1
|
Lai W, Su Y, Li Y, Zuo Y, He K, Zhang T, Peng D, Wang W. Elevated RACGAP1 Expression Enhances Malignant Potential in Lung Adenocarcinoma and Serves as a Prognostic Factor. J Cancer 2024; 15:4244-4258. [PMID: 38947404 PMCID: PMC11212091 DOI: 10.7150/jca.96334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/04/2024] [Indexed: 07/02/2024] Open
Abstract
Background: While RACGAP1 is identified as a potential oncogene, its specific role in lung adenocarcinoma (LUAD) remains unclear. Methods: First, we conducted a comprehensive analysis of the role of RACGAP1 across 33 types of cancer. Subsequently, we investigated the expression levels of RACGAP1 and its impact on prognosis using data from The Cancer Genome Atlas (TCGA) database. We utilized single-cell sequencing data to explore the tumor-related processes of RACGAP1 in LUAD and validated our findings through experimental verification. Employing a consensus clustering (CC) approach, we subdivided LUAD patients into two subtypes based on RACGAP1 cell cycle-related genes (RrCCGs). These subtypes exhibited significant differences in tumor characteristics, lymph node metastasis, and recurrence. Furthermore, we evaluated the prognostic influence of RrCCGs using univariate Cox regression and least absolute shrinkage and selection operator regression models (LASSO), successfully establishing a prognostic model. Results: RACGAP1 is frequently overexpressed in various tumors and can impact the prognosis of patients with LUAD. Additionally, experimental evidence has demonstrated that low expression of RACGAP1 favors tumor cell apoptosis and restoration of the cell cycle, while high expression promotes invasion and metastasis. Through CC analysis of RrCCGs, patients were classified into two groups, with survival analysis revealing distinct prognoses and stages between the two groups. Furthermore, Cox and LASSO regression successfully constructed a prognostic model with robust predictive capability.
Collapse
Affiliation(s)
- Wei Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunshu Su
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangbo Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kunzhuo He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dunyu Peng
- Department of anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
2
|
Koch DT, Yu H, Beirith I, Schirren M, Drefs M, Liu Y, Knoblauch M, Koliogiannis D, Sheng W, De Toni EN, Bazhin AV, Renz BW, Guba MO, Werner J, Ilmer M. Tigecycline causes loss of cell viability mediated by mitochondrial OXPHOS and RAC1 in hepatocellular carcinoma cells. J Transl Med 2023; 21:876. [PMID: 38041179 PMCID: PMC10693093 DOI: 10.1186/s12967-023-04615-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 10/11/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Despite recent advances in locoregional, systemic, and novel checkpoint inhibitor treatment, hepatocellular carcinoma (HCC) is still associated with poor prognosis. The feasibility of potentially curative liver resection (LR) and transplantation (LT) is limited by the underlying liver disease and a shortage of organ donors. Especially after LR, high recurrence rates present a problem and circulating tumor cells are a major cause of extrahepatic recurrence. Tigecycline, a commonly used glycylcycline antibiotic, has been shown to have antitumorigenic effects and could be used as a perioperative and adjuvant therapeutic strategy to target circulating tumor cells. We aimed to investigate the effect of tigecycline on HCC cell lines and its mechanisms of action. METHODS Huh7, HepG2, Hep3B, and immortalized hepatocytes underwent incubation with clinically relevant tigecycline concentrations, and the influence on proliferation, migration, and invasion was assessed in two- and three-dimensional in vitro assays, respectively. Bioinformatic analysis was used to identify specific targets of tigecycline. The expression of RAC1 was detected using western blot, RT-PCR and RNA sequencing. ELISA and flow cytometry were utilized to measure reactive oxygen species (ROS) generation upon tigecycline treatment and flow cytometry to detect alterations in cell cycle. Changes in mitochondrial function were detected via seahorse analysis. RNA sequencing was performed to examine involved pathways. RESULTS Tigecycline treatment resulted in a significant reduction of mitochondrial function with concomitantly preserved mitochondrial size, which preceded the observed decrease in HCC cell viability. The sensitivity of HCC cells to tigecycline treatment was higher than that of immortalized non-cancerous THLE-2 hepatocytes. Tigecycline inhibited both migratory and invasive properties. Tigecycline application led to an increase of detected ROS and an S-phase cell cycle arrest. Bioinformatic analysis identified RAC1 as a likely target for tigecycline and the expression of this molecule was increased in HCC cells as a result of tigecycline treatment. CONCLUSION Our study provides evidence for the antiproliferative effect of tigecycline in HCC. We show for the first time that this effect, likely to be mediated by reduced mitochondrial function, is associated with increased expression of RAC1. The reported effects of tigecycline with clinically relevant and achievable doses on HCC cells lay the groundwork for a conceivable use of this agent in cancer treatment.
