1
|
Murata M, Takahashi R, Marugame Y, Fujimura Y, Tachibana H. Delphinidin induces a fast-to-slow muscle fiber type shift through the AMPK signaling pathway in C2C12 myotubes. Biochem Biophys Rep 2024; 40:101884. [PMID: 39655265 PMCID: PMC11626064 DOI: 10.1016/j.bbrep.2024.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Delphinidin, a plant anthocyanidin, suppresses disuse muscle atrophy in mice. However, its effect on muscle fiber type shift is unclear. To examine whether delphinidin affects skeletal muscle fiber type, differentiated C2C12 cells were treated with delphinidin. Results revealed that delphinidin upregulated the mRNA expression of myosin heavy chain type I (MyHCI), troponin C1, troponin I1, and MyHCIIx and increased slow MyHC protein level in C2C12 myotubes. Delphinidin also enhanced succinic dehydrogenase (SDH) activities and suppressed lactate dehydrogenase (LDH) activity. Adenosine monophosphate-activated protein kinase (AMPK) inhibition attenuated delphinidin-induced MyHCI upregulation and MyHCIIb downregulation. We investigated the effect of delphinidin on the upstream factors involved in AMPK activation. Delphinidin increased liver kinase B1 (LKB1) phosphorylation and nuclear respiratory factor 1 (NRF1) and calcium/calmodulin-dependent protein kinase 2 (CaMKK2) protein levels. In conclusion, delphinidin induced muscle fiber type conversion from fast-twitch to slow-twitch muscles through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Motoki Murata
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama, Ehime, Japan
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Rina Takahashi
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Yuki Marugame
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, Japan
| |
Collapse
|
2
|
Ma X, La Y, Wang T, Huang C, Feng F, Guo X, Bao P, Wu X, Chu M, Liang C, Yan P. Lnc-MEG8 regulates yak myoblast differentiation via the miR-22-3p/RTL1 axis. BMC Genomics 2024; 25:1146. [PMID: 39604828 PMCID: PMC11600685 DOI: 10.1186/s12864-024-11038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The yak (Bos grunniens) is essential to the livelihoods of Tibetan people on the Qinghai-Tibet Plateau; however, its growth and productivity are constrained by the region's harsh climate and high altitude. Yak skeletal muscle myoblasts, which have evolved to thrive under these challenging conditions, offer a valuable model for investigating muscle development. In this study, we performed transcriptome profiling of yak longissimus dorsi muscle at different growth stages, identifying a key long non-coding RNA, LncRNA-XR_314844 (Lnc-MEG8), with a potential role in muscle development. RESULTS We developed a novel technique to isolate high-quality yak myoblasts, enabling detailed analysis of Lnc-MEG8. Our results indicated that Lnc-MEG8's subcellular localization varies during muscle cell growth: it is found in both the nucleus and cytoplasm during proliferation but shifts mainly to the cytoplasm during differentiation. Functional experiments showed that Lnc-MEG8 promotes cell proliferation and inhibits differentiation, while its silencing had the opposite effect. Further analysis revealed that both Lnc-MEG8 and the gene RTL1 share miR-22-3p as a common target. Dual-luciferase assays confirmed miR-22-3p directly targets both Lnc-MEG8 and RTL1 mRNA. Co-transfection of Lnc-MEG8 and a miR-22-3p mimic restored RTL1 expression, highlighting Lnc-MEG8's regulatory role. Lnc-MEG8 also counteracts miR-22-3p's suppression of key muscle genes such as MyF5 and MyoG, facilitating myotube formation. CONCLUSION These findings demonstrate that the Lnc-MEG8-miR-22-3p-RTL1 axis plays a crucial role in yak muscle development, providing insights that could advance muscle tissue engineering and enhance yak meat quality.
Collapse
Affiliation(s)
- Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Western Agriculture, the , Chinese Academy of Agricultural Sciences, Changji, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongfu La
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun Huang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fen Feng
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Institute of Western Agriculture, the , Chinese Academy of Agricultural Sciences, Changji, China.
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
3
|
Zhang Y, Wu X, Li R, Sui M, Li G, Fan S, Yang M, Liu Q, Liu X, Wu C, Li L. Sodium danshensu modulates skeletal muscle fiber type formation and metabolism by inhibiting pyruvate kinase M1. Front Pharmacol 2024; 15:1467620. [PMID: 39502528 PMCID: PMC11534700 DOI: 10.3389/fphar.2024.1467620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Sodium Danshensu (SDSS) is extracted from Salvia miltiorrhiza and has many pharmacological effects. However, little is known about its effects on muscle fiber formation and metabolism. Here, we aimed to investigated the role and molecular mechanisms of SDSS in modulating the formation of skeletal muscle fiber. C2C12 cells were incubated in differentiation medium with or without SDSS for 4 days. C57BL/6 mice were orally administered SDSS by gavage once a day for 8 weeks. Grip strength, treadmill, muscle weight, western blotting, qPCR, immunofluorescence staining and H&E staining were performed. SDSS target proteins were searched through drug affinity responsive target stability (DARTS) and mass spectrometry analysis. Furthermore, molecular docking was carried out for Pyruvate kinase M1 (PKM1). The effect of PKM1 on myosin heavy chain (MyHCs) gene expression was verified by knockdown of PKM1 experiment. SDSS induced oxidative muscle fiber-related gene expression, and inhibited glycolytic fiber-related gene expression in C2C12 cells. Muscle mass, the percentage of slow oxidative fibers, succinic dehydrogenase activity, muscle endurance, glucose tolerance, and the expression of the MyHC1 and MyHC2a genes increased while MyHC2b expression, lactate dehydrogenase activity, and the percentage of glycolytic muscle fibers decreased in SDSS-treated mice. Mechanistically, SDSS bound to the pyruvate kinase PKM1 and significantly repressed its activity. PKM1 inhibited MyHC1 and MyHC2a expression but promoted MyHC2b expression. SDSS also significantly attenuated the effects of PKM1 on muscle fiber-related gene expression in C2C12 cells. Our findings indicate that SDSS promotes muscle fiber transformation from the glycolytic type to the oxidative type by inhibiting PKM1 activity, which provide a new idea for treating muscle atrophy, muscle metabolism diseases and improving animal meat production.
Collapse
Affiliation(s)
- Yunxia Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xiaoxiao Wu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Ruoqi Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Mengru Sui
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Guoyin Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Shuhua Fan
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Mingsheng Yang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Dancheng Green Agriculture Observation and Research Station of Henan Province, Zhoukou Normal University, Zhoukou, China
| | - Qiuping Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Changjing Wu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Lili Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| |
Collapse
|
4
|
Kuang J, Fang J, Hu S, Yang X, Fan X. MECHANISM OF MICRORNA-218-5P IN MITOCHONDRIAL BIOGENESIS OF SEPSIS-INDUCED ACUTE KIDNEY INJURY BY THE REGULATION OF PGC-1Α. Shock 2024; 62:426-436. [PMID: 38888503 DOI: 10.1097/shk.0000000000002410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT Background: Sepsis-induced acute kidney injury (SI-AKI) is a kind of kidney dysfunction, which brings a lot of suffering. This study aimed to figure out the role of the miR-218-5p/PGC-1α axis in SI-AKI. Methods: AKI mouse model was established through cecal ligation and puncture. PGC-1α expression was activated using an activator ZLN005 before the serum and tissue samples were collected. Next, pathological structure and apoptosis of kidney tissues were observed. Levels of blood urea nitrogen, serum creatinine, and indicators of inflammation and oxidative stress were assessed. Moreover, reactive oxygen species and mitochondrial membrane potential levels, adenosine 5'-triphosphate content, and mitochondrial ultrastructure of kidney tissues were observed. HK2 cells were treated by lipopolysaccharide (LPS) to mimic sepsis in vitro , followed by evaluation of cell survival and apoptosis, inflammation, and oxidative stress. Subsequently, the binding relation between PGC-1α and miR-218-5p was predicted and validated. Then expression of PGC-1α and miR-218-5p was detected. PGC-1α and miR-218-5p expression were intervened to detect their influences in mitochondrial biogenesis. At last, miR-218-5p was overexpressed in ZLN005 (PGC-1α activating agent) pretreated SI-AKI mice to validate the mechanism. Results: PGC-1α is poorly expressed in SI-AKI, but overexpression of PGC-1α using ZLN005 alleviated SI-AKI injury and promoted mitochondrial biogenesis in AKI mice, and relieved LPS-induced cell injury. PGC-1α is a target of miR-218-5p. Downregulation of miR-218-5p expression in HK2 cells attenuated mitochondrial biogenesis disorder. Inhibition of PGC-1α annulled the role of miR-218-5p silencing in cells. In vivo , miR-218-5p overexpression partly reversed the protective role of ZLN005 in SI-AKI mice. Conclusion: miR-218-5p targeted PGC-1α to disrupt mitochondrial biogenesis, thereby exacerbating SI-AKI.
Collapse
Affiliation(s)
- Jing Kuang
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Jun Fang
- Department of Liver-Gallbladder and Gastric Diseases, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Shuli Hu
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Xiuhong Yang
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| | - Xuepeng Fan
- Department of Intensive Care Unit, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
5
|
Wang Y, Zhang D, Liu Y. Research Progress on the Regulating Factors of Muscle Fiber Heterogeneity in Livestock: A Review. Animals (Basel) 2024; 14:2225. [PMID: 39123750 PMCID: PMC11311112 DOI: 10.3390/ani14152225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The type of muscle fiber plays a crucial role in the growth, development, and dynamic plasticity of animals' skeletal muscle. Additionally, it is a primary determinant of the quality of both fresh and processed meat. Therefore, understanding the regulatory factors that contribute to muscle fibers' heterogeneity is of paramount importance. Recent advances in sequencing and omics technologies have enabled comprehensive cross-verification of research on the factors affecting the types of muscle fiber across multiple levels, including the genome, transcriptome, proteome, and metabolome. These advancements have facilitated deeper exploration into the related biological questions. This review focused on the impact of individual characteristics, feeding patterns, and genetic regulation on the proportion and interconversion of different muscle fibers. The findings indicated that individual characteristics and feeding patterns significantly influence the type of muscle fiber, which can effectively enhance the type and distribution of muscle fibers in livestock. Furthermore, non-coding RNA, genes and signaling pathways between complicated regulatory mechanisms and interactions have a certain degree of impact on muscle fibers' heterogeneity. This, in turn, changes muscle fiber profile in living animals through genetic selection or environmental factors, and has the potential to modulate the quality of fresh meat. Collectively, we briefly reviewed the structure of skeletal muscle tissue and then attempted to review the inevitable connection between the quality of fresh meat and the type of muscle fiber, with particular attention to potential events involved in regulating muscle fibers' heterogeneity.
