1
|
Tain YL, Lin YJ, Hsu CN. Animal Models for Studying Developmental Origins of Cardiovascular-Kidney-Metabolic Syndrome. Biomedicines 2025; 13:452. [PMID: 40002865 PMCID: PMC11853432 DOI: 10.3390/biomedicines13020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular-kidney-metabolic syndrome (CKMS) has become a significant global health challenge. Since CKMS often originates early in life, as outlined by the developmental origins of health and disease (DOHaD) concept, prevention is a more effective strategy than treatment. Various animal models, classified by environmental exposures or mechanisms, are used to explore the developmental origins of CKMS. However, no single model can fully replicate all aspects of CKMS or its clinical stages, limiting the advancement of preventive and therapeutic strategies. This review aims to assist researchers by comparing the strengths and limitations of common animal models used in CKMS programming studies and highlighting key considerations for selecting suitable models.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Ying-Jui Lin
- Division of Critical Care, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Division of Cardiology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Early Childhood Care and Education, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Depatrtment of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| |
Collapse
|
2
|
Wang J, Ren W, Li Z, Ma S, Li L, Wang R, Zeng Y, Meng J, Yao X. Blood-Based Whole-Genome Methylation Analysis of Yili Horses Pre- and Post-Racing. Animals (Basel) 2025; 15:326. [PMID: 39943096 PMCID: PMC11815882 DOI: 10.3390/ani15030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
This study aims to analyze the whole-genome DNA methylation differences in Yili horses before and after racing, with the goal of identifying differentially methylated genes associated with racing performance and exploring the epigenetic mechanisms underlying exercise in horses. Blood samples were collected from the jugular veins of the top 3 Yili horses in a 5000 m race, which included 25 competitors, both prior to and within 5 min after the race. Genomic DNA was extracted, followed by sequencing using Whole-Genome Bisulfite Sequencing (WGBS) to assess DNA methylation levels, differentially methylated regions (DMRs), and differentially methylated genes (DMGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the identified DMGs to select candidate genes potentially associated with equine exercise. A total of 18,374 differentially methylated CG regions, 254 differentially methylated CHG regions, and 584 differentially methylated CHH regions were identified. A total of 4293 DMGs were anchored in gene bodies and 2187 DMGs in promoter regions. Functional analysis revealed that these DMGs were mainly enriched in terms related to binding and kinase activity, as well as pathways such as PI3K-Akt signaling and Kaposi sarcoma-associated herpesvirus infection. Further analysis indicated that genes such as IFNAR2, FGF4, and DGKH could be potential candidate genes associated with equine athletic performance. The findings of this study contribute to understanding the epigenetic regulatory mechanisms of equine athletic performance, providing a reference for further in-depth research on horse racing.
Collapse
Affiliation(s)
- Jianwen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (S.M.); (L.L.); (R.W.); (Y.Z.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Wanlu Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (S.M.); (L.L.); (R.W.); (Y.Z.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Zexu Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (S.M.); (L.L.); (R.W.); (Y.Z.)
| | - Shikun Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (S.M.); (L.L.); (R.W.); (Y.Z.)
| | - Luling Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (S.M.); (L.L.); (R.W.); (Y.Z.)
| | - Ran Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (S.M.); (L.L.); (R.W.); (Y.Z.)