Collapse
Affiliation(s)
- Dominik T Koch
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Haochen Yu
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Iris Beirith
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Malte Schirren
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Moritz Drefs
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yunfei Liu
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Mathilda Knoblauch
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Dionysios Koliogiannis
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Enrico N De Toni
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Internal Medicine II, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), DKTK Partner Site Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Bernhard W Renz
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), DKTK Partner Site Munich, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Markus O Guba
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), DKTK Partner Site Munich, Munich, Germany
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplantation Surgery, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Marchioninistr. 15, 81377, Munich, Germany.
- German Cancer Consortium (DKTK), DKTK Partner Site Munich, Munich, Germany.
- Transplantation Center Munich, LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany.
- Liver Center Munich, Ludwig-Maximilians-University Munich, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
| |
Collapse
|
3
|
Zhao L, Wang Z, Xu Y, Zhang P, Qiu J, Nie D, Wu G, Chen C, Chang Y, Xia Q. Sphingosine kinase 1 regulates lipid metabolism to promote progression of kidney renal clear cell carcinoma. Pathol Res Pract 2023; 248:154641. [PMID: 37467634 DOI: 10.1016/j.prp.2023.154641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE To detect the expression of sphingosine kinase 1 (SPHK1) in clear cell renal cell carcinoma (ccRCC) and explore its biological role in the occurrence and development of ccRCC through regulation of fatty acid metabolism. METHODS Using the Cancer Genome Atlas database, SPHK1 expression and its clinical significance were detected in clear cell renal cell carcinoma. Immunohistochemistry was performed to detect SPHK1 expression in RCC samples in our hospital. The connection between the SPHK1 levels and clinicopathological features of patients was assessed. Nile Red was used to detect fatty acids in cells. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were performed to determine the effect of SPHK1 on renal cell viability and proliferation, respectively. Additionally, the effects of SPHK1 on the proliferation and metastasis of ccRCC were studied using wound healing and Transwell assays. Fatty acids were added exogenously in recovery experiments and western blotting was performed to determine the effect of SPHK1 on fatty acid metabolism in ccRCC. Finally, the effects of SPHK1 on tumor growth were investigated in a xenograft model. RESULTS Bioinformatics analysis revealed that SPHK1 expression was upregulated in kidney RCC. OverSPHK1 expression was associated with poor prognosis for ccRCC patients. High SPHK1 expression was detected in human ccRCC. SPHK1 expression was related to clinicopathological features, such as tumor size and Furman grade. Additionally, cell proliferation, migration, and invasion were inhibited in ccRCC cells with low SPHK1 expression. In rescue experiments, proliferation, migration, and invasion were restored. In vivo, reduced SPHK1 levels correlated with lower expression of fatty acid synthase, stearoyl-CoA desaturase 1, and acetyl CoA carboxylase, and slowed tumor growth. CONCLUSIONS SPHK1 is abnormally overexpressed in human ccRCC. Patients with ccRCC may benefit from treatments that target SPHK1, which may also serve as a prognostic indicator.
Collapse
Affiliation(s)
- Leizuo Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Urology, Dongying People's Hospital, Dongying 257000, China
| | - Zicheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| | - Jiechuan Qiu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Dengke Nie
- Department of Chest Surgery, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chen Chen
- Department of Urology, Liaocheng People's Hospital, Shandong University 252000, China
| | - Yao Chang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China.