Collapse
Affiliation(s)
| | | | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (Y.W.); (D.Z.)
| |
Collapse
|
6
|
Huang T, Chen X, He J, Zheng P, Luo Y, Wu A, Yan H, Yu B, Chen D, Huang Z. Eugenol mimics exercise to promote skeletal muscle fiber remodeling and myokine IL-15 expression by activating TRPV1 channel. eLife 2024; 12:RP90724. [PMID: 38913071 PMCID: PMC11196110 DOI: 10.7554/elife.90724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Metabolic disorders are highly prevalent in modern society. Exercise mimetics are defined as pharmacological compounds that can produce the beneficial effects of fitness. Recently, there has been increased interest in the role of eugenol and transient receptor potential vanilloid 1 (TRPV1) in improving metabolic health. The aim of this study was to investigate whether eugenol acts as an exercise mimetic by activating TRPV1. Here, we showed that eugenol improved endurance capacity, caused the conversion of fast-to-slow muscle fibers, and promoted white fat browning and lipolysis in mice. Mechanistically, eugenol promoted muscle fiber-type transformation by activating TRPV1-mediated CaN signaling pathway. Subsequently, we identified IL-15 as a myokine that is regulated by the CaN/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. Moreover, we found that TRPV1-mediated CaN/NFATc1 signaling, activated by eugenol, controlled IL-15 levels in C2C12 myotubes. Our results suggest that eugenol may act as an exercise mimetic to improve metabolic health via activating the TRPV1-mediated CaN signaling pathway.
Collapse
Affiliation(s)
- Tengteng Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Aimin Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| |
Collapse
|
7
|
Kang Z, Zhang Z, Li J, Deng K, Wang F, Fan Y. Mechanistic of AMPK/ACC2 regulating myoblast differentiation by fatty acid oxidation of goat. Int J Biol Macromol 2024; 270:132243. [PMID: 38744369 DOI: 10.1016/j.ijbiomac.2024.132243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Myoblast differentiation depends on fatty acid oxidation (FAO),and its rate-limiting enzyme acetyl-CoA carboxylase 2 (ACC2) participate in the regulation skeletal muscle development. However, the precise regulatory mechanism is still unknown. Using previous RNA-sequencing data from our laboratory, we explored the effect of ACC2 on myoblast differentiation, as a candidate gene, since its expression is higher in myoblasts of lamb (first day of age) than that of the fetus (75th day of pregnancy). Our findings show that siACC2 inhibited myoblast proliferation, promoted differentiation, and boosted mitochondrial and fatty acid oxidation activities. The effect of ACC2 on goat muscle cell differentiation was modulated by Etomoxir, a CPT1A inhibitor. Notably, the AMPK/ACC2 pathway was found to regulate fatty acid oxidation and goat muscle cell differentiation. Inhibiting the AMPK/ACC2 pathway significantly reduced CPT1A expression. These findings indicate that AMPK/ACC2 regulate goat myoblast differentiation via fatty acid oxidation, contributing to understanding the mechanism of goat skeletal muscle development.
Collapse
Affiliation(s)
- Ziqi Kang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Li
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Fan X, Yu W, Wang Q, Yang H, Tan D, Yu B, He J, Zheng P, Yu J, Luo J, Luo Y, Yan H, Wang J, Wang H, Wang Q, Mao X. Protective effect of Broussonetia papyrifera leaf polysaccharides on intestinal integrity in a rat model of diet-induced oxidative stress. Int J Biol Macromol 2024; 268:131589. [PMID: 38643924 DOI: 10.1016/j.ijbiomac.2024.131589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
This study aimed to investigate the effect of Broussonetia papyrifera polysaccharides (BPP) on the jejunal intestinal integrity of rats ingesting oxidized fish oil (OFO) induced oxidative stress. Polysaccharides (Mw 16,956 Da) containing carboxyl groups were extracted from Broussonetia papyrifera leaves. In vitro antioxidant assays showed that this polysaccharide possessed antioxidant capabilities. Thirty-two male weaned rats were allocated into two groups orally infused BPP solution and PBS for 26 days, respectively. From day 9 to day 26, half of the rats in each group were fed food containing OFO, where the lipid peroxidation can induce intestinal oxidative stress. OFO administration resulted in diarrhea, decreased growth performance (p < 0.01), impaired jejunal morphology (p < 0.05) and antioxidant capacity (p < 0.01), increased the levels of ROS and its related products, IL-1β and IL-17 (p < 0.01) of jejunum, as well as down-regulated Bcl-2/Bax (p < 0.01) and Nrf2 signaling (p < 0.01) of jejunum in rats. BPP gavage effectively alleviated the negative effects of OFO on growth performance, morphology, enterocyte apoptosis, antioxidant capacity and inflammation of jejunum (p < 0.05) in rats. In the oxidative stress model cell assay, the use of receptor inhibitors inhibited the enhancement of antioxidant capacity by BPP. These results suggested that BPP protected intestinal morphology, thus improving growth performance and reducing diarrhea in rats ingesting OFO. This protective effect may be attributed to scavenging free radicals and activating the Nrf2 pathway, which enhances antioxidant capacity, consequently reducing inflammation and mitigating intestinal cell death.
Collapse
Affiliation(s)
- Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Wei Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Qingxiang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Heng Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Dayan Tan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Huifen Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Quyuan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China.
| |
Collapse
|
9
|
Li Y, Feng Y, Chen X, He J, Luo Y, Yu B, Chen D, Huang Z. Dietary short-term supplementation of grape seed proanthocyanidin extract improves pork quality and promotes skeletal muscle fiber type conversion in finishing pigs. Meat Sci 2024; 210:109436. [PMID: 38266434 DOI: 10.1016/j.meatsci.2024.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Plant extracts are commonly used as feed additives to improve pork quality. However, due to their high cost, shortening the duration of supplement use can help reduce production costs. In this study, we aimed to investigate the effects of grape seed proanthocyanidin extract (GSPE) on meat quality and muscle fiber characteristics of finishing pigs during the late stage of fattening, which was 30 days in our experimental design. The results indicated that short-term dietary supplementation of GSPE significantly reduced backfat thickness, but increased loin eye area and improved meat color and tenderness. Moreover, GSPE increased slow myosin heavy chain (MyHC) expression and malate dehydrogenase (MDH) activity, while decreasing fast MyHC expression and lactate dehydrogenase (LDH) activity in the Longissimus thoracis (LT) muscle. Additionally, GSPE increased the expression of Sirt1 and PGC-1α proteins in the LT muscle of finishing pigs and upregulated AMP-activated protein kinase α 1 (AMPKα1), AMPKα2, nuclear respiratory factor 1 (NRF1), and calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) mRNA expression levels. These findings suggest that even during the late stage of fattening, GSPE treatment can regulate skeletal muscle fiber type transformation through the AMPK signaling pathway, thereby affecting the muscle quality of finishing pigs. Therefore, by incorporating GSPE into the diet of pigs during the late stage of fattening, producers can enhance pork quality while reducing production costs.
Collapse
Affiliation(s)
- Yiqiang Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yadi Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
10
|
Liu K, Li X, Liu Z, Ming X, Han B, Cai W, Yang X, Huang Z, Shi Z, Wu J, Hao B, Chen X. Orientin Promotes Antioxidant Capacity, Mitochondrial Biogenesis, and Fiber Transformation in Skeletal Muscles through the AMPK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6226-6235. [PMID: 38492240 DOI: 10.1021/acs.jafc.3c08039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The sleep-breathing condition obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse, which can exacerbate oxidative stress and free radical generation, thereby detrimentally impacting both motor and sensory nerve function and inducing muscular damage. OSA development is promoted by increasing proportions of fast-twitch muscle fibers in the genioglossus. Orientin, a water-soluble dietary C-glycosyl flavonoid with antioxidant properties, increased the expression of slow myosin heavy chain (MyHC) and signaling factors associated with AMP-activated protein kinase (AMPK) activation both in vivo and in vitro. Inhibiting AMPK signaling diminished the effects of orientin on slow MyHC, fast MyHC, and Sirt1 expression. Overall, orientin enhanced type I muscle fibers in the genioglossus, enhanced antioxidant capacity, increased mitochondrial biogenesis through AMPK signaling, and ultimately improved fatigue resistance in C2C12 myotubes and mouse genioglossus. These findings suggest that orientin may contribute to upper airway stability in patients with OSA, potentially preventing airway collapse.
Collapse
Affiliation(s)
- Keshu Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xufeng Li
- Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, China
| | - Zhihui Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoping Ming
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Baoai Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weisong Cai
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiuping Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zilin Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhenxiang Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianghao Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Bin Hao
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Sleep Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
11
|
Li J, Zhang Z, Bo H, Zhang Y. Exercise couples mitochondrial function with skeletal muscle fiber type via ROS-mediated epigenetic modification. Free Radic Biol Med 2024; 213:409-425. [PMID: 38295887 DOI: 10.1016/j.freeradbiomed.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Skeletal muscle is a heterogeneous tissue composed of different types of muscle fibers, demonstrating substantial plasticity. Physiological or pathological stimuli can induce transitions in muscle fiber types. However, the precise regulatory mechanisms behind these transitions remains unclear. This paper reviews the classification and characteristics of muscle fibers, along with the classical mechanisms of muscle fiber type transitions. Additionally, the role of exercise-induced muscle fiber type transitions in disease intervention is reviewed. Epigenetic pathways mediate cellular adaptations and thus represent potential targets for regulating muscle fiber type transitions. This paper focuses on the mechanisms by which epigenetic modifications couple mitochondrial function and contraction characteristics. Reactive Oxygen Species (ROS) are critical signaling regulators for the health-promoting effects of exercise. Finally, we discuss the role of exercise-induced ROS in regulating epigenetic modifications and the transition of muscle fiber types.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| | - Hai Bo
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
12
|
Zhang L, Liu L, Li D, Wu J, Gao S, Song F, Zhou Y, Liu D, Mei W. Heat Shock Protein 22 Attenuates Nerve Injury-induced Neuropathic Pain Via Improving Mitochondrial Biogenesis and Reducing Oxidative Stress Mediated By Spinal AMPK/PGC-1α Pathway in Male Rats. J Neuroimmune Pharmacol 2024; 19:5. [PMID: 38319409 DOI: 10.1007/s11481-024-10100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/14/2023] [Indexed: 02/07/2024]
Abstract
Heat shock protein 22 (hsp22) plays a significant role in mitochondrial biogenesis and redox balance. Moreover, it's well accepted that the impairment of mitochondrial biogenesis and redox imbalance contributes to the progress of neuropathic pain. However, there is no available evidence indicating that hsp22 can ameliorate mechanical allodynia and thermal hyperalgesia, sustain mitochondrial biogenesis and redox balance in rats with neuropathic pain. In this study, pain behavioral test, western blotting, immunofluorescence staining, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Dihydroethidium staining are applied to confirm the role of hsp22 in a male rat model of spared nerve injury (SNI). Our results indicate that hsp22 was significantly decreased in spinal neurons post SNI. Moreover, it was found that intrathecal injection (i.t.) with recombinant heat shock protein 22 protein (rhsp22) ameliorated mechanical allodynia and thermal hyperalgesia, facilitated nuclear respiratory factor 1 (NRF1)/ mitochondrial transcription factor A (TFAM)-dependent mitochondrial biogenesis, decreased the level of reactive oxygen species (ROS), and suppressed oxidative stress via activation of spinal adenosine 5'monophosphate-activated protein kinase (AMPK)/ peroxisome proliferative activated receptor γ coactivator 1α (PGC-1α) pathway in male rats with SNI. Furthermore, it was also demonstrated that AMPK antagonist (compound C, CC) or PGC-1α siRNA reversed the improved mechanical allodynia and thermal hyperalgesia, mitochondrial biogenesis, oxidative stress, and the decreased ROS induced by rhsp22 in male rats with SNI. These results revealed that hsp22 alleviated mechanical allodynia and thermal hyperalgesia, improved the impairment of NRF1/TFAM-dependent mitochondrial biogenesis, down-regulated the level of ROS, and mitigated oxidative stress through stimulating the spinal AMPK/PGC-1α pathway in male rats with SNI.
