1
|
Melgar-Locatelli S, Mañas-Padilla MC, Castro-Zavala A, Rivera P, Del Carmen Razola-Díaz M, Monje FJ, Rodríguez-Pérez C, Castilla-Ortega E. Diet enriched with high-phenolic cocoa potentiates hippocampal brain-derived neurotrophic factor expression and neurogenesis in healthy adult micewith subtle effects on memory. Food Funct 2024; 15:8310-8329. [PMID: 39069830 DOI: 10.1039/d4fo01201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cocoa is widely known for its health benefits, but its neurocognitive impact remains underexplored. This preclinical study aimed to investigate the effects of cocoa and cocoa polyphenols on hippocampal neuroplasticity, cognitive function and emotional behavior. Seventy young-adult C57BL/6JRj male and female mice were fed either a standard diet (CTR) or a diet enriched with 10% high-phenolic content cocoa (HPC) or low-phenolic content cocoa (LPC) for at least four weeks. In a first experiment, behavioral tests assessing exploratory behavior, emotional responses and hippocampal-dependent memory were conducted four weeks into the diet, followed by animal sacrifice a week later. Adult hippocampal neurogenesis and brain-derived neurotrophic factor (BDNF) expression in the hippocampus and prefrontal cortex were evaluated using immunohistochemistry and western blot. In a different experiment, hippocampal synaptic response, long-term potentiation and presynaptic-dependent short-term plasticity were studied by electrophysiology. Cocoa-enriched diets had minimal effects on exploratory activity and anxiety-like behavior, except for reduced locomotion in the LPC group. Only the HPC diet enhanced object recognition memory, while place recognition memory and spatial navigation remained unaffected. The HPC diet also increased adult hippocampal neurogenesis, boosting the proliferation, survival and number of young adult-born neurons. However, both cocoa-enriched diets increased immobility in the forced swimming test and hippocampal BDNF expression. Hippocampal electrophysiology revealed no alterations in neuroplasticity among diets. The results were mostly unaffected by sex. Overall, the HPC diet demonstrated greater potential regarding cognitive and neuroplastic benefits, suggesting a key role of cocoa flavanols in dietary interventions aimed at enhancing brain health.
Collapse
Affiliation(s)
- Sonia Melgar-Locatelli
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain
- Departamento de Nutrición y Bromatología, Universidad de Granada, Campus Universitario de Cartuja, Spain
| | - M Carmen Mañas-Padilla
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain
- Universidad Internacional de la Rioja (UNIR), Spain
| | - Adriana Castro-Zavala
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Spain
| | - María Del Carmen Razola-Díaz
- Departamento de Nutrición y Bromatología, Universidad de Granada, Campus Universitario de Cartuja, Spain
- Instituto de Nutrición y Tecnología de los Alimentos 'José Mataix' (INYTA), Universidad de Granada, Granada, Spain
| | - Francisco J Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharma-cology, Medical University of Vienna, 1090 Vienna, Austria
| | - Celia Rodríguez-Pérez
- Departamento de Nutrición y Bromatología, Universidad de Granada, Campus Universitario de Cartuja, Spain
- Instituto de Nutrición y Tecnología de los Alimentos 'José Mataix' (INYTA), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain
| |
Collapse
|
2
|
Zhang R, Yan Z, Zhong H, Luo R, Liu W, Xiong S, Liu Q, Liu M. Gut microbial metabolites in MASLD: Implications of mitochondrial dysfunction in the pathogenesis and treatment. Hepatol Commun 2024; 8:e0484. [PMID: 38967596 PMCID: PMC11227362 DOI: 10.1097/hc9.0000000000000484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 07/06/2024] Open
Abstract
With an increasing prevalence, metabolic dysfunction-associated steatotic liver disease (MASLD) has become a major global health problem. MASLD is well-known as a multifactorial disease. Mitochondrial dysfunction and alterations in the gut bacteria are 2 vital events in MASLD. Recent studies have highlighted the cross-talk between microbiota and mitochondria, and mitochondria are recognized as pivotal targets of the gut microbiota to modulate the host's physiological state. Mitochondrial dysfunction plays a vital role in MASLD and is associated with multiple pathological changes, including hepatocyte steatosis, oxidative stress, inflammation, and fibrosis. Metabolites are crucial mediators of the gut microbiota that influence extraintestinal organs. Additionally, regulation of the composition of gut bacteria may serve as a promising therapeutic strategy for MASLD. This study reviewed the potential roles of several common metabolites in MASLD, emphasizing their impact on mitochondrial function. Finally, we discuss the current treatments for MASLD, including probiotics, prebiotics, antibiotics, and fecal microbiota transplantation. These methods concentrate on restoring the gut microbiota to promote host health.