| |
Collapse
|
4
|
Chuanbing Z, Zhengle Z, Ruili D, Kongfan Z, Jing T. Genes Modulating Butyrate Metabolism for Assessing Clinical Prognosis and Responses to Systematic Therapies in Hepatocellular Carcinoma. Biomolecules 2022; 13:52. [PMID: 36671437 PMCID: PMC9856074 DOI: 10.3390/biom13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Butyrate, one of the major products of the gut microbiota, has played notable roles in diverse therapies for multiple tumors. Our study aimed to determine the roles of genes that modulate butyrate metabolism (BM) in predicting the clinical prognosis and responses to systemic therapies in hepatocellular carcinoma (HCC). The genes modulating BM were available from the GeneCard database, and gene expression and clinical information were obtained from TCGA-LIHC, GEO, ICGC-JP, and CCLE databases. Candidate genes from these genes that regulate BM were then identified by univariate Cox analysis. According to candidate genes, the patients in TCGA were grouped into distinct subtypes. Moreover, BM- related gene signature (BMGs) was created via the LASSO Cox algorithm. The roles of BMGs in identifying high-risk patients of HCC, assessing the prognoses, and predicting systematic therapies were determined in various datasets. The statistical analyses were fulfilled with R 4.1.3, GraphPad Prism 8.0 and Perl 5.30.0.1 software. In the TCGA cohort, most butyrate-related genes were over-expressed in the B cluster, and patients in the B cluster showed worse prognoses. BMGs constructed by LASSO were composed of eight genes. BMGs exhibited a strong performance in evaluating the prognoses of HCC patients in various datasets, which may be superior to 33 published biomarkers. Furthermore, BMGs may contribute to the early surveillance of HCC, and BMGs could play active roles in assessing the effectiveness of immunotherapy, TACE, ablation therapy, and chemotherapeutic drugs for HCC. BMGs may be served as novel promising biomarkers for early identifying high-risk groups of HCC, as well as assessing prognoses, drug sensitivity, and the responses to immunotherapy, TACE, and ablation therapy in patients with HCC.
Collapse
Affiliation(s)
- Zhao Chuanbing
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Zhang Zhengle
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Ding Ruili
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Zhu Kongfan
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Tao Jing
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| |
Collapse
|
5
|
Rac1 as a Target to Treat Dysfunctions and Cancer of the Bladder. Biomedicines 2022; 10:biomedicines10061357. [PMID: 35740379 PMCID: PMC9219850 DOI: 10.3390/biomedicines10061357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/28/2022] Open
Abstract
Bladder pathologies, very common in the aged population, have a considerable negative impact on quality of life. Novel targets are needed to design drugs and combinations to treat diseases such as overactive bladder and bladder cancers. A promising new target is the ubiquitous Rho GTPase Rac1, frequently dysregulated and overexpressed in bladder pathologies. We have analyzed the roles of Rac1 in different bladder pathologies, including bacterial infections, diabetes-induced bladder dysfunctions and bladder cancers. The contribution of the Rac1 protein to tumorigenesis, tumor progression, epithelial-mesenchymal transition of bladder cancer cells and their metastasis has been analyzed. Small molecules selectively targeting Rac1 have been discovered or designed, and two of them—NSC23766 and EHT 1864—have revealed activities against bladder cancer. Their mode of interaction with Rac1, at the GTP binding site or the guanine nucleotide exchange factors (GEF) interaction site, is discussed. Our analysis underlines the possibility of targeting Rac1 with small molecules with the objective to combat bladder dysfunctions and to reduce lower urinary tract symptoms. Finally, the interest of a Rac1 inhibitor to treat advanced chemoresistance prostate cancer, while reducing the risk of associated bladder dysfunction, is discussed. There is hope for a better management of bladder pathologies via Rac1-targeted approaches.
Collapse
|
6
|
Sauzeau V, Beignet J, Vergoten G, Bailly C. Overexpressed or hyperactivated Rac1 as a target to treat hepatocellular carcinoma. Pharmacol Res 2022; 179:106220. [PMID: 35405309 DOI: 10.1016/j.phrs.2022.106220] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
Abstract
Despite novel targeted and immunotherapies, the prognosis remains bleak for patients with hepatocellular carcinoma (HCC), especially for advanced and/or metastatic forms. The rapid emergence of drug resistance is a major obstacle in the success of chemo-, targeted-, immuno-therapies of HCC. Novel targets are needed. The prominent roles of the small GTPase Rac1 in the development and progression of HCC are discussed here, together with its multiple protein partners, and the targeting of Rac1 with RNA-based regulators and small molecules. We discuss the oncogenic functions of Rac1 in HCC, including the contribution of Rac1 mutants and isoform Rac1b. Rac1 is a ubiquitous target, but the protein is frequently overexpressed and hyperactivated in HCC. It contributes to the aggressivity of the disease, with key roles in cancer cell proliferation, tumor metastasis and resistance to treatment. Small molecule targeting Rac1, indirectly or directly, have shown anticancer effects in HCC experimental models. Rac1-binding agents such as EHT 1864 and analogues offer novel opportunities to combat HCC. We discuss the different modalities to repress Rac1 overactivation in HCC with small molecules and the combination with reference drugs to promote cancer cell death and to repress cell invasion. We highlight the necessity to combine Rac1-targeted approach with appropriate biomarkers to select Rac1 activated tumors. Our analysis underlines the prominent oncogenic functions of Rac1 in HCC and discuss the modalities to target this small GTPase. Rac1 shall be considered as a valid target to limit the acquired and intrinsic resistance of HCC tumors and their metastatic potential.