Collapse
Affiliation(s)
- Longqing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lin Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiayi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shaojie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fanhe Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Daiqiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
13
|
Kim A, Kim YR, Park SM, Lee H, Park M, Yi JM, Cha S, Kim NS. Jakyak-gamcho-tang, a decoction of Paeoniae Radix and Glycyrrhizae Radix et Rhizoma, ameliorates dexamethasone-induced muscle atrophy and muscle dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155057. [PMID: 37984121 DOI: 10.1016/j.phymed.2023.155057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Although chronic treatment with glucocorticoids, such as dexamethasone, is frequently associated with muscle atrophy, effective and safe therapeutics for treating muscle atrophy remain elusive. Jakyak-gamcho-tang (JGT), a decoction of Paeoniae Radix and Glycyrrhizae Radix et Rhizoma, has long been used to relieve muscle tension and control muscle cramp-related pain. However, the effects of JGT on glucocorticoid-induced muscle atrophy are yet to be comprehensively clarified. PURPOSE The objective of the current study was to validate the protective effect of JGT in dexamethasone-induced muscle atrophy models and elucidate its underlying mechanism through integrated in silico - in vitro - in vivo studies. STUDY DESIGN AND METHODS Differential gene expression was preliminarily analyzed using the RNA-seq data to determine the effects of JGT on C2C12 myotubes. The protective effects of JGT were further validated in dexamethasone-treated C2C12 myotubes by assessing cell viability, myotube integrity, and mitochondrial function or in C57BL/6 N male mice with dexamethasone-induced muscle atrophy by evaluating muscle mass and physical performance. Transcriptomic pathway analysis was also performed to elucidate the underlying mechanism. RESULTS Based on preliminary gene set enrichment analysis using the RNA-seq data, JGT regulated various pathways related to muscle differentiation and regeneration. Dexamethasone-treated C2C12 myotubes and muscle tissues of atrophic mice displayed substantial muscle protein degradation and muscle loss, respectively, which was efficiently alleviated by JGT treatment. Importantly, JGT-mediated protective effects were associated with observations such as preservation of mitochondrial function, upregulation of myogenic signaling pathways, including protein kinase B/mammalian target of rapamycin/forkhead box O3, inhibition of ubiquitin-mediated muscle protein breakdown, and downregulation of inflammatory and apoptotic pathways induced by dexamethasone. CONCLUSION To the best of our knowledge, this is the first report to demonstrate that JGT could be a potential pharmaceutical candidate to prevent muscle atrophy induced by chronic glucocorticoid treatment, highlighting its known effects for relieving muscle spasms and pain. Moreover, transcriptomic pathway analysis can be employed as an efficient in silico tool to predict novel pharmacological candidates and elucidate molecular mechanisms underlying the effects of herbal medications comprising diverse biologically active ingredients.
Collapse
Affiliation(s)
- Aeyung Kim
- KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Yu Ri Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sang-Min Park
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Haeseung Lee
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Musun Park
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jin-Mu Yi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Seongwon Cha
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - No Soo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
14
|
Liu S, Chen X, He J, Luo Y, Zheng P, Yu B, Chen D, Huang Z. Oleanolic acid promotes skeletal muscle fiber type transformation by activating TGR5-mediated CaN signaling pathway. J Nutr Biochem 2024; 123:109507. [PMID: 37890712 DOI: 10.1016/j.jnutbio.2023.109507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
In recent years, the impact of bile acids and their representative G protein-coupled bile acid receptor 1 Takeda-G-protein-receptor-5 (TGR5) signaling pathway on muscle function and metabolic health has gained considerable interest. Increasing the content of slow muscle fibers has been recognized as an effective strategy to improve metabolic health. Oleanolic acid (OA) is a naturally occurring triterpenoid compound derived from plants, which can activate TGR5. The aim of this study was to investigate the effect of OA and TGR5 on muscle fiber types and further explore the underlying TGR5-dependent mechanisms. In this study, mice were divided into three groups and dietary supplementation with 0, 50, or 100 mg/kg OA. In addition, C2C12 cells were treated with OA at concentrations of 0, 5, 10, and 20 µM. Our studies revealed that OA promoted the conversion of fast to slow muscle fibers. In addition, it was found that OA activated the TGR5-mediated calcineurin (CaN)/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. Further mechanistic investigations demonstrated that inhibiting TGR5 and CaN abolished the effects of OA on muscle fiber types transformation. In conclusion, this study found that OA promotes the transformation of fast muscle fibers to slow muscle fibers through the TGR5-mediated CaN/NFATc1 signaling pathway.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| |
Collapse
|
15
|
Liao T, Xiong L, Wang X, Yang S, Liang Z. Mitochondrial disorders as a mechanism for the development of obese Sarcopenia. Diabetol Metab Syndr 2023; 15:224. [PMID: 37926816 PMCID: PMC10626707 DOI: 10.1186/s13098-023-01192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
Obese sarcopenia is a severe and prevalent disease in an aging society. Compared to sarcopenia alone, the development and advanced stage of obesity sarcopenia is faster and more severe. Diagnosis of the cause of adipocyte accumulation is also more complicated; however, no effective pharmacological treatment is available. Chronic inflammation is one of the causes of sarcopenia, and obese patients, who are more likely to develop chronic inflammation, may simultaneously suffer from obesity and sarcopenia. Mitochondrial metabolic disorders have been more easily observed in the tissue cells of patients with obesity and sarcopenia. Mitochondrial metabolic disorders include abnormal mtDNA release, mitochondrial autophagy, and dynamic mitochondrial disorders. Therefore, this review will reveal the mechanism of development of obesity myasthenia gravis from the perspective of mitochondria and discuss the currently existing small-molecule drugs.
Collapse
Affiliation(s)
- Tingfeng Liao
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China
- Department of Geriatrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Lijiao Xiong
- Department of Geriatrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaohao Wang
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China
- Department of Geriatrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Shu Yang
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China.
- Department of Geriatrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.
| | - Zhen Liang
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, China.
- Department of Geriatrics, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
16
|
Greene MA, Worley GA, Udoka ANS, Powell RR, Bruce T, Klotz JL, Bridges WC, Duckett SK. Use of AgomiR and AntagomiR technologies to alter satellite cell proliferation in vitro, miRNA expression, and muscle fiber hypertrophy in intrauterine growth-restricted lambs. Front Mol Biosci 2023; 10:1286890. [PMID: 38028550 PMCID: PMC10656622 DOI: 10.3389/fmolb.2023.1286890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: microRNAs (miRNAs) are small non-coding RNAs that work at the posttranscriptional level to repress gene expression. Several miRNAs are preferentially expressed in skeletal muscle and participate in myogenesis. This research was conducted to alter endogenous miRNA expression in skeletal muscle to promote muscle hypertrophy. Methods: Two experiments were conducted using mimic/agomiR or antagomir technologies to alter miRNA expression and examine changes in myoblast proliferation in vitro (experiment 1) and muscle hypertrophy in vivo (experiment 2). In vitro experiments found that antagomiR-22-3p and mimic-127 increased myoblast proliferation compared to other miRNA treatments or controls. These miRNA treatments, antagomiR-22-3p (ANT22) and agomiR-127 (AGO127), were then used for intramuscular injections in longissimus muscle. Results and discussion: The use of antagomiR or mimic/agomiR treatments down-regulated or up-regulated, respectively, miRNA expression for that miRNA of interest. Expression of predicted target KIF3B mRNA for miR-127 was up-regulated and ACVR2a mRNA was up-regulated for miR-22-3p. ANT22 injection also up-regulated the major regulator of protein synthesis (mTOR). Proteomic analyses identified 11 proteins for AGO127 and 9 proteins for ANT22 that were differentially expressed. Muscle fiber type and cross-sectional area were altered for ANT22 treatments to transition fibers to a more oxidative state. The use of agomiR and antagomir technologies allows us to alter miRNA expression in vitro and in vivo to enhance myoblast proliferation and alter muscle fiber hypertrophy in IUGR lambs during early postnatal growth.
Collapse
Affiliation(s)
- M. A. Greene
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| | - G. A. Worley
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| | - A. N. S. Udoka
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| | - R. R. Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States
| | - T. Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - J. L. Klotz
- U. S. Department of Agriculture-Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, United States
| | - W. C. Bridges
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, United States
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, United States
| | - S. K. Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
17
|
Cai J, Xing L, Zhang W, Zhang J, Zhou L, Wang Z. Effect of Yeast-Derived Peptides on Skeletal Muscle Function and Exercise-Induced Fatigue in C2C12 Myotube Cells and ICR Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15522-15537. [PMID: 37807259 DOI: 10.1021/acs.jafc.3c02281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In our previous study, the antioxidant peptides (XHY69AP, AP-D, YPLP, and AGPL) were obtained from potential probiotic yeast (Yamadazyma triangularis XHY69), which was selected by our lab from dry-cured ham. This work aimed to explore the effects of yeast-derived peptides on skeletal muscle function and muscle fatigue. Results showed that yeast-derived peptides up-regulated slow-twitch fiber expression and down-regulated fast-twitch fiber expression in C2C12 cells (p < 0.05). The peptides improved mitochondrial membrane potential, adenosine triphosphate generation, and expression of cytochrome-relative genes, thus promoting mitochondrial function. Among these peptides, YPLP up-regulated the relative gene expression of the AMP-activated protein kinase (AMPK) pathway and activated AMPK by phosphorylation. Moreover, YPLP could prolong treadmill time, increase muscle and liver glycogen contents, reduce lactic acid and urea nitrogen contents, and alleviate muscle tissue injury in ICR exercise mice. These results demonstrate that yeast-derived peptides could change the muscle fiber composition, improve muscle function, and relieve muscle fatigue.