Collapse
Affiliation(s)
- Ruhan Zhang
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Zhaobo Yan
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Huan Zhong
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Rong Luo
- Department of Acupuncture and Massage Rehabilitation, The First Affiliated Hospital of Hunan University of Chinese Medicine, Hunan, China
| | - Weiai Liu
- Department of Acupuncture and Massage Rehabilitation, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Hunan, China
| | - Shulin Xiong
- Department of Preventive Center, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Hunan, China
| | - Qianyan Liu
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| | - Mi Liu
- College of Acupuncture, Tuina, and Rehabilitation, Hunan University of Chinese Medicine, Hunan, China
| |
Collapse
|
3
|
Mohammadian K, Fakhar F, Keramat S, Stanek A. The Role of Antioxidants in the Treatment of Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:797. [PMID: 39061866 PMCID: PMC11273623 DOI: 10.3390/antiox13070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global public health problem that causes liver-related morbidity and mortality. It is also an independent risk factor for non-communicable diseases. In 2020, a proposal was made to refer to it as "metabolic dysfunction-associated fatty liver disease (MAFLD)", with concise diagnostic criteria. Given its widespread occurrence, its treatment is crucial. Increased levels of oxidative stress cause this disease. This review aims to evaluate various studies on antioxidant therapies for patients with MAFLD. A comprehensive search for relevant research was conducted on the PubMed, SCOPUS, and ScienceDirect databases, resulting in the identification of 87 studies that met the inclusion criteria. In total, 31.1% of human studies used natural antioxidants, 53.3% used synthetic antioxidants, and 15.5% used both natural and synthetic antioxidants. In human-based studies, natural antioxidants showed 100% efficacy in the treatment of MAFLD, while synthetic antioxidants showed effective results in only 91% of the investigations. In animal-based research, natural antioxidants were fully effective in the treatment of MAFLD, while synthetic antioxidants demonstrated effectiveness in only 87.8% of the evaluations. In conclusion, antioxidants in their natural form are more helpful for patients with MAFLD, and preserving the correct balance of pro-oxidants and antioxidants is a useful way to monitor antioxidant treatment.
Collapse
Affiliation(s)
- Kiana Mohammadian
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Fatemeh Fakhar
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Shayan Keramat
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Agata Stanek
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland
| |
Collapse
|
4
|
Banerjee P, Gaddam N, Chandler V, Chakraborty S. Oxidative Stress-Induced Liver Damage and Remodeling of the Liver Vasculature. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1400-1414. [PMID: 37355037 DOI: 10.1016/j.ajpath.2023.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
As an organ critically important for targeting and clearing viruses, bacteria, and other foreign material, the liver operates via immune-tolerant, anti-inflammatory mechanisms indispensable to the immune response. Stress and stress-induced factors disrupt the homeostatic balance in the liver, inflicting tissue damage, injury, and remodeling. These factors include oxidative stress (OS) induced by viral infections, environmental toxins, drugs, alcohol, and diet. A recurrent theme seen among stressors common to multiple liver diseases is the induction of mitochondrial dysfunction, increased reactive oxygen species expression, and depletion of ATP. Inflammatory signaling additionally exacerbates the condition, generating a proinflammatory, immunosuppressive microenvironment and activation of apoptotic and necrotic mechanisms that disrupt the integrity of liver morphology. These pathways initiate signaling pathways that significantly contribute to the development of liver steatosis, inflammation, fibrosis, cirrhosis, and liver cancers. In addition, hypoxia and OS directly enhance angiogenesis and lymphangiogenesis in chronic liver diseases. Late-stage consequences of these conditions often narrow the outcomes for liver transplantation or result in death. This review provides a detailed perspective on various stress-induced factors and the specific focus on role of OS in different liver diseases with special emphasis on different molecular mechanisms. It also highlights how resultant changes in the liver vasculature correlate with pathogenesis.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Vanessa Chandler
