1
|
Zhang H, Wang Z, Li J, Jia Y, Li F. Timing, initiation and function: An in-depth exploration of the interaction network among neutrophil extracellular traps related genes in acute