Collapse
Affiliation(s)
- Jiaming Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lujuan Xing
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jian Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lei Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zixu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
18
|
Zhang J, Li J, Liu Y, Liang R, Mao Y, Yang X, Zhang Y, Zhu L. Effect of resveratrol on skeletal slow-twitch muscle fiber expression via AMPK/PGC-1α signaling pathway in bovine myotubes. Meat Sci 2023; 204:109287. [PMID: 37490793 DOI: 10.1016/j.meatsci.2023.109287] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
The purpose of this study was to evaluate the impact of resveratrol on slow-twitch muscle fiber expression in bovine myotubes. The results revealed that resveratrol enhanced slow myosin heavy chain (MyHC) and suppressed fast MyHC protein expression, accompanied by increased MyHC I/IIa and decreased MyHC IIx/IIb mRNA levels in bovine myotubes (P < 0.05). Resveratrol also enhanced the activities of succinic dehydrogenase (SDH), malate dehydrogenase (MDH) and the mitochondrial DNA (mtDNA) content, but reduced lactate dehydrogenase (LDH) activity (P < 0.05). Meanwhile, the protein and gene expression of AMPK, SIRT1 and PGC-1α were upregulated by resveratrol (P < 0.05). Furthermore, PGC-1α inhibitor SR-18292 could attenuate resveratrol-induced muscle fiber conversion from fast-twitch to slow-twitch. These results suggest that resveratrol might promote muscle fiber type transition from fast-twitch to slow-twitch through the AMPK/PGC-1α signaling pathway and mitochondrial biogenesis in bovine myotubes.
Collapse
Affiliation(s)
- Jingyue Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Jiqiang Li
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
19
|
Yang Y, Wu J, Liu W, Zhao Y, Chen H. The Function and Regulation Mechanism of Non-Coding RNAs in Muscle Development. Int J Mol Sci 2023; 24:14534. [PMID: 37833983 PMCID: PMC10572267 DOI: 10.3390/ijms241914534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Animal skeletal muscle growth is regulated by a complex molecular network including some non-coding RNAs (ncRNAs). In this paper, we review the non-coding RNAs related to the growth and development of common animal skeletal muscles, aiming to provide a reference for the in-depth study of the role of ncRNAs in the development of animal skeletal muscles, and to provide new ideas for the improvement of animal production performance.
Collapse
Affiliation(s)
- Yaling Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Jian Wu
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Yumin Zhao
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| |
Collapse
|
20
|
Liu J, Chen J, Zhang J, Fan Y, Zhao S, Wang B, Wang P. Mechanism of Resveratrol Improving Ischemia-Reperfusion Injury by Regulating Microglial Function Through microRNA-450b-5p/KEAP1/Nrf2 Pathway. Mol Biotechnol 2023; 65:1498-1507. [PMID: 36656498 DOI: 10.1007/s12033-022-00646-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
Alterations in the M1/M2 polarization phenotype significantly affect disease progression. Antioxidant and anti-inflammatory protective effects of resveratrol (Res) have been demonstrated. This paper tested the hypothesis that Res could protect against cerebral ischemia-reperfusion injury (CI/RI) by modulating microglial polarization via the miR-450b-5p/KEAP1/Nrf2 pathway. Rats were first treated with Res and adenovirus that interfered with miR-450b-5p or KEAP1, and then established a middle cerebral artery occlusion-reperfusion model using modified nylon sutures. Rats were then evaluated for neurological and behavioral functions, and markers of M2 microglia were detected by immunofluorescence staining. Additionally, the signature patterns of miR-450b-5p, KEAP1, and Nrf2 were determined. The collected data demonstrated that Res exerted neuroprotective effects in CI/RI by promoting microglial M2 polarization. Additionally, Res could regulate the Nrf2 pathway by targeting KEAP1 by up-regulating miR-450b-5p. Up-regulating miR-450b-5p or down-regulating KEAP1 could further promote the protective effect of Res, while down-regulating miR-450b-5p or up-regulating KEAP1 worked oppositely. Our study demonstrates that Res exerts neuroprotective effects on microglial M2 polarization through the miR-450b-5p/KEAP1/Nrf2 pathway during CI/RI.
Collapse
Affiliation(s)
- JiaHui Liu
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - JinYu Chen
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - JinFeng Zhang
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Yu Fan
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - ShiJun Zhao
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - BaoJun Wang
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China
| | - Po Wang
- Department of Neurology, Inner Mongolia Baotou Central Hospital, No. 61 Ring Roads, Donghe District, Baotou, 014040, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
21
|
Lv J, Zhang R, Li D, Liu Y. Resveratrol plays an anti-fibrotic and anti-autophagy role by stimulating miR-192-5p expression in urethral fibrosis. Funct Integr Genomics 2023; 23:241. [PMID: 37450096 DOI: 10.1007/s10142-023-01173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/25/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Resveratrol (RSV) exerts anti-fibrotic effects on various fibrotic diseases. Whereas the biological role of RSV on urethral fibrosis remains to be elucidated. This study aimed to determine the mechanisms by which RSV affects urethral fibrosis and autophagy. METHODS Sprague‒Dawley rats and primary fibroblasts were treated with transforming growth factor-β1 (TGFβ1) to generate in vivo and in vitro fibrosis models. Then, those were treated with RSV, and autophagy and fibrosis-related indicators were tested. RESULTS Firstly, we found that RSV reversed the upregulation of indicators related to TGFβ1-induced fibrosis (TGFβ1, α-smooth muscle actin, collagen type I, and collagen type III), autophagy (TFEB and LC3), and TGFβR1/Smad4 pathway, as well as the downregulation of p62 and miR-192-5p expression both in vivo and in vitro. Overexpression of miR-192-5p suppressed the upregulation of fibrosis-related markers expression, as well as TFEB and LC3 expression, induced by TGFβ1, while the expression trend of p62 was the opposite. Inhibiting miR-192-5p reversed the effects of RSV on the model group cells. It was also shown that RSV combined with sh-Smad4 inhibited autophagy more effectively than RSV alone. CONCLUSION These results suggest that RSV inhibits urinary fibrosis and autophagy via the miR-192-5p/TGFβR1/Smad4 pathway. RAV may be a potential drug for alleviating urethral fibrosis.
Collapse
Affiliation(s)
- Jin Lv
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Rui Zhang
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - DaoYuan Li
- Department of Urology, Hainan Afliated Hospital of Hainan Medical University, Haikou, China
- Department of Urology, Hainan General Hospital, Haikou, China
| | - Yan Liu
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
22
|
Tao W, Ouyang Z, Liao Z, Li L, Zhang Y, Gao J, Ma L, Yu S. Ursolic Acid Alleviates Cancer Cachexia and Prevents Muscle Wasting via Activating SIRT1. Cancers (Basel) 2023; 15:cancers15082378. [PMID: 37190306 DOI: 10.3390/cancers15082378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Skeletal muscle wasting is the most remarkable phenotypic feature of cancer cachexia that increases the risk of morbidity and mortality. However, there are currently no effective drugs against cancer cachexia. Ursolic acid (UA) is a lipophilic pentacyclic triterpene that has been reported to alleviate muscle atrophy and reduce muscle decomposition in some disease models. This study aimed to explore the role and mechanisms of UA treatment in cancer cachexia. We found that UA attenuated Lewis lung carcinoma (LLC)-conditioned medium-induced C2C12 myotube atrophy and muscle wasting of LLC tumor-bearing mice. Moreover, UA dose-dependently activated SIRT1 and downregulated MuRF1 and Atrogin-1. Molecular docking results revealed a good binding effect on UA and SIRT1 protein. UA rescued vital features wasting without impacting tumor growth, suppressed the elevated spleen weight, and downregulated serum concentrations of inflammatory cytokines in vivo. The above phenomena can be attenuated by Ex-527, an inhibitor of SIRT1. Furthermore, UA remained protective against cancer cachexia in the advanced stage of tumor growth. The results revealed that UA exerts an anti-cachexia effect via activating SIRT1, thereby downregulating the phosphorylation levels of NF-κB and STAT3. UA might be a potential drug against cancer cachexia.
Collapse
Affiliation(s)
- Weili Tao
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ze Ouyang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqi Liao
- Reproductive Medicine Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Li
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujie Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiali Gao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Ma
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiying Yu
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
23
|
Lee H, Jeong JH, Hwang SH, Yeon SH, Ryu JH. A Lignan from Alnus japonica Activates Myogenesis and Alleviates Dexamethasone-induced Myotube Atrophy. PLANTA MEDICA 2023; 89:484-492. [PMID: 35789994 DOI: 10.1055/a-1891-3366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To find inhibitors against skeletal muscle loss, we isolated a lignan compound ((-)-(2R,3R-1,4-O-diferuloylsecoisolarciresinol, DFS) from the stem of Alnus japonica. C2C12 myoblasts were treated with DFS during differentiation. To induce an in vitro atrophic condition, differentiated myotubes were treated with dexamethasone (a synthetic glucocorticoid). DFS (10 nM) increased expression levels of myogenic factors and the number of multi-nucleated myotubes expressing myosin heavy chain (MHC). The myogenic potential of DFS could be attributed to p38 MAPK activation. DFS also protected against dexamethasone-induced damage, showing increased expression of MHC and mammalian target of rapamycin (mTOR), a major anabolic factor. Under atrophic condition, the anti-myopathy effect of DFS was associated with inactivation of NF-κB signaling pathway and the subsequent suppression of muscle degradative E3 ligases and myostatin. DFS treatment also restored fast muscle fiber (type II a, II b, and II x), known to be susceptible to dexamethasone. These results indicate that DFS isolated from A. japonica can stimulate myogenesis via p38 MAPK activation and alleviate muscle atrophy by modulating the expression of genes associated with muscle protein anabolism/catabolism. Thus, we propose that DFS can be used as a pharmacological and nutraceutical agent for increasing muscle strength or protecting muscle loss.
Collapse
Affiliation(s)
- Hyejin Lee
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Ji Hye Jeong
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | | | | | - Jae-Ha Ryu
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
24
|
Yang L, Chen X, Chen D, Yu B, He J, Luo Y, Zheng P, Chen H, Yan H, Huang Z. Effects of protocatechuic acid on antioxidant capacity, mitochondrial biogenesis and skeletal muscle fiber transformation. J Nutr Biochem 2023; 116:109327. [PMID: 36958419 DOI: 10.1016/j.jnutbio.2023.109327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
In skeletal muscle, the increased proportion of type I muscle fibers has the potential to improve muscle atrophy and prevent human metabolic diseases. Protocatechuic acid (PCA), as a kind of anthocyanin metabolite, has antioxidant and anti-inflammatory physiological activities. The purpose of this experiment was to use mice and C2C12 myotubes to examine if PCA can induce the transformation of muscle fiber and the mechanisms involved. We found that PCA significantly increased the expression of slow myosin heavy chain (MyHC), and markedly decreased the expression of fast MyHC in gastrocnemius muscle of mice and C2C12 myotubes. In addition, PCA also enhanced the antioxidant capacity and promoted mitochondrial biogenesis in mice. Importantly, the AMP-activated protein kinase (AMPK) signaling pathway was activated and AMPK inhibitor compound C attenuated the positive effect of PCA on myofiber conversion. To sum up, we revealed that PCA was able to promote the conversion of skeletal muscle fiber from type II to type I through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, 625014, P. R. China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China.