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| |
Collapse
|
5
|
Yang YN, Zhang MQ, Yu FL, Han B, Bao MY, Yan-He, Li X, Zhang Y. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: A promising therapeutic target. Biochem Pharmacol 2023; 215:115717. [PMID: 37516277 DOI: 10.1016/j.bcp.2023.115717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurodegenerative disorders (NDDs) are characterized by progressive loss of selectively vulnerable neuronal populations and myelin sheath, leading to behavioral and cognitive dysfunction that adversely affect the quality of life. Identifying novel therapies that attenuate the progression of NDDs would be of significance. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a widely expressed transcriptional regulator, modulates the expression of genes engaged in mitochondrial biosynthesis, metabolic regulation, and oxidative stress (OS). Emerging evidences point to the strong connection between PGC-1α and NDDs, suggesting its positive impaction on the progression of NDDs. Therefore, it is urgent to gain a deeper and broader understanding between PGC-1α and NDDs. To this end, this review presents a comprehensive overview of PGC-1α, including its basic characteristics, the post-translational modulations, as well as the interacting transcription factors. Secondly, the pathogenesis of PGC-1α in various NDDs, such as Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) is briefly discussed. Additionally, this study summarizes the underlying mechanisms that PGC-1α is neuroprotective in NDDs via regulating neuroinflammation, OS, and mitochondrial dysfunction. Finally, we briefly outline the shortcomings of current NDDs drug therapy, and summarize the functions and potential applications of currently available PGC-1α modulators (activator or inhibitors). Generally, this review updates our insight of the important role of PGC-1α on the development of NDDs, and provides a promising therapeutic target/ drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan-He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
6
|
Patil PP, Kumar P, Khanal P, Patil VS, Darasaguppe HR, Bhandare VV, Bhatkande A, Shukla S, Joshi RK, Patil BM, Roy S. Computational and experimental pharmacology to decode the efficacy of Theobroma cacao L. against doxorubicin-induced organ toxicity in EAC-mediated solid tumor-induced mice. Front Pharmacol 2023; 14:1174867. [PMID: 37324470 PMCID: PMC10264642 DOI: 10.3389/fphar.2023.1174867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Background and objective: Doxorubicin is extensively utilized chemotherapeutic drug, and it causes damage to the heart, liver, and kidneys through oxidative stress. Theobroma cacao L (cocoa) is reported to possess protective effects against several chemical-induced organ damages and also acts as an anticancer agent. The study aimed to determine whether the administration of cocoa bean extract reduces doxorubicin-induced organ damage in mice with Ehrlich ascites carcinoma (EAC) without compromising doxorubicin efficacy. Methodology: Multiple in vitro methods such as cell proliferation, colony formation, chemo-sensitivity, and scratch assay were carried out on cancer as well as normal cell lines to document the effect of cocoa extract (COE) on cellular physiology, followed by in vivo mouse survival analysis, and the organ-protective effect of COE on DOX-treated animals with EAC-induced solid tumors was then investigated. In silico studies were conducted on cocoa compounds with lipoxygenase and xanthine oxidase to provide possible molecular explanations for the experimental observations. Results: In vitro studies revealed potent selective cytotoxicity of COE on cancer cells compared to normal. Interestingly, COE enhanced DOX potency when used in combination. The in vivo results revealed reduction in EAC and DOX-induced toxicities in mice treated with COE, which also improved the mouse survival time; percentage of lifespan; antioxidant defense system; renal, hepatic, and cardiac function biomarkers; and also oxidative stress markers. COE reduced DOX-induced histopathological alterations. Through molecular docking and MD simulations, we observed chlorogenic acid and 8'8 methylenebiscatechin, present in cocoa, to have the highest binding affinity with lipoxygenase and xanthine oxidase, which lends support to their potential in ameliorating oxidative stress. Conclusion: The COE reduced DOX-induced organ damage in the EAC-induced tumor model and exhibited powerful anticancer and antioxidant effects. Therefore, COE might be useful as an adjuvant nutritional supplement in cancer therapy.