Collapse
Affiliation(s)
- Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du Thorax, Nantes, France.
| | - Julien Beignet
- SATT Ouest Valorisation, 30 boulevard Vincent Gâche, CS 70211, 44202 Nantes Cedex, France
| | - Gérard Vergoten
- University of Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP-83, 59006, Lille, France
| | - Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal 59290, France.
| |
Collapse
|
7
|
You JA, Gong Y, Wu Y, Jin L, Chi Q, Sun D. WGCNA, LASSO and SVM Algorithm Revealed RAC1 Correlated M0 Macrophage and the Risk Score to Predict the Survival of Hepatocellular Carcinoma Patients. Front Genet 2022; 12:730920. [PMID: 35493265 PMCID: PMC9044718 DOI: 10.3389/fgene.2021.730920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Background: RAC1 is involved in the progression of HCC as a regulator, but its prognostic performance and the imbalance of immune cell infiltration mediated by it are still unclear. We aim to explore the prognostic and immune properties of RAC1 in HCC. Methods: We separately downloaded the data related to HCC from the Cancer Genome Atlas (TCGA) and GEO database. CIBERSORT deconvolution algorithm, weighted gene co-expression network analysis (WGCNA) and LASSO algorithm participate in identifying IRGs and the construction of prognostic signatures. Results: The study discovered that RAC1 expression was linked to the severity of HCC lesions, and that its high expression was linked to a poor prognosis. Cox analysis confirmed that RAC1 is a clinically independent prognostic marker. M0, M1 and M2 macrophages’ abundance are significantly different in HCC. We found 828 IRGs related to macrophage infiltration, and established a novel 11-gene signature with excellent prognostic performance. RAC1-based risk score and M0 macrophage has a good ability to predict overall survival. Conclusion: The immune state of irregular macrophage infiltration may be one of the precursors to carcinogenesis. The RAC1 correlated with M0 macrophage and the risk score to show a good performance to predict the survival of HCC patients.
Collapse
Affiliation(s)
- Ji-An You
- College of Technology, Hubei Engineering University, Xiaogan, China
| | - Yuhan Gong
- Department of Geotechnical Engineering, Wuhan University of Technology, Wuhan, China
| | - Yongzhe Wu
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Libo Jin
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
- *Correspondence: Qingjia Chi, ; Da Sun,
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- *Correspondence: Qingjia Chi, ; Da Sun,
| |
Collapse
|
8
|
Romualdo GR, Leroy K, Costa CJS, Prata GB, Vanderborght B, da Silva TC, Barbisan LF, Andraus W, Devisscher L, Câmara NOS, Vinken M, Cogliati B. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers (Basel) 2021; 13:5583. [PMID: 34771745 PMCID: PMC8582701 DOI: 10.3390/cancers13215583] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death globally. HCC is a complex multistep disease and usually emerges in the setting of chronic liver diseases. The molecular pathogenesis of HCC varies according to the etiology, mainly caused by chronic hepatitis B and C virus infections, chronic alcohol consumption, aflatoxin-contaminated food, and non-alcoholic fatty liver disease associated with metabolic syndrome or diabetes mellitus. The establishment of HCC models has become essential for both basic and translational research to improve our understanding of the pathophysiology and unravel new molecular drivers of this disease. The ideal model should recapitulate key events observed during hepatocarcinogenesis and HCC progression in view of establishing effective diagnostic and therapeutic strategies to be translated into clinical practice. Despite considerable efforts currently devoted to liver cancer research, only a few anti-HCC drugs are available, and patient prognosis and survival are still poor. The present paper provides a state-of-the-art overview of in vivo and in vitro models used for translational modeling of HCC with a specific focus on their key molecular hallmarks.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Cícero Júlio Silva Costa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Gabriel Bacil Prata
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
| | - Wellington Andraus
- Department of Gastroenterology, Clinics Hospital, School of Medicine, University of São Paulo (HC-FMUSP), São Paulo 05403-000, Brazil;
| | - Lindsey Devisscher
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| |
Collapse
|
9
|
|