| |
Collapse
|
25
|
Dai H, Chen X, Chen D, Yu B, He J, Chen H, Yan H, Zheng P, Luo Y, Huang Z. Effects of dietary l-theanine supplementation on pork quality and muscle fiber type transformation in finishing pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2106-2115. [PMID: 36460906 DOI: 10.1002/jsfa.12368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND This experiment aimed to investigate effects of dietary l-theanine supplementation on pork quality and muscle fiber type transformation in finishing pigs. In a 30-day experiment, 18 healthy Duroc × Landrace × Yorkshire (DLY) pigs with an average body weight of 86.03 ± 0.83 kg were randomly divided into three groups (a basal diet or a basal diet supplemented with 500 and 1000 ppm l-theanine, respectively), with six duplicates and one pig per replicate. RESULTS The results showed that dietary 1000 ppm l-theanine supplementation significantly reduced (P < 0.05) b*24 h and drip loss. Dietary 1000 ppm l-theanine supplementation significantly increased (P < 0.05) slow myosin heavy chain (MyHC) protein expression and the percentage of slow-twitch fibers, as well as significantly decreased (P < 0.05) fast MyHC protein expression and the percentage of fast-twitch fibers, accompanied by an increase in succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) activities and a decrease in lactate dehydrogenase (LDH) activity. In addition, the adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway was activated by l-theanine. CONCLUSION Together, this study demonstrated for the first time that dietary supplementation of 1000 ppm l-theanine can improve pork color and drip loss and promote muscle fiber type transformation from fast-twitch to slow-twitch in finishing pigs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hanna Dai
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, P. R. China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
26
|
Meng Q, Li J, Wang C, Shan A. Biological function of resveratrol and its application in animal production: a review. J Anim Sci Biotechnol 2023; 14:25. [PMID: 36765425 PMCID: PMC9921422 DOI: 10.1186/s40104-022-00822-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/08/2022] [Indexed: 02/12/2023] Open
Abstract
With the prohibition of antibiotics in feed, plant functional substances have been widely studied as feed additives. Resveratrol, a natural stilbene, and a non-flavonoid polyphenol found in plants, possesses antioxidant, anti-inflammatory, and metabolic regulatory features. Resveratrol generated intense scientific and public interest, primarily due to its widely reported ability to prevent cancer, delay aging and alleviate related metabolic diseases. Recently, resveratrol has been studied and applied as a feed additive in animal production. This review focuses on the outline of the absorption and metabolism and biological functions of resveratrol and summarizes the application of dietary resveratrol in animal production up to the present, including pigs, poultry, and ruminants. In pigs, dietary resveratrol improved intestinal health, mitochondrial function, meat quality, and more. In poultry, studies have shown that dietary resveratrol improves growth performance and meat and egg quality and alleviates heat stress induced adverse effects. There are few studies on dietary resveratrol in ruminants; however previous studies have indicated that dietary resveratrol increases nutrient digestibility and reduces methane emissions in sheep. It is hoped that this review could provide a specific theoretical basis and research ideas for the research and application of resveratrol.
Collapse
Affiliation(s)
- Qingwei Meng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Jiawei Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Chunsheng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
27
|
Su LY, Huang WC, Kan NW, Tung TH, Huynh LBP, Huang SY. Effects of Resveratrol on Muscle Inflammation, Energy Utilisation, and Exercise Performance in an Eccentric Contraction Exercise Mouse Model. Nutrients 2023; 15:249. [PMID: 36615906 PMCID: PMC9824440 DOI: 10.3390/nu15010249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Eccentric contraction can easily cause muscle damage and an inflammatory response, which reduces the efficiency of muscle contraction. Resveratrol causes anti-inflammatory effects in muscles, accelerates muscle repair, and promotes exercise performance after contusion recovery. However, whether resveratrol provides the same benefits for sports injuries caused by eccentric contraction is unknown. Thus, we explored the effects of resveratrol on inflammation and energy metabolism. In this study, mice were divided into four groups: a control group, an exercise group (EX), an exercise with low-dose resveratrol group (EX + RES25), and an exercise with high-dose resveratrol group (EX + RES150). The results of an exhaustion test showed that the time before exhaustion of the EX + RES150 group was greater than that of the EX group. Tumour necrosis factor-α (Tnfα) mRNA expression was lower in the EX + RES150 group than in the EX group. The energy utilisation of the EX + RES150 group was greater than that of the EX + RES25 group in different muscles. High-dose resveratrol intervention decreased Tnfα mRNA expression and enhanced the mRNA expressions of sirtuin 1, glucose transporter 4, AMP-activated protein kinase α1, and AMP-activated protein kinase α2 in muscles. These results revealed that high-dose resveratrol supplementation can reduce inflammation and oxidation and improve energy utilisation during short-duration high-intensity exercise.
Collapse
Affiliation(s)
- Liang-Yu Su
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan
| | - Nai-Wen Kan
- Office of Physical Education Affairs, Taipei Medical University Hospital, Taipei 110301, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Linh Ba Phuong Huynh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Department of Public Health, Nutrition and Food Safety, Lien Chieu Hospital, Danang 551000, Vietnam
| | - Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
28
|
Jin Y, Liu X, Liang X, Liu J, Liu J, Han Z, Lu Q, Wang K, Meng B, Zhang C, Xu M, Guan J, Ma L, Zhou L. Resveratrol rescues cutaneous radiation-induced DNA damage via a novel AMPK/SIRT7/HMGB1 regulatory axis. Cell Death Dis 2023; 13:847. [PMID: 36587031 PMCID: PMC9805450 DOI: 10.1038/s41419-022-05281-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 01/02/2023]
Abstract
Cutaneous radiation injury (CRI) interrupts the scheduled process of radiotherapy and even compromises the life quality of patients. However, the current clinical options for alleviating CRI are relatively limited. Resveratrol (RSV) has been shown to be a promising protective agent against CRI; yet the mechanisms of RSV enhancing radioresistance were not fully elucidated and limited its clinical application. In this study, we demonstrate RSV promotes cutaneous radioresistance mainly through SIRT7. During ionizing radiation (IR) treatment, RSV indirectly phosphorylates and activates SIRT7 through AMPK, which is critical for maintaining the genome stability of keratinocytes. Immunoprecipitation and mass spectrometry identified HMGB1 to be the key interacting partner of SIRT7 to mediate the radioprotective function of RSV. Mechanistic study elucidated that SIRT7 interacts with and deacetylates HMGB1 to redistribute it into nucleus and "switch on" its function for DNA damage repair. Our findings establish a novel AMPK/SIRT7/HMGB1 regulatory axis that mediates the radioprotective function of RSV to alleviate IR-induced cutaneous DNA injury, providing an efficiently-curative option for patients with CRI during radiotherapy.
Collapse
Affiliation(s)
- Yi Jin
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xingyuan Liu
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoting Liang
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiabin Liu
- grid.284723.80000 0000 8877 7471Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jieyu Liu
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zonglin Han
- Guangdong Experimental High School, Guangzhou, China
| | - Qianxin Lu
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ke Wang
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bingyao Meng
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chunting Zhang
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Minna Xu
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jian Guan
- grid.284723.80000 0000 8877 7471Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Ma
- grid.284723.80000 0000 8877 7471Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Liang Zhou
- grid.284723.80000 0000 8877 7471Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Lin Y, Yan H, Cao L, Mou D, Ding D, Qin B, Che L, Fang Z, Xu S, Zhuo Y, Li J, Wang J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal organic selenium supplementation during gestation enhances muscle fiber area and muscle fiber maturation of offspring in porcine model. J Anim Sci Biotechnol 2022; 13:121. [PMID: 36329544 PMCID: PMC9635109 DOI: 10.1186/s40104-022-00773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022] Open
Abstract
Background Organic selenium supplementation during gestation improves the antioxidant status and reproductive performance of sows and increases the antioxidative capacity of the intestines of their offspring. This study was conducted to investigate the effect of maternal basel diet (control) supplemented with an organic Se, 2-hydroxy-4-methylselenobutanoic acid (HMSeBA), or inorganic sodium selenite (Na2SeO3) during gestation on the antioxidant status and development of muscle in newborn and weaned piglets. Newborn piglets before colostrum intake and weaned piglets were selected for longissimus dorsi (LD) muscle collection and analysis. Results The results showed that maternal HMSeBA supplementation increased the muscle area and content of Se in the LD muscle of newborn piglets, improved gene expression of selenoproteins, and decreased oxidative status in the LD muscle of both newborn and weaned piglets compared with the control. The expression of muscle development-related genes of newborn piglets in the HMSeBA group was lower than in the control group, whereas the expression of MRF4 in weaned piglets was higher in the HMSeBA group than in the control and Na2SeO3 groups. In addition, HMSeBA supplementation decreased the mRNA expressions of myosin heavy chains (MyHC) IIx and MyHC IIb and the percentage of MyHC IIb; increased the expression of PGC-1α in the LD muscle of newborn piglets; increased the gene expression of MyHC IIa; and decreased the protein expression of slow MyHC and the activity of malate dehydrogenase in the LD muscle of weaned piglets compared with the control group. Conclusions Maternal HMSeBA supplementation during gestation can improve the antioxidative capacity of the muscle of their offspring and promote the maturity of muscle fibres in weaned offspring.
Collapse
Affiliation(s)
- Yan Lin
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Lei Cao
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Daolin Mou
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Dajiang Ding
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Binting Qin
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- grid.80510.3c0000 0001 0185 3134College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yuanfeng Zou
- grid.80510.3c0000 0001 0185 3134College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Lixia Li
- grid.80510.3c0000 0001 0185 3134College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - De Wu
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- grid.80510.3c0000 0001 0185 3134Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China ,grid.80510.3c0000 0001 0185 3134Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
30
|
Yan Y, Li M, Lin J, Ji Y, Wang K, Yan D, Shen Y, Wang W, Huang Z, Jiang H, Sun H, Qi L. Adenosine monophosphate activated protein kinase contributes to skeletal muscle health through the control of mitochondrial function. Front Pharmacol 2022; 13:947387. [PMID: 36339617 PMCID: PMC9632297 DOI: 10.3389/fphar.2022.947387] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022] Open
Abstract
Skeletal muscle is one of the largest organs in the body and the largest protein repository. Mitochondria are the main energy-producing organelles in cells and play an important role in skeletal muscle health and function. They participate in several biological processes related to skeletal muscle metabolism, growth, and regeneration. Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor and regulator of systemic energy balance. AMPK is involved in the control of energy metabolism by regulating many downstream targets. In this review, we propose that AMPK directly controls several facets of mitochondrial function, which in turn controls skeletal muscle metabolism and health. This review is divided into four parts. First, we summarize the properties of AMPK signal transduction and its upstream activators. Second, we discuss the role of mitochondria in myogenesis, muscle atrophy, regeneration post-injury of skeletal muscle cells. Third, we elaborate the effects of AMPK on mitochondrial biogenesis, fusion, fission and mitochondrial autophagy, and discuss how AMPK regulates the metabolism of skeletal muscle by regulating mitochondrial function. Finally, we discuss the effects of AMPK activators on muscle disease status. This review thus represents a foundation for understanding this biological process of mitochondrial dynamics regulated by AMPK in the metabolism of skeletal muscle. A better understanding of the role of AMPK on mitochondrial dynamic is essential to improve mitochondrial function, and hence promote skeletal muscle health and function.