Collapse
Affiliation(s)
- Priyanka P. Patil
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka, India
| | - Pranjal Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka, India
| | - Vishal S. Patil
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, Karnataka, India
| | - Harish R. Darasaguppe
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | | | - Arati Bhatkande
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | - Sudhanshu Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | - Rajesh K. Joshi
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | | | - Subarna Roy
- Indian Council of Medical Research- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|
7
|
Farag MA, Hariri MLM, Ehab A, Homsi MN, Zhao C, von Bergen M. Cocoa seeds and chocolate products interaction with gut microbiota; mining microbial and functional biomarkers from mechanistic studies, clinical trials and 16S rRNA amplicon sequencing. Crit Rev Food Sci Nutr 2022; 64:3122-3138. [PMID: 36190306 DOI: 10.1080/10408398.2022.2130159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, gut microbiome has evolved as a focal point of interest with growing recognition that a well-balanced gut microbiota is highly relevant to an individual's health status. The present review provides a mechanistic insight on the effects of cocoa chemicals on the gut microbiome and further reveals in silico biomarkers, taxonomic and functional features that distinguish gut microbiome of cocoa consumers and controls by using 16S rRNA gene sequencing data. The polyphenols in cocoa can change the gut microbiota either by inhibiting the growth of pathogenic bacteria in the gut such as Clostridium perfringens or by increasing the growth of beneficial microbiota in the gut such as Lactobacillus and Bifidobacterium. This paper demonstrates the holistic effect of gut microbiota on cocoa chemicals and how it impacts human health. We present herein the first comprehensive review and analysis of how raw and roasted cocoa and its products can specifically influence gut homeostasis, and likewise, how microbiota metabolizes cocoa chemicals. In addition to that, our 16S rRNA amplicon sequencing analysis revealed that the flavone and flavonols metabolism, aminobenzoate degradation and fatty acid elongation pathways represent the three most important signatures of microbial functions associated with cocoa consumption.
Collapse
Affiliation(s)
- Mohamed A Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamad Louai M Hariri
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Aya Ehab
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Masun Nabhan Homsi
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Chao Zhao
- College of Marine Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Biochemistry, Life Science Faculty, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
8
|
Progress in Nonalcoholic Fatty Liver Disease: SIRT Family Regulates Mitochondrial Biogenesis. Biomolecules 2022; 12:biom12081079. [PMID: 36008973 PMCID: PMC9405760 DOI: 10.3390/biom12081079] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance, mitochondrial dysfunction, inflammation, and oxidative stress. As a group of NAD+-dependent III deacetylases, the sirtuin (SIRT1-7) family plays a very important role in regulating mitochondrial biogenesis and participates in the progress of NAFLD. SIRT family members are distributed in the nucleus, cytoplasm, and mitochondria; regulate hepatic fatty acid oxidation metabolism through different metabolic pathways and mechanisms; and participate in the regulation of mitochondrial energy metabolism. SIRT1 may improve NAFLD by regulating ROS, PGC-1α, SREBP-1c, FoxO1/3, STAT3, and AMPK to restore mitochondrial function and reduce steatosis of the liver. Other SIRT family members also play a role in regulating mitochondrial biogenesis, fatty acid oxidative metabolism, inflammation, and insulin resistance. Therefore, this paper comprehensively introduces the role of SIRT family in regulating mitochondrial biogenesis in the liver in NAFLD, aiming to further explain the importance of SIRT family in regulating mitochondrial function in the occurrence and development of NAFLD, and to provide ideas for the research and development of targeted drugs. Relatively speaking, the role of some SIRT family members in NAFLD is still insufficiently clear, and further research is needed.
Collapse
|
9
|
Effect of Theobroma cacao L. on the Efficacy and Toxicity of Doxorubicin in Mice Bearing Ehrlich Ascites Carcinoma. Antioxidants (Basel) 2022; 11:antiox11061094. [PMID: 35739991 PMCID: PMC9220144 DOI: 10.3390/antiox11061094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 12/06/2022] Open
Abstract
Background and objective: Doxorubicin is a widely used chemotherapeutic agent that causes oxidative stress leading to cardiotoxicity, hepatotoxicity, and nephrotoxicity. In contrast, Theobroma cacao L. has been recorded as an anticancer agent and found to be protective against multiple chemical-induced organ injuries, including heart, liver, and kidney injuries. The present study investigated the possible role of extracts from T. cacao beans for organ-protective effects in doxorubicin-induced toxicity in mice bearing Ehrlich ascites carcinoma (EAC). Methodology: After survival analysis in rodents, cocoa bean extract (COE) was investigated for its efficacy against EAC-induced carcinoma and its organ-protective effect against doxorubicin-treated mice with EAC-induced carcinoma. Results: Significant reductions in EAC and doxorubicin-induced alterations were observed in mice administered the COE, either alone or in combination with doxorubicin. Furthermore, COE treatment significantly increased the mouse survival time, life span percentage, and antioxidant defense system. It also significantly improved cardiac, hepatic, and renal function biomarkers and markers for oxidative stress, and it also reduced doxorubicin-induced histopathological changes. Conclusion: COE acted against doxorubicin-induced organ toxicity; potent antioxidant and anticancer activities were also reflected by the COE itself. The COE may therefore serve as an adjuvant nutraceutical in cancer chemotherapy.