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (S.M.); (L.L.); (R.W.); (Y.Z.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (S.M.); (L.L.); (R.W.); (Y.Z.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.W.); (W.R.); (Z.L.); (S.M.); (L.L.); (R.W.); (Y.Z.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| |
Collapse
|
3
|
Polizel GHG, Fanalli SL, Diniz WJS, Cesar ASM, Cônsolo NRB, Fukumasu H, Cánovas A, Fernandes AC, Prati BCT, Furlan É, Pombo GDV, Santana MHDA. Liver transcriptomics-metabolomics integration reveals biological pathways associated with fetal programming in beef cattle. Sci Rep 2024; 14:27681. [PMID: 39532951 PMCID: PMC11557885 DOI: 10.1038/s41598-024-78965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
We investigated the long-term effects of prenatal nutrition on pre-slaughter Nelore bulls using integrative transcriptome and metabolome analyses of liver tissue. Three prenatal nutritional treatments were administered to 126 cows: NP (control, mineral supplementation only), PP (protein-energy supplementation in the third trimester), and FP (protein-energy supplementation throughout pregnancy). Liver samples from 22.5 ± 1-month-old bulls underwent RNA-Seq and targeted metabolomics. Weighted correlation network analysis (WGCNA) identified treatment-associated gene and metabolite co-expression modules, further analyzed using MetaboAnalyst 6.0 (metabolite over-representation analysis and transcriptome-metabolome integrative analysis) and Enrichr (gene over-representation analysis). We identified several significant gene and metabolite modules, as well as hub components associated with energy, protein and oxidative metabolism, regulatory mechanisms, epigenetics, and immune function. The NP transcriptome-metabolome analysis identified key pathways (aminoacyl t-RNA biosynthesis, gluconeogenesis, and PPAR signaling) and hub components (glutamic acid, SLC6A14). PP highlighted pathways (arginine and proline metabolism, TGF-beta signaling, glyoxylate and dicarboxylate metabolism) with arginine and ODC1 as hub components. This study highlights the significant impact of prenatal nutrition on the liver tissue of Nelore bulls, shedding light on critical metabolic pathways and hub components related to energy and protein metabolism, as well as immune system and epigenetics.
Collapse
Affiliation(s)
- Guilherme Henrique Gebim Polizel
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil.
| | - Simara Larissa Fanalli
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Wellison J S Diniz
- Department of Animal Sciences, College of Agriculture, Auburn University, Auburn, AL, 36849, USA
| | - Aline Silva Mello Cesar
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias 11, Piracicaba, 13418-900, SP, Brazil
| | - Nara Regina Brandão Cônsolo
- Department of Nutrition and Animal Production, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte, 255, 13635- 900, Pirassununga, SP, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Angela Cánovas
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Arícia Christofaro Fernandes
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Barbara Carolina Teixeira Prati
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Édison Furlan
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Gabriela do Vale Pombo
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Miguel Henrique de Almeida Santana
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| |
Collapse
|
4
|
Jiao P, Lu H, Hao L, Degen AA, Cheng J, Yin Z, Mao S, Xue Y. Nutrigenetic and Epigenetic Mechanisms of Maternal Nutrition-Induced Glucolipid Metabolism Changes in the Offspring. Nutr Rev 2024:nuae048. [PMID: 38781288 DOI: 10.1093/nutrit/nuae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Maternal nutrition during pregnancy regulates the offspring's metabolic homeostasis, including insulin sensitivity and the metabolism of glucose and lipids. The fetus undergoes a crucial period of plasticity in the uterus; metabolic changes in the fetus during pregnancy caused by maternal nutrition not only influence fetal growth and development but also have a long-term or even life-long impact for the offspring. Epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNAs, play important roles in intergenerational and transgenerational effects. In this context, this narrative review comprehensively summarizes and analyzes the molecular mechanisms underlying how maternal nutrition, including a high-fat diet, polyunsaturated fatty acid diet, methyl donor nutrient supplementation, feed restriction, and protein restriction during pregnancy, impacts the genes involved in glucolipid metabolism in the liver, adipose tissue, hypothalamus, muscle, and oocytes of the offspring in terms of the epigenetic modifications. This will provide a foundation for the further exploration of nutrigenetic and epigenetic mechanisms for integrative mother-child nutrition and promotion of the offspring's health through the regulation of maternal nutrition during pregnancy. Note: This paper is part of the Nutrition Reviews Special Collection on Precision Nutrition.