Collapse
Affiliation(s)
- Yan Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People’s Hospital Affiliated to Kangda College of Nanjing Medical University, Yancheng, China
| | - Jie Lin
- Department of Infectious Disease, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Dajun Yan
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Wei Wang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Haiyan Jiang, ; Hualin Sun, ; Lei Qi,
| |
Collapse
|
31
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
32
|
Bioactive Components in Whole Grains for the Regulation of Skeletal Muscle Function. Foods 2022; 11:foods11182752. [PMID: 36140879 PMCID: PMC9498156 DOI: 10.3390/foods11182752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle plays a primary role in metabolic health and physical performance. Conversely, skeletal muscle dysfunctions such as muscular dystrophy, atrophy and aging-related sarcopenia could lead to frailty, decreased independence and increased risk of hospitalization. Dietary intervention has become an effective approach to improving muscle health and function. Evidence shows that whole grains possess multiple health benefits compared with refined grains. Importantly, there is growing evidence demonstrating that bioactive substances derived from whole grains such as polyphenols, γ-oryzanol, β-sitosterol, betaine, octacosanol, alkylresorcinols and β-glucan could contribute to enhancing myogenesis, muscle mass and metabolic function. In this review, we discuss the potential role of whole-grain-derived bioactive components in the regulation of muscle function, emphasizing the underlying mechanisms by which these compounds regulate muscle biology. This work will contribute toward increasing awareness of nutraceutical supplementation of whole grain functional ingredients for the prevention and treatment of muscle dysfunctions.
Collapse
|
33
|
Yang X, Xue P, Liu Z, Li W, Li C, Chen Z. SESN2 prevents the slow-to-fast myofiber shift in denervated atrophy via AMPK/PGC-1α pathway. Cell Mol Biol Lett 2022; 27:66. [PMID: 35945510 PMCID: PMC9361691 DOI: 10.1186/s11658-022-00367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sestrin2 (SESN2), a stress-inducible protein, has been reported to protect against denervated muscle atrophy through unfolded protein response and mitophagy, while its role in myofiber type transition remains unknown. METHODS A mouse sciatic nerve transection model was created to evaluate denervated muscle atrophy. Myofiber type transition was confirmed by western blot, fluorescence staining, ATP quantification, and metabolic enzyme activity analysis. Adeno-associated virus (AAV) was adopted to achieve SESN2 knockdown and overexpression in gastrocnemius. AMPK/PGC-1α signal was detected by western blot and activated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). C2C12 myotubes with rotenone treatment were adopted for in vitro experiments. RESULTS SESN2 was found to be upregulated in denervated skeletal muscles and rotenone-treated C2C12 cells. Knockdown of SESN2 aggravated muscle atrophy and accelerated myofiber type transition from slow-twitch to fast-twitch. Moreover, AMPK/PGC-1α signaling was proven to be activated by SESN2 after denervation, which further induced the expression of hypoxia-inducible factor HIF2α. Exogenous activation of AMPK/PGC-1α signaling could counteract the addition of slow-to-fast myofiber shift caused by SESN2 knockdown and lead to the retainment of muscle mass after denervation. CONCLUSION Collectively, the present study indicates that SESN2 prevents myofiber type transition from slow-twitch to fast-twitch and preserves muscle mass in denervated atrophy via AMPK/PGC-1α signaling. These findings contribute to a better understanding of the pathogenesis of muscle atrophy and provide novel insights into the role of SESN2 in myofiber type transition.
Collapse
Affiliation(s)
- Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pingping Xue
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhenyu Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, 518052, China
| | - Chuyan Li
- Department of Hand and Foot Surgery, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, 518052, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
34
|
Zhang L, Li F, Guo Q, Duan Y, Wang W, Yang Y, Yin Y, Gong S, Han M, Yin Y. Balanced branched-chain amino acids modulate meat quality by adjusting muscle fiber type conversion and intramuscular fat deposition in finishing pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3796-3807. [PMID: 34921408 DOI: 10.1002/jsfa.11728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Pork is an important food for humans and improving the quality of pork is closely related to human health. This study was designed to investigate the effects of balanced branched-chain amino acid (BCAA)-supplemented protein-restricted diets on meat quality, muscle fiber types, and intramuscular fat (IMF) in finishing pigs. RESULTS The results showed that, compared with the normal protein diet (160 g kg-1 crude protein), the reduced-protein diet (120 g kg-1 crude protein) supplemented with BCAAs to the ratio of 2:1:2 not only had higher average daily gain (P < 0.05) and carcass weight (P < 0.05) but also improved meat tenderness and juiciness by decreasing shear force (P < 0.05) and increasing water-holding capacity (P < 0.05). In particular, this treatment showed higher (P < 0.05) levels of phospho-acetyl-CoA carboxylase (P-ACC) and peroxisome proliferation-activated receptor-γ (PPARγ), and lower (P < 0.05) levels of P-adenosine 5'-monophosphate (AMP)-activated protein kinase (P-AMPK), increasing the composition of IMF and MyHC I (P < 0.05) in the longissimus dorsi muscle (LDM). In terms of health, this group increased eicosapentaenoic acid (EPA) (P < 0.01) and desirable hypocholesterolemic fatty acids (DHFA) (P < 0.05), and decreased atherogenicity (AI) (P < 0.01) and hypercholesterolemic saturated fatty acids (HSFA) (P < 0.05). CONCLUSION Our findings suggest a novel role for a balanced BCAA-supplemented restricted protein (RP) diet in the epigenetic regulation of more tender and healthier pork by increasing IMF deposition and fiber type conversion, providing a cross-regulatory molecular basis for revealing the nutritional regulation network of meat quality. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Wenlong Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Yuhuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mengmeng Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| |
Collapse
|
35
|
Xiang J, Du M, Wang H. Dietary Plant Extracts in Improving Skeletal Muscle Development and Metabolic Function. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2087669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Hanning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
36
|
Wang X, Liu G, Xie S, Pan L, Tan Q. Growth and Meat Quality of Grass Carp ( Ctenopharyngodon idellus) Responded to Dietary Protein (Soybean Meal) Level Through the Muscle Metabolism and Gene Expression of Myosin Heavy Chains. Front Nutr 2022; 9:833924. [PMID: 35419399 PMCID: PMC8996190 DOI: 10.3389/fnut.2022.833924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 01/23/2023] Open
Abstract
The aim of this study was to investigate the effect of dietary protein level (soybean meal) on growth performance, flesh quality of grass carp, and the related molecular mechanisms. The results showed that appropriate dietary protein levels improved the growth performance, hardness, and pH of muscle while decreasing muscle crude lipid content and cooking loss and altering the antioxidant capacity and metabolic enzymes activities. In addition, appropriate dietary protein promoted the gene expression of myhc-1, myhc-4, myf5, myod, myog, and fgf6a, whereas inhibited that of myhc-7, myhc-2, mrf4, and mstn. Transcriptome profiling of muscle revealed that the flesh quality-specific differences were related to tight junctions and intramuscular fat (IMF) accumulation. GSEA showed that fatty acid metabolism and oxidative phosphorylation were downregulated in SM5 compared with SM1. To conclude, appropriate protein levels improved the growth and flesh quality by regulating muscle antioxidant capacity and gene expression of myhcs and fat metabolism-related signaling molecules.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Guoqing Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lei Pan
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Qingsong Tan
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| |
Collapse
|
37
|
Wen W, Chen X, Huang Z, Chen D, Yu B, He J, Yan H, Luo Y, Chen H, Zheng P, Yu J. Resveratrol regulates muscle fiber type gene expression through AMPK signaling pathway and miR-22-3p in porcine myotubes. Anim Biotechnol 2022; 33:579-585. [PMID: 35264052 DOI: 10.1080/10495398.2022.2046599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study aimed to investigate the effect and underlying mechanisms of resveratrol on porcine muscle fiber type gene expression in porcine myotubes. Here, results showed that resveratrol treatment significantly promoted slow myosin heavy chain (MyHC) and inhibited fast MyHC in porcine myotubes. The phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and the downstream factors of AMPK signaling, such as Sirtuin1 (Sirt1) and peroxlsome proliferator-activated receptor-γ coactlvator-1α (PGC-1α), were also increased by resveratrol, suggesting that resveratrol could activate the AMPK signaling pathway. Interestingly, resveratrol inhibited the expression of miR-22-3p in porcine myotubes. Furthermore, AMPK inhibitor compound C and miR-22-3p mimic effectively eliminated the effects of resveratrol on slow MyHC and fast MyHC expressions in porcine myotubes. Taken together, our findings indicate that resveratrol regulates muscle fiber type gene expression through the AMPK signaling pathway and miR-22-3p in porcine myotubes.
Collapse
Affiliation(s)
- Wanxue Wen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Dietary lycopene supplementation improves meat quality, antioxidant capacity and skeletal muscle fiber type transformation in finishing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:256-264. [PMID: 34988307 PMCID: PMC8688882 DOI: 10.1016/j.aninu.2021.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate effects of dietary lycopene supplementation on meat quality, antioxidant ability and muscle fiber type transformation in finishing pigs. In a 70-day experiment, 18 Duroc × Landrace × Yorkshire barrows were randomly allocated to 3 dietary treatments including a basal diet supplemented with 0, 100 and 200 mg/kg lycopene, respectively. Each dietary treatment had 6 replicates with one pig each. Results showed that dietary 200 mg/kg lycopene supplementation increased muscle redness a∗ value, intramuscular fat and crude protein contents, and decreased muscle lightness L∗ and yellowness b∗ values (P < 0.05), suggesting that addition of 200 mg/kg lycopene to the diet of finishing pigs improved color, nutritional value and juiciness of pork after slaughter. Results also showed that dietary lycopene supplementation enhanced antioxidant capacity of finishing pigs (P < 0.05). Moreover, dietary supplementation of 200 mg/kg lycopene significantly increased slow myosin heavy chain (MyHC) protein level and slow-twitch fiber percentage, and decreased fast MyHC protein level and fast-twitch fiber percentage (P < 0.05), suggesting that the addition of 200 mg/kg lycopene to the diet of finishing pigs promoted muscle fiber type conversion from fast-twitch to slow-twitch. Together, we provide the first evidence that dietary 200 mg/kg lycopene supplementation improves meat quality, enhances antioxidant capacity and promotes muscle fiber type transformation from fast-twitch to slow-twitch in finishing pigs.