Collapse
|
10
|
Ruiz-Iglesias P, Massot-Cladera M, Rodríguez-Lagunas MJ, Franch À, Camps-Bossacoma M, Castell M, Pérez-Cano FJ. A Cocoa Diet Can Partially Attenuate the Alterations in Microbiota and Mucosal Immunity Induced by a Single Session of Intensive Exercise in Rats. Front Nutr 2022; 9:861533. [PMID: 35479747 PMCID: PMC9036086 DOI: 10.3389/fnut.2022.861533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Following intensive sports events, a higher rate of upper respiratory tract infections and the appearance of gastrointestinal symptomatology have been reported. We aimed to evaluate the effect of a cocoa-enriched diet on the cecal microbiota and mucosal immune system of rats submitted to high-intensity acute exercise, as well as to elucidate the involvement of cocoa fiber in such effects. Methods Wistar rats were fed either a standard diet, a diet containing 10% cocoa providing 5% fiber and a diet containing only 5% cocoa fiber. After 25 days, half of the rats of each diet performed an exhaustion running test. Sixteen hours later, samples were obtained to assess, among others, the cecal microbiota and short chain fatty acids (SCFAs) composition, mesenteric lymph nodes (MLNs) and Peyer’s patches (PPs) lymphocyte composition, and immunoglobulin (Ig) content in salivary glands. Results The intake of cocoa, partially due to its fiber content, improved the SCFA production, prevented some changes in PPs and in MLNs lymphocyte composition and also decreased the production of proinflammatory cytokines. Cocoa diet, contrary to cocoa fiber, did not prevent the lower salivary IgM induced by exercise. Conclusion A cocoa dietary intake can partially attenuate the alterations in microbiota and mucosal immunity induced by a single session of intensive exercise.
Collapse
Affiliation(s)
- Patricia Ruiz-Iglesias
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Mariona Camps-Bossacoma
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Margarida Castell,
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, Santa Coloma de Gramenet, Spain
| |
Collapse
|
11
|
Rebollo-Hernanz M, Aguilera Y, Martin-Cabrejas MA, Gonzalez de Mejia E. Phytochemicals from the Cocoa Shell Modulate Mitochondrial Function, Lipid and Glucose Metabolism in Hepatocytes via Activation of FGF21/ERK, AKT, and mTOR Pathways. Antioxidants (Basel) 2022; 11:antiox11010136. [PMID: 35052640 PMCID: PMC8772970 DOI: 10.3390/antiox11010136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
The cocoa shell is a by-product that may be revalorized as a source of bioactive compounds to prevent chronic cardiometabolic diseases. This study aimed to investigate the phytochemicals from the cocoa shell as targeted compounds for activating fibroblast growth factor 21 (FGF21) signaling and regulating non-alcoholic fatty liver disease (NAFLD)-related biomarkers linked to oxidative stress, mitochondrial function, and metabolism in hepatocytes. HepG2 cells treated with palmitic acid (PA, 500 µmol L−1) were used in an NAFLD cell model. Phytochemicals from the cocoa shell (50 µmol L−1) and an aqueous extract (CAE, 100 µg mL−1) enhanced ERK1/2 phosphorylation (1.7- to 3.3-fold) and FGF21 release (1.4- to 3.4-fold) via PPARα activation. Oxidative stress markers were reduced though Nrf-2 regulation. Mitochondrial function (mitochondrial respiration and ATP production) was protected by the PGC-1α pathway modulation. Cocoa shell phytochemicals reduced lipid accumulation (53–115%) and fatty acid synthase activity (59–93%) and prompted CPT-1 activity. Glucose uptake and glucokinase activity were enhanced, whereas glucose production and phosphoenolpyruvate carboxykinase activity were diminished. The increase in the phosphorylation of the insulin receptor, AKT, AMPKα, mTOR, and ERK1/2 conduced to the regulation of hepatic mitochondrial function and energy metabolism. For the first time, the cocoa shell phytochemicals are proved to modulate FGF21 signaling. Results demonstrate the in vitro preventive effect of the phytochemicals from the cocoa shell on NAFLD.
Collapse
Affiliation(s)
- Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (Y.A.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (Y.A.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Maria A. Martin-Cabrejas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.R.-H.); (Y.A.); (M.A.M.-C.)
- Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: ; Tel.: +1-217-244-3196
| |
Collapse
|
12
|
It Is High Time Physicians Thought of Natural Products for Alleviating NAFLD. Is There Sufficient Evidence to Use Them? Int J Mol Sci 2021; 22:ijms222413424. [PMID: 34948230 PMCID: PMC8706322 DOI: 10.3390/ijms222413424] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease all over the world due to the obesity pandemic; currently, therapeutic options for NAFLD are scarce, except for diet recommendations and physical activity. NAFLD is characterized by excessive accumulation of fat deposits (>5%) in the liver with subsequent inflammation and fibrosis. Studies in the literature show that insulin resistance (IR) may be considered as the key mechanism in the onset and progression of NAFLD. Recently, using natural products as an alternative approach in the treatment of NAFLD has drawn growing attention among physicians. In this review, the authors present the most recent randomized controlled trials (RCTs) and lines of evidence from animal models about the efficacy of nutraceutics in alleviating NAFLD. Among the most studied substances in the literature, the following molecules were chosen because of their presence in the literature of both clinical and preclinical studies: spirulina, oleuropein, garlic, berberine, resveratrol, curcumin, ginseng, glycyrrhizin, coffee, cocoa powder, epigallocatechin-3-gallate, and bromelain.
Collapse
|
13
|
Hooshmand Moghadam B, Bagheri R, Ghanavati M, Khodadadi F, Cheraghloo N, Wong A, Nordvall M, Suzuki K, Shabkhiz F. The Combined Effects of 6 Weeks of Jump Rope Interval Exercise and Dark Chocolate Consumption on Antioxidant Markers in Obese Adolescent Boys. Antioxidants (Basel) 2021; 10:1675. [PMID: 34829546 PMCID: PMC8614646 DOI: 10.3390/antiox10111675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Research has shown that both dark chocolate and exercise training may have favorable effects on antioxidant function in obese cohorts. However, their combined effect has not been established. We assessed the influences of six weeks of dark chocolate consumption combined with jump rope exercise on antioxidant markers in adolescent boys with obesity. Fifty adolescent boys with obesity (age = 15 ± 1 years) were randomly assigned into one of four groups; jump rope exercise + white chocolate consumption (JW; n = 13), jump rope exercise + dark chocolate consumption (JD; n = 13), dark chocolate consumption (DC; n = 12), or control (C; n = 12). Two participants dropped out of the study. Participants in JW and JD groups performed jump rope exercise three times per week for six weeks. Participants in the DC and JD groups consumed 30 g of dark chocolate containing 83% of cocoa during the same period. Serum concentrations of superoxide dismutase (SOD), total antioxidant capacity (TAC), glutathione peroxidase (GPx), and thiobarbituric acid reactive substances (TBARS) were evaluated prior to and after the interventions. All 3 intervention groups noted significant (p < 0.01) increases in serum concentrations of TAC, SOD, and GPx from baseline to post-test. In contrast, all intervention groups showed significantly reduced serum concentrations of TBARS from pre- to post-test (p ≤ 0.01). Bonferroni post hoc analysis revealed that post-test serum concentrations of TAC in the JD group were significantly greater than C (p < 0.001), DC (p = 0.010), and JW (p < 0.001) groups. In addition, post-test serum concentrations of SOD in the JD group were significantly greater than C group (p = 0.001). Post-test serum concentrations of GPx in the JD group were significantly greater than C (p < 0.001), DC (p = 0.021), and JW (p = 0.032) groups. The post-test serum concentrations of TBARS in the JD group was significantly lower than C (p < 0.001). No other significant between-group differences were observed. The current study provides evidence that dark chocolate consumption in combination with jump rope exercise is more efficient in improving antioxidant capacity than dark chocolate consumption or jump rope exercise alone among obese adolescent boys.
Collapse
Affiliation(s)
- Babak Hooshmand Moghadam
- Department of Exercise Physiology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (B.H.M.); (F.K.)
- Department of Exercise Physiology, University of Tehran, Tehran 1961733114, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 8174673441, Iran;
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Fatemeh Khodadadi
- Department of Exercise Physiology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (B.H.M.); (F.K.)
| | - Neda Cheraghloo
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA; (A.W.); (M.N.)
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA; (A.W.); (M.N.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Fatemeh Shabkhiz
- Department of Exercise Physiology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (B.H.M.); (F.K.)
| |
Collapse
|