Collapse
Affiliation(s)
- Peng Jiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine of Qinghai University, Xining, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Jin Z, Gao H, Fu Y, Ren R, Deng X, Chen Y, Hou X, Wang Q, Song G, Fan N, Ma H, Yin Y, Xu K. Whole-Transcriptome Analysis Sheds Light on the Biological Contexts of Intramuscular Fat Deposition in Ningxiang Pigs. Genes (Basel) 2024; 15:642. [PMID: 38790271 PMCID: PMC11121357 DOI: 10.3390/genes15050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The quality of pork is significantly impacted by intramuscular fat (IMF). However, the regulatory mechanism of IMF depositions remains unclear. We performed whole-transcriptome sequencing of the longissimus dorsi muscle (IMF) from the high (5.1 ± 0.08) and low (2.9 ± 0.51) IMF groups (%) to elucidate potential mechanisms. In summary, 285 differentially expressed genes (DEGs), 14 differentially expressed miRNAs (DEMIs), 83 differentially expressed lncRNAs (DELs), and 79 differentially expressed circRNAs (DECs) were identified. DEGs were widely associated with IMF deposition and liposome differentiation. Furthermore, competing endogenous RNA (ceRNA) regulatory networks were constructed through co-differential expression analyses, which included circRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 47 DECs) and lncRNA-miRNA-mRNA (containing 6 DEMIs, 6 DEGs, 36 DELs) regulatory networks. The circRNAs sus-TRPM7_0005, sus-MTUS1_0004, the lncRNAs SMSTRG.4269.1, and MSTRG.7983.2 regulate the expression of six lipid metabolism-related target genes, including PLCB1, BAD, and GADD45G, through the binding sites of 2-4068, miR-7134-3p, and miR-190a. For instance, MSTRG.4269.1 regulates its targets PLCB1 and BAD via miRNA 2_4068. Meanwhile, sus-TRPM7_0005 controls its target LRP5 through ssc-miR-7134-3P. These findings indicate molecular regulatory networks that could potentially be applied for the marker-assisted selection of IMF to enhance pork quality.
Collapse
Affiliation(s)
- Zhao Jin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Yawei Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
| | - Ruimin Ren
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaoxiao Deng
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
| | - Yue Chen
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaohong Hou
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Qian Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Gang Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| | - Ningyu Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.J.); (H.G.); (Y.F.); (Q.W.); (G.S.); (N.F.); (H.M.); (Y.Y.)
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kang Xu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (R.R.); (X.D.); (Y.C.); (X.H.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
6
|
Tzeng HT, Lee WC. Impact of Transgenerational Nutrition on Nonalcoholic Fatty Liver Disease Development: Interplay between Gut Microbiota, Epigenetics and Immunity. Nutrients 2024; 16:1388. [PMID: 38732634 PMCID: PMC11085251 DOI: 10.3390/nu16091388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent pediatric liver disorder, primarily attributed to dietary shifts in recent years. NAFLD is characterized by the accumulation of lipid species in hepatocytes, leading to liver inflammation that can progress to steatohepatitis, fibrosis, and cirrhosis. Risk factors contributing to NAFLD encompass genetic variations and metabolic disorders such as obesity, diabetes, and insulin resistance. Moreover, transgenerational influences, resulting in an imbalance of gut microbial composition, epigenetic modifications, and dysregulated hepatic immune responses in offspring, play a pivotal role in pediatric NAFLD development. Maternal nutrition shapes the profile of microbiota-derived metabolites in offspring, exerting significant influence on immune system regulation and the development of metabolic syndrome in offspring. In this review, we summarize recent evidence elucidating the intricate interplay between gut microbiota, epigenetics, and immunity in fetuses exposed to maternal nutrition, and its impact on the onset of NAFLD in offspring. Furthermore, potential therapeutic strategies targeting this network are also discussed.