Collapse
|
39
|
Zeng C, Shi H, Kirkpatrick LT, Ricome A, Park S, Scheffler JM, Hannon KM, Grant AL, Gerrard DE. Driving an Oxidative Phenotype Protects Myh4 Null Mice From Myofiber Loss During Postnatal Growth. Front Physiol 2022; 12:785151. [PMID: 35283757 PMCID: PMC8908108 DOI: 10.3389/fphys.2021.785151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Postnatal muscle growth is accompanied by increases in fast fiber type compositions and hypertrophy, raising the possibility that a slow to fast transition may be partially requisite for increases in muscle mass. To test this hypothesis, we ablated the Myh4 gene, and thus myosin heavy chain IIB protein and corresponding fibers in mice, and examined its consequences on postnatal muscle growth. Wild-type and Myh4–/– mice had the same number of muscle fibers at 2 weeks postnatal. However, the gastrocnemius muscle lost up to 50% of its fibers between 2 and 4 weeks of age, though stabilizing thereafter. To compensate for the lack of functional IIB fibers, type I, IIA, and IIX(D) fibers increased in prevalence and size. To address whether slowing the slow-to-fast fiber transition process would rescue fiber loss in Myh4–/– mice, we stimulated the oxidative program in muscle of Myh4–/– mice either by overexpression of PGC-1α, a well-established model for fast-to-slow fiber transition, or by feeding mice AICAR, a potent AMP kinase agonist. Forcing an oxidative metabolism in muscle only partially protected the gastrocnemius muscle from loss of fibers in Myh4–/– mice. To explore whether traditional means of stimulating muscle hypertrophy could overcome the muscling deficits in postnatal Myh4–/– mice, myostatin null mice were bred with Myh4–/– mice, or Myh4–/– mice were fed the growth promotant clenbuterol. Interestingly, both genetic and pharmacological stimulations had little impact on mice lacking a functional Myh4 gene suggesting that the existing muscle fibers have maximized its capacity to enlarge to compensate for the lack of its neighboring IIB fibers. Curiously, however, cell signaling events responsible for IIB fiber formation remained intact in the tissue. These findings further show disrupting the slow-to-fast transition of muscle fibers compromises muscle growth postnatally and suggest that type IIB myosin heavy chain expression and its corresponding fiber type may be necessary for fiber maintenance, transition and hypertrophy in mice. The fact that forcing muscle metabolism toward a more oxidative phenotype can partially compensates for the lack of an intact Myh4 gene provides new avenues for attenuating the loss of fast-twitch fibers in aged or diseased muscles.
Collapse
Affiliation(s)
- Caiyun Zeng
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Hao Shi
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - Laila T. Kirkpatrick
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - Aymeric Ricome
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Sungkwon Park
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jason M. Scheffler
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - Kevin M. Hannon
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Alan L. Grant
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - David E. Gerrard
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
- *Correspondence: David E. Gerrard,
| |
Collapse
|
40
|
Lei MY, Cong L, Liu ZQ, Liu ZF, Ma Z, Liu K, Li J, Deng Y, Liu W, Xu B. Resveratrol reduces DRP1-mediated mitochondrial dysfunction via the SIRT1-PGC1α signaling pathway in manganese-induced nerve damage in mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:282-298. [PMID: 34738708 DOI: 10.1002/tox.23397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Excessive manganese (Mn) exposure can cause nerve damage and mitochondrial dysfunction, which may involve defects in mitochondrial dynamics. Resveratrol (RSV) exerts a wide range of beneficial effects via activation of sirtuin 1 (SIRT1) and thus may positively impact Mn-induced mitochondrial damage through the regulation of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) by SIRT1. In this study, we investigated the molecular mechanisms by which RSV alleviates the nerve injury and mitochondrial fragmentation caused by Mn in C57 BL/6 mice. Our results demonstrated that RSV activated the deacetylase activity of SIRT1 and protected against the surge of mitochondrial reactive oxygen species, the loss of mitochondrial membrane potential, and the attenuation of ATP caused by Mn. RSV, therefore, inhibits mitochondrial fragmentation and safeguards neural cells. Increased deacetylase activity led to a reduction in the acetylation of PGC-1α, which directly regulates DRP1 expression by binding to the DRP1 promoter. The resultant attenuation of DRP1-mediated mitochondrial fragmentation in RSV-pretreated mice was abolished by the addition of the SIRT1 inhibitor EX527. Taken together, these findings indicate that RSV alleviates Mn-induced mitochondrial dysfunction mediated by DRP1 by modulating the SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Meng-Yu Lei
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Lin Cong
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Zhi-Qi Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Zhuo-Fan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Jing Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
41
|
Jin SW, Lee GH, Kim JY, Kim CY, Choo YM, Cho W, Han EH, Hwang YP, Kim YA, Jeong HG. Effect of Porcine Whole Blood Protein Hydrolysate on Slow-Twitch Muscle Fiber Expression and Mitochondrial Biogenesis via the AMPK/SIRT1 Pathway. Int J Mol Sci 2022; 23:ijms23031229. [PMID: 35163153 PMCID: PMC8835758 DOI: 10.3390/ijms23031229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is a heterogeneous tissue composed of a variety of functionally different fiber types. Slow-twitch type I muscle fibers are rich with mitochondria, and mitochondrial biogenesis promotes a shift towards more slow fibers. Leucine, a branched-chain amino acid (BCAA), regulates slow-twitch muscle fiber expression and mitochondrial function. The BCAA content is increased in porcine whole-blood protein hydrolysates (PWBPH) but the effect of PWBPH on muscle fiber type conversion is unknown. Supplementation with PWBPH (250 and 500 mg/kg for 5 weeks) increased time to exhaustion in the forced swimming test and the mass of the quadriceps femoris muscle but decreased the levels of blood markers of exercise-induced fatigue. PWBPH also promoted fast-twitch to slow-twitch muscle fiber conversion, elevated the levels of mitochondrial biogenesis markers (SIRT1, p-AMPK, PGC-1α, NRF1 and TFAM) and increased succinate dehydrogenase and malate dehydrogenase activities in ICR mice. Similarly, PWBPH induced markers of slow-twitch muscle fibers and mitochondrial biogenesis in C2C12 myotubes. Moreover, AMPK and SIRT1 inhibition blocked the PWBPH-induced muscle fiber type conversion in C2C12 myotubes. These results indicate that PWBPH enhances exercise performance by promoting slow-twitch muscle fiber expression and mitochondrial function via the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Sun Woo Jin
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (G.H.L.); (J.Y.K.); (C.Y.K.); (Y.A.K.)
- Department of R&D, Jinju Bioindustry Foundation, Jinju 52839, Korea;
| | - Gi Ho Lee
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (G.H.L.); (J.Y.K.); (C.Y.K.); (Y.A.K.)
| | - Ji Yeon Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (G.H.L.); (J.Y.K.); (C.Y.K.); (Y.A.K.)
| | - Chae Yeon Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (G.H.L.); (J.Y.K.); (C.Y.K.); (Y.A.K.)
| | - Young Moo Choo
- Department of R&D, Jinju Bioindustry Foundation, Jinju 52839, Korea;
| | - Whajung Cho
- R&D Institute, AMINOLAB Co., Ltd., Seoul 06774, Korea;
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Korea;
| | | | - Yong An Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (G.H.L.); (J.Y.K.); (C.Y.K.); (Y.A.K.)
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (G.H.L.); (J.Y.K.); (C.Y.K.); (Y.A.K.)
- Correspondence: ; Tel.: +82-42-821-5936
| |
Collapse
|
42
|
Hao D, Wang X, Yang Y, Thomsen B, Holm LE, Qu K, Huang B, Chen H. Integrated Analysis of mRNA and MicroRNA Co-expressed Network for the Differentiation of Bovine Skeletal Muscle Cells After Polyphenol Resveratrol Treatment. Front Vet Sci 2022; 8:777477. [PMID: 35036414 PMCID: PMC8759604 DOI: 10.3389/fvets.2021.777477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023] Open
Abstract
Resveratrol (RSV) has been confirmed to benefit human health. Resveratrol supplemented in the feeds of animals improved pork, chicken, and duck meat qualities. In this study, we identified differentially expressed (DE) messenger RNAs (mRNAs) (n = 3,856) and microRNAs (miRNAs) (n = 93) for the weighted gene co-expression network analysis (WGCNA) to investigate the co-expressed DE mRNAs and DE miRNAs in the primary bovine myoblasts after RSV treatment. The mRNA results indicated that RSV treatments had high correlations with turquoise module (0.91, P-value = 0.01) and blue module (0.93, P-value < 0.01), while only the turquoise module (0.96, P-value < 0.01) was highly correlated with the treatment status using miRNA data. After biological enrichment analysis, the 2,579 DE genes in the turquoise module were significantly enriched in the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The top two GO terms were actin filament-based process (GO:0030029) and actin cytoskeleton organization (GO:0030036). The top two KEGG pathways were regulation of actin cytoskeleton (bta04810) and tight junction (bta04530). Then, we constructed the DE mRNA co-expression and DE miRNA co-expression networks in the turquoise module and the mRNA–miRNA targeting networks based on their co-expressions in the key module. In summary, the RSV-induced miRNAs participated in the co-expression networks that could affect mRNA expressions to regulate the primary myoblast differentiation. Our study provided a better understanding of the roles of RSV in inducing miRNA and of the characteristics of DE miRNAs in the key co-expressed module in regulation of mRNAs and revealed new candidate regulatory miRNAs and genes for the beef quality traits.
Collapse
Affiliation(s)
- Dan Hao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Xiao Wang
- Konge Larsen ApS, Kongens Lyngby, Denmark
| | - Yu Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China
| | - Bo Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lars-Erik Holm
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, China.,College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
43
|
MiR-22-3p Inhibits Proliferation and Promotes Differentiation of Skeletal Muscle Cells by Targeting IGFBP3 in Hu Sheep. Animals (Basel) 2022; 12:ani12010114. [PMID: 35011220 PMCID: PMC8749897 DOI: 10.3390/ani12010114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022] Open
Abstract
The growth and development of skeletal muscle require a series of regulatory factors. MiRNA is a non-coding RNA with a length of about 22 nt, which can inhibit the expression of mRNA and plays an important role in the growth and development of muscle cells. The role of miR-22-3p in C2C12 cells and porcine skeletal muscle has been reported, but it has not been verified in Hu sheep skeletal muscle. Through qPCR, CCK-8, EdU and cell cycle studies, we found that overexpression of miR-22-3p inhibited proliferation of skeletal muscle cells (p < 0.01). The results of qPCR and immunofluorescence showed that overexpression of miR-22-3p promoted differentiation of skeletal muscle cells (p < 0.01), while the results of inhibiting the expression of miR-22-3p were the opposite. These results suggested that miR-22-3p functions in growth and development of sheep skeletal muscle cells. Bioinformatic analysis with mirDIP, miRTargets, and RNAhybrid software suggested IGFBP3 was the target of miR-22-3p, which was confirmed by dual-luciferase reporter system assay. IGFBP3 is highly expressed in sheep skeletal muscle cells. Overexpression of IGFBP3 was found to promote proliferation of skeletal muscle cells indicated by qPCR, CCK-8, EdU, and cell cycle studies (p < 0.01). The results of qPCR and immunofluorescence experiments proved that overexpression of IGFBP3 inhibited differentiation of skeletal muscle cells (p < 0.01), while the results of interfering IGFBP3 with siRNA were the opposite. These results indicate that miR-22-3p is involved in proliferation and differentiation of skeletal muscle cells by targeting IGFBP3.
