall nanocapsules containing DHA (MCMN-DHA-a1). All formulations showed homogeneous macroscopic aspects without aggregation. The mean size of the nanocapsules measured by laser diffraction did not show difference among the samples (p = 0.241). Multi-wall nanocapsules (MLNC) showed a slight increase in the mean diameter and polydispersity index (PDI) measured by DLS, lower pH and an inversion in the zeta-potential (ξP) compared to LNCs. Conjugation test for anti-PECAM-1 showed 94.80% of efficiency. The mean diameter of the formulation had slightly increased from 160 nm (LCN-DHA) and 162 nm (MLNC-DHA) to 164 nm (MCMN-DHA-a1) indicating that the surface functionalization did not induce aggregation of the nanocapsules. Biological assays showed that the MCMN-DHA-a1 were uptaken by the HUVEC cells and did not decrease their viability. The surface-functionalized (anti- PECAM-1) metal-complex multi-wall nanocapsules containing DHA (MCMN-DHA-a1) can be considered adequate for pharmaceutical approaches.
Collapse
|
8
|
Muñoz-Bernal ÓA, Coria-Oliveros AJ, de la Rosa LA, Rodrigo-García J, Del Rocío Martínez-Ruiz N, Sayago-Ayerdi SG, Alvarez-Parrilla E. Cardioprotective effect of red wine and grape pomace. Food Res Int 2020; 140:110069. [PMID: 33648292 DOI: 10.1016/j.foodres.2020.110069] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/03/2020] [Accepted: 12/20/2020] [Indexed: 02/02/2023]
Abstract
Several studies have related moderate consumption of red wine with prevention of cardiovascular diseases (CVD). According to epidemiological studies, those regions with high consumption of red wine and a Mediterranean diet show a low prevalence of CVD. Such an effect has been attributed to phenolic compounds present in red wines. On the other hand, by-products obtained during winemaking are also a significant source of phenolic compounds but have been otherwise overlooked. The cardioprotective effect of red wine and its byproducts is related to their ability to prevent platelet aggregation, modify the lipid profile, and promote vasorelaxation. Phenolic content and profile seem to play an important role in these beneficial effects. Inhibition of platelet aggregation is dose-dependent and more efficient against ADP. The antioxidant capacity of phenolic compounds from red wine and its by-products, is involved in preventing the generation of ROS and the modification of the lipid profile, to prevent LDL oxidation. Phenolic compounds can also, modulate the activity of specific enzymes to promote NO production and vasorelaxation. Specific phenolic compounds like resveratrol are related to promote NO, and quercetin to inhibit platelet aggregation. Nevertheless, concentration that causes those effects is far from that in red wines. Synergic and additive effects of a mix of phenolic compounds could explain the cardioprotective effects of red wine and its byproducts.
Collapse
Affiliation(s)
- Óscar A Muñoz-Bernal
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Alma J Coria-Oliveros
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Laura A de la Rosa
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Joaquín Rodrigo-García
- Department of Health Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Nina Del Rocío Martínez-Ruiz
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Sonia G Sayago-Ayerdi
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico No 2595, Col. Lagos del Country, CP 63175, Tepic, Nayarit, Mexico
| | - Emilio Alvarez-Parrilla
- Department of Chemical Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, C.P. 32310, Ciudad Juárez, Chihuahua, Mexico.
| |
Collapse
|
9
|
Zhang L, Yuan JQ, Song FC, Zhu MD, Li Q, Liu SH, Zhao K, Zhao C. Ameliorative effects of the traditional Chinese medicine formula Qing-Mai-Yin on arteriosclerosis obliterans in a rabbit model. PHARMACEUTICAL BIOLOGY 2020; 58:785-795. [PMID: 33073642 PMCID: PMC7592894 DOI: 10.1080/13880209.2020.1803368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Qing-Mai-Yin (QMY) is a clinically used herbal formula for treating arteriosclerosis obliterans (ASO). OBJECTIVE To evaluate the chemical constituents and effects of QMY on ASO rabbit model. MATERIALS AND METHODS Forty-eight New Zealand rabbits were divided into six groups (n = 8): normal (normal rabbits treated with 0.5% CMC-Na), vehicle (ASO rabbits treated with 0.5% CMC-Na), positive (simvastatin, 1.53 mg/kg), and QMY treatment (300, 600, and 1200 mg/kg). ASO rabbit model was prepared by high fatty feeding, roundly shortening artery, and bovine serum albumin immune injury. QMY (300, 600 and 1200 mg/kg) was orally administered for 8 weeks. The effects and possible mechanisms of QMY on ASO rabbits were evaluated by pathological examination, biochemical assays, and immunohistochemical assays. The compositions of QMY were analysed using HPLC-Q-TOF-MS/MS analysis. RESULTS Compared to the vehicle rabbit, QMY treatment suppressed plaque formation and intima thickness in aorta, and decreased intima thickness, whereas increased lumen area of femoral artery. Additionally, QMY treatment decreased TC, TG and LDL, decreased CRP and ET, and increased NO and 6-K-PGF1α in serum. Furthermore, the potential mechanisms studied revealed that QMY treatment could suppress expression of TNF-α, IL-6, ICAM-1 and NF-κB in endothelial tissues, and increase IκB. In addition, HPLC analysis showed QMY had abundant anthraquinones, stilbenes, and flavonoids. CONCLUSION QMY has ameliorative effects on ASO rabbit, and the potential mechanisms are correlated to reducing inflammation and down-regulating NF-κB. Our study provides a scientific basis for the future application and investigation of QMY.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Jia-Qin Yuan
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Fu-Chen Song
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Mei-Dong Zhu
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Qi Li
- Yueyang Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Sheng-Hua Liu
- Yueyang Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Kai Zhao
- Department of Traditional of Chinese Medicine, General Hospital of Ningxia Medical University, Yinchuan, PR China
- CONTACT Kai Zhao Department of Traditional of Chinese Medicine, General Hospital of Ningxia Medical University, 804 Shengli Road, Yinchuan, Ningxia750004, PR China
| | - Cheng Zhao
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- Cheng Zhao Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai200437, PR China
| |
Collapse
|
10
|
BedÊ TP, Jesuz VA, Souza VR, Elias MB, Oliveira FL, Dias JF, Teodoro AJ, Azeredo VB. Effects of grape juice, red wine and resveratrol on liver parameters of rat submitted high-fat diet. AN ACAD BRAS CIENC 2020; 92:e20191230. [PMID: 32785427 DOI: 10.1590/0001-3765202020191230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
This work evaluated the effect of grape juice, red wine and resveratrol in liver parameters of rats submitted to high-fat diet. Experimental model was conducted with groups of adult females Rattus norvegicus: control (CG); high-fat (HG); grape juice (JG); red wine (RW) and resveratrol solution (RG). The high-fat diet significantly altered hepatocytes and Kupffer cells in all treated groups. HG group presented severe steatosis followed hepatocyte ballooning and tissue damages. JG group minimized hepatic histological lesion caused by high-fat diet and WG group also induced steatosis and inflammation in hepatocytes, similar to HG. Still, resveratrol protected the tissue against fatty liver disease by reducing fat infiltration and inflammation, indicating possible therapeutic effects on the liver. Cell cycle analysis showed that HG promoted damage to the tissue, reducing the viable cell content and increasing apoptosis, even when associated with wine consumption or isolated resveratrol. However, JG protected the liver against cell damage generated by the diet. Consumption of grape juice, even associated with a high-fat diet, represents a promising protection of the liver against cellular damage, but red wine further affects the tissue, and resveratrol alone was able to reduce damage but did not minimize cellular damage to the liver.
Collapse
Affiliation(s)
- Teresa P BedÊ
- Departamento de Nutrição e Dietética, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Vanessa A Jesuz
- Departamento de Ciência dos Alimentos, Universidade Federal do Estado de Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vanessa R Souza
- Departamento de Ciência dos Alimentos, Universidade Federal do Estado de Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Monique B Elias
- Departamento de Ciência dos Alimentos, Universidade Federal do Estado de Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe L Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana F Dias
- Departamento de Nutrição Aplicada, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anderson J Teodoro
- Departamento de Ciência dos Alimentos, Universidade Federal do Estado de Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vilma B Azeredo
- Departamento de Nutrição e Dietética, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
11
|
Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 Activation by Natural Phytochemicals: An Overview. Front Pharmacol 2020; 11:1225. [PMID: 32848804 PMCID: PMC7426493 DOI: 10.3389/fphar.2020.01225] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Sirtuins are class III histone deacetylases, whose enzymatic activity is dependent on NAD+ as a cofactor. Sirtuins are reported to modulate numerous activities by controlling gene expression, DNA repair, metabolism, oxidative stress response, mitochondrial function, and biogenesis. Deregulation of their expression and/or action may lead to tissue-specific degenerative events involved in the development of several human pathologies, including cancer, neurodegeneration, and cardiovascular disease. The most studied member of this class of enzymes is sirtuin 1 (SIRT1), whose expression is associated with increasing insulin sensitivity. SIRT1 has been implicated in both tumorigenic and anticancer processes, and is reported to regulate essential metabolic pathways, suggesting that its activation might be beneficial against disorders of the metabolism. Via regulation of p53 deacetylation and modulation of autophagy, SIRT1 is implicated in cellular response to caloric restriction and lifespan extension. In recent years, scientific interest focusing on the identification of SIRT1 modulators has led to the discovery of novel small molecules targeting SIRT1 activity. This review will examine compounds of natural origin recently found to upregulate SIRT1 activity, such as polyphenolic products in fruits, vegetables, and plants including resveratrol, fisetin, quercetin, and curcumin. We will also discuss the potential therapeutic effects of these natural compounds in the prevention and treatment of human disorders, with particular emphasis on their metabolic impact.
Collapse
Affiliation(s)
- Concetta Iside
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marika Scafuro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
12
|
Zhou L, Long J, Sun Y, Chen W, Qiu R, Yuan D. Resveratrol ameliorates atherosclerosis induced by high-fat diet and LPS in ApoE -/- mice and inhibits the activation of CD4 + T cells. Nutr Metab (Lond) 2020; 17:41. [PMID: 32508962 PMCID: PMC7251691 DOI: 10.1186/s12986-020-00461-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Atherosclerosis (AS), which characterized with the accumulation of lipids on the vessel wall, is the pathological basis of many cardiovascular diseases (CVD) and seriously threatens human health. Resveratrol (RES) has been reported to be benefit for AS treatment. This research aimed to observe the effects of RES on AS induced by high-fat diet (HFD) and LPS in ApoE-/- mice and investigate the underlying mechanism. Methods ApoE-/- mice were fed with HFD companied with LPS to induce AS and RES was administrated for 20 weeks. Splenic CD4+ T cells were cultured and treated with anti-CD3/CD28 together with LPS, and RES was added. Serum lipids and the atherosclerotic areas of aortas were detected. The activation of CD4+ T cells were investigated both in vivo and in vitro and the expression of DNA methyltransferases (Dnmt) in CD4+ T cells were measured. Results In vivo, administration of RES prevented HFD and LPS induced dysfunction of serum lipids including TC (total cholesterol), TG (triglyceride), LDL-C (low density lipoprotein cholesterol) and HDL-C (high density lipoprotein cholesterol), ameliorated the thickened coronary artery wall and decreased the areas of atherosclerotic lesion on aortas. Besides, RES decreased the number of CD4+ T cells in peripheral blood, decreased the expression of CD25 and CD44, but not affected the expression of L-selectin (CD62L). In vitro, RES decreased the expression of Ki67, CD25 and CD44 in CD4+ T cells. Moreover, RES increased the secretion of IL-2, IL-10 and TGF-β1, decreased IL-6. In addition, RES decreased both the mRNA and protein level of Dnmt1 and Dnmt3b in CD4+ T cells. Conclusion These results indicated that RES ameliorated AS induced by HFD companied with LPS in ApoE-/- mice, inhibited the proliferation and activation of CD4+ T cells and regulated the expression of Dnmt1 and Dnmt3b.
Collapse
Affiliation(s)
- Liyu Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| | - Jun Long
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| | - Yuting Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| | - Weikai Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| | - Runze Qiu
- Department of Clinical Pharmacology Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 People's Republic of China
| | - Dongping Yuan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| |
Collapse
|
13
|
Anti-aging Effects of Calorie Restriction (CR) and CR Mimetics based on the Senoinflammation Concept. Nutrients 2020; 12:nu12020422. [PMID: 32041168 PMCID: PMC7071238 DOI: 10.3390/nu12020422] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation, a pervasive feature of the aging process, is defined by a continuous, multifarious, low-grade inflammatory response. It is a sustained and systemic phenomenon that aggravates aging and can lead to age-related chronic diseases. In recent years, our understanding of age-related chronic inflammation has advanced through a large number of investigations on aging and calorie restriction (CR). A broader view of age-related inflammation is the concept of senoinflammation, which has an outlook beyond the traditional view, as proposed in our previous work. In this review, we discuss the effects of CR on multiple phases of proinflammatory networks and inflammatory signaling pathways to elucidate the basic mechanism underlying aging. Based on studies on senoinflammation and CR, we recognized that senescence-associated secretory phenotype (SASP), which mainly comprises cytokines and chemokines, was significantly increased during aging, whereas it was suppressed during CR. Further, we recognized that cellular metabolic pathways were also dysregulated in aging; however, CR mimetics reversed these effects. These results further support and enhance our understanding of the novel concept of senoinflammation, which is related to the metabolic changes that occur in the aging process. Furthermore, a thorough elucidation of the effect of CR on senoinflammation will reveal key insights and allow possible interventions in aging mechanisms, thus contributing to the development of new therapies focused on improving health and longevity.
Collapse
|