Collapse
Affiliation(s)
- Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33332, Taiwan
| |
Collapse
|
7
|
Gu TJ, Liu PK, Wang YW, Flowers MT, Xu S, Liu Y, Davis DB, Li L. Diazobutanone-assisted isobaric labelling of phospholipids and sulfated glycolipids enables multiplexed quantitative lipidomics using tandem mass spectrometry. Nat Chem 2024; 16:762-770. [PMID: 38365942 DOI: 10.1038/s41557-023-01436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Mass spectrometry-based quantitative lipidomics is an emerging field aiming to uncover the intricate relationships between lipidomes and disease development. However, quantifying lipidomes comprehensively in a high-throughput manner remains challenging owing to the diverse lipid structures. Here we propose a diazobutanone-assisted isobaric labelling strategy as a rapid and robust platform for multiplexed quantitative lipidomics across a broad range of lipid classes, including various phospholipids and glycolipids. The diazobutanone reagent is designed to conjugate with phosphodiester or sulfate groups, while accommodating various functional groups on different lipid classes, enabling subsequent isobaric labelling for high-throughput multiplexed quantitation. Our method demonstrates excellent performance in terms of labelling efficiency, detection sensitivity, quantitative accuracy and broad applicability to various biological samples. Finally, we performed a six-plex quantification analysis of lipid extracts from lean and obese mouse livers. In total, we identified and quantified 246 phospholipids in a high-throughput manner, revealing lipidomic changes that may be associated with obesity in mice.
Collapse
Affiliation(s)
- Ting-Jia Gu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Peng-Kai Liu
- Biophysics Graduate program, University of Wisconsin-Madison, Madison, WI, USA
| | - Yen-Wen Wang
- Department of Biostatics, Yale University, New Haven, CT, USA
| | - Matthew T Flowers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Dawn B Davis
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
- Biophysics Graduate program, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Sharma S, Bhonde R. Dilemma of Epigenetic Changes Causing or Reducing Metabolic Disorders in Offsprings of Obese Mothers. Horm Metab Res 2023; 55:665-676. [PMID: 37813098 DOI: 10.1055/a-2159-9128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Maternal obesity is associated with fetal complications predisposing later to the development of metabolic syndrome during childhood and adult stages. High-fat diet seems to influence individuals and their subsequent generations in mediating weight gain, insulin resistance, obesity, high cholesterol, diabetes, and cardiovascular disorder. Research evidence strongly suggests that epigenetic alteration is the major contributor to the development of metabolic syndrome through DNA methylation, histone modifications, and microRNA expression. In this review, we have discussed the outcome of recent studies on the adverse and beneficial effects of nutrients and vitamins through epigenetics during pregnancy. We have further discussed about the miRNAs altered during maternal obesity. Identification of new epigenetic modifiers such as mesenchymal stem cells condition media (MSCs-CM)/exosomes for accelerating the reversal of epigenetic abnormalities for the development of new treatments is yet another aspect of the present review.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ramesh Bhonde
- Stem Cells and Regenerative Medicine, Dr. D. Y. Patil Vidyapeeth Pune (Deemed University), Pune, India
| |
Collapse
|
9
|
Blasetti A, Quarta A, Guarino M, Cicolini I, Iannucci D, Giannini C, Chiarelli F. Role of Prenatal Nutrition in the Development of Insulin Resistance in Children. Nutrients 2022; 15:nu15010087. [PMID: 36615744 PMCID: PMC9824240 DOI: 10.3390/nu15010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Nutrition during the prenatal period is crucial for the development of insulin resistance (IR) and its consequences in children. The relationship between intrauterine environment, fetal nutrition and the onset of IR, type 2 diabetes (T2D), obesity and metabolic syndrome later in life has been confirmed in many studies. The intake of carbohydrates, protein, fat and micronutrients during pregnancy seems to damage fetal metabolism programming; indeed, epigenetic mechanisms change glucose-insulin metabolism. Intrauterine growth restriction (IUGR) induced by unbalanced nutrient intake during prenatal life cause fetal adipose tissue and pancreatic beta-cell dysfunction. In this review we have summarized and discussed the role of maternal nutrition in preventing insulin resistance in youth.
Collapse
|