Collapse
|
44
|
Wang B, Wang Y, Xu K, Zeng Z, Xu Z, Yue D, Li T, Luo J, Liu J, Yuan J. Resveratrol alleviates sepsis-induced acute kidney injury by deactivating the lncRNA MALAT1/MiR-205 axis. Cent Eur J Immunol 2021; 46:295-304. [PMID: 34764801 PMCID: PMC8574118 DOI: 10.5114/ceji.2021.109195] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Resveratrol plays a protective role against sepsis development, and the long noncoding RNA (lncRNA) MALAT1 is an inflammation-relevant biomarker. This investigation attempted to reveal whether resveratrol attenuated inflammation of sepsis-induced acute kidney injury (AKI) by regulating MALAT1. MATERIAL AND METHODS In total 120 rats were divided into a control group (n = 20), a Sham group (n = 20), a sepsis group (n = 40) and a resveratrol group (n = 40), and serum levels of inflammatory cytokines and AKI biomarkers were determined. An equal number of rats under identical treatments were, additionally, tracked for their survival, and the serum level of lncRNA MALAT1 was measured by RT-PCR. Moreover, septic cell models were constructed by treating HK-2 cells with lipopolysaccharide (LPS), and tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 levels released by the cells were determined with ELISA. RESULTS Resveratrol treatment significantly brought down serum levels of inflammatory cytokines (i.e. TNF-α, IL-1β and IL-6), kidney function indicators (i.e. Scr, blood urea nitrogen [BUN] and Scys C), AKI biomarkers (i.e. NGAL and KIM-1) and MALAT1 in cecal ligation and puncture (CLP)-induced septic model rats (all p < 0.05), and the life span of septic rats was elongated by resveratrol treatment (p < 0.05). Viability and cytokine release of LPS-treated HK2 cells were rescued by resveratrol (p < 0.05), which was accompanied by a marked fall of MALAT1 expression (p < 0.05). In addition, si-MALAT1 diminished viability and suppressed cytokine release of HK2 cells, while pcDNA3.1-MALAT1 hindered the impact of resveratrol on the inflammatory response of HK2 cells (p < 0.05). Ultimately, miR-205, a protective molecule in sepsis-relevant AKI, was down-regulated by resveratrol and si-MALAT1 (p < 0.05). CONCLUSIONS Resveratrol relieved sepsis-induced AKI by restraining the lncRNA MALAT1/miR-205 axis.
Collapse
Affiliation(s)
- Biao Wang
- The Second Hospital, University of South China, China
| | | | - Ke Xu
- Chenzhou No. 1 People’s Hospital, China
| | - Zhenhua Zeng
- Nanfang Hospital, Southern Medical University, China
| | | | | | - Tao Li
- Chenzhou No. 1 People’s Hospital, China
| | - Jihui Luo
- Chenzhou No. 1 People’s Hospital, China
| | | | | |
Collapse
|
45
|
Effect of dietary L-theanine supplementation on skeletal muscle fiber type transformation in vivo. J Nutr Biochem 2021; 99:108859. [PMID: 34517095 DOI: 10.1016/j.jnutbio.2021.108859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022]
Abstract
The aim of this study was to investigate the effect of dietary L-theanine supplementation on skeletal muscle fiber type transition in mice. Our data indicated that dietary 0.15% L-theanine supplementation significantly increased the mRNA expression levels of muscle fiber type related genes (MyHC I, MyHC IIa, PGC-1α, Sirt1, Tnnt1, Tnnc1, Tnni1, MEF2C) and the protein expression levels of MyHC IIa, myoglobin, PGC-1α, Sirt1 and Troponin I-SS, but significantly decreased the mRNA and protein expression levels of MyHC IIb. Dietary 0.15% L-theanine supplementation significantly increased the activities of SDH and MDH and decreased the activity of LDH. Furthermore, immunofluorescence demonstrated that dietary 0.15% L-theanine supplementation significantly increased the percentage of type I fibers, and significantly decreased the percentage of type II fibers. In addition, we found that dietary 0.15% L-theanine supplementation increased the fatigue-resistant, antioxidant capacity, mitochondrial biogenesis, and function in skeletal muscle of mice. Furthermore, dietary 0.15% L-theanine supplementation significantly increased the mRNA levels of prox1, CaN and NFATc1, the protein levels of prox1, CNA and NFATc1 and the activity of CaN in GAS muscle when compared with the control group. These results indicated that dietary L-theanine supplementation promoted skeletal muscle fiber transition from type II-type I, which might be via activation of CaN and/or NFATc1 signaling pathway.
Collapse
|
46
|
Koh YC, Ho CT, Pan MH. Recent Advances in Health Benefits of Stilbenoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10036-10057. [PMID: 34460268 DOI: 10.1021/acs.jafc.1c03699] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biological targeting or molecular targeting is the main strategy in drug development and disease prevention. However, the problem of "off-targets" cannot be neglected. Naturally derived drugs are preferred over synthetic compounds in pharmaceutical markets, and the main goals are high effectiveness, lower cost, and fewer side effects. Single-target drug binding may be the major cause of failure, as the pathogenesis of diseases is predominantly multifactorial. Naturally derived drugs are advantageous because they are expected to have multitarget effects, but not off-targets, in disease prevention or therapeutic actions. The capability of phytochemicals to modulate molecular signals in numerous diseases has been widely discussed. Among them, stilbenoids, especially resveratrol, have been well-studied, along with their potential molecular targets, including AMPK, Sirt1, NF-κB, PKC, Nrf2, and PPARs. The analogues of resveratrol, pterostilbene, and hydroxylated-pterostilbene may have similar, if not more, potential biological targeting effects compared with their original counterpart. Furthermore, new targets that have been discussed in recent studies are reviewed in this paper.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan 404
- Department of Health and Nutrition Biotechnology, Asia University, Taichung City, Taiwan 413
| |
Collapse
|
47
|
Su X, Zhou J, Wang W, Yin C, Wang F. VK2 regulates slow-twitch muscle fibers expression and mitochondrial function via SIRT1/SIRT3 signaling. Nutrition 2021; 93:111412. [PMID: 34749061 DOI: 10.1016/j.nut.2021.111412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Skeletal muscle accounts for 80% of whole body insulin-stimulated glucose uptake, and it plays a key role in preventing and curing obesity and insulin resistance (IR). Vitamin K2 (VK2) plays a beneficial role in improving mitochondrial function through SIRT1 signaling in high-fat diet (HFD)-induced mice and palmitate acid (PA)-treated C2C12 cells. A previous study also found VK2 increases oxidative muscle fibers and decreases glycolytic muscle fibers in obesity-induced mice, however, the underlying molecular mechanism of effect of VK2 on increasing oxidative fibers have not been well established. METHODS C57BL/6 male mice were induced IR using HFD fed. Animals received HFD for eight weeks, and different doses of VK2 were supplemented by oral gavage for the last eight weeks were randomly and equally divided into seven groups. C2C12 cells were exposed to different doses of PA for 16 h to mimic insulin resistance in vivo. Skeletal muscle types and mitochondrial function evaluated. C2C12 cells were transfected with SIRT1 siRNA. RESULTS The present study first revealed that VK2 intervention also alleviated plasma non-esterified fatty acid levels that contribute to obesity-induced IR, VK2 administration also could effectively increase the proportion of slow-twitch fibers by improving mitochondrial function via SIRT1 signaling pathway in both HFD-fed mice and PA-exposed cells. However, the benefits of VK2 were abrogated in C2C12 transfected with SIRT1 siRNA in PA-treated C2C12 cells. Thus, SIRT1 is partially required for VK2 improvement the proportion of slow-twitch fiber in PA-treated C2C12 cells. CONCLUSION Naturally occurring VK2 increases slow-twitch fibers by improving mitochondrial function and decreasing non-esterified fatty acid levels via partially SIRT1/SIRT3 signaling pathway. These data have potential importance for the therapy for a number of muscular and neuromuscular diseases in humans.
Collapse
Affiliation(s)
- Xiangni Su
- Department of Nursing, The Air Force Medical University of People's Liberation Army, Xi'an, China.
| | - Jian Zhou
- Department of Nutrition and Food Hygiene, The Air Force Medical University of People's Liberation Army, Xi'an, China
| | - Wenchen Wang
- Department of Thoracic Surgery, The Air Force Medical Center of People's Liberation Army, Beijing, China
| | - Caocao Yin
- Department of Nutrition and Food Hygiene, The Air Force Medical University of People's Liberation Army, Xi'an, China
| | - Feng Wang
- Department of Nutrition and Food Hygiene, The Air Force Medical University of People's Liberation Army, Xi'an, China.
| |
Collapse
|
48
|
Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects. Life Sci 2021; 278:119649. [PMID: 34043989 DOI: 10.1016/j.lfs.2021.119649] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a leading cause of death worldwide with high mortality and morbidity. A wide variety of risk factors are considered for LC development such as smoking, air pollution and family history. It appears that genetic and epigenetic factors are also potential players in LC development and progression. AMP-activated protein kinase (AMPK) is a signaling pathway with vital function in inducing energy balance and homeostasis. An increase in AMP:ATP and ADP:ATP ratio leads to activation of AMPK signaling by upstream mediators such as LKB1 and CamKK. Dysregulation of AMPK signaling is a common finding in different cancers, particularly LC. AMPK activation can significantly enhance LC metastasis via EMT induction. Upstream mediators such as PLAG1, IMPAD1, and TUFM can regulate AMPK-mediated metastasis. AMPK activation can promote proliferation and survival of LC cells via glycolysis induction. In suppressing LC progression, anti-tumor compounds including metformin, ginsenosides, casticin and duloxetine dually induce/inhibit AMPK signaling. This is due to double-edged sword role of AMPK signaling in LC cells. Furthermore, AMPK signaling can regulate response of LC cells to chemotherapy and radiotherapy that are discussed in the current review.
Collapse
|
49
|
Wen W, Chen X, Huang Z, Chen D, Yu B, He J, Zheng P, Luo Y, Yan H, Yu J. Lycopene increases the proportion of slow-twitch muscle fiber by AMPK signaling to improve muscle anti-fatigue ability. J Nutr Biochem 2021; 94:108750. [PMID: 33933581 DOI: 10.1016/j.jnutbio.2021.108750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/03/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Lycopene has a wide range of biological functions, especially its antioxidant capacity. However, effects of lycopene on muscle fatigue resistant and muscle fiber type conversion are unknown. In this study, we found that lycopene significantly prolonged the swimming time to exhaustion in mice. We also showed that lycopene increased the proportion of slow-twitch muscle fiber by promoting muscle fiber type conversion from fast-twitch to slow-twitch in mice and in C2C12 myotubes. The AMP-activated protein kinase (AMPK) signaling was activated by lycopene. AMPK upstream and downstream regulators including nuclear respiratory factor 1, calcium calmodulin-dependent protein kinase kinase-β, sirtuin 1 and peroxisome proliferator activated receptor-γ coactivator-1ɑ were also increased by lycopene. AMPK inhibitor compound C markedly attenuated the lycopene-induced skeletal muscle fiber type conversion in C2C12 myotubes. Taken together, we provided the first evidence that lycopene increases the proportion of slow-twitch muscle fiber through AMPK signaling pathway to improve fatigue resistant of skeletal muscle.
Collapse
Affiliation(s)
- Wanxue Wen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
50
|
Lycopene promotes a fast-to-slow fiber type transformation through Akt/FoxO1 signaling pathway and miR-22-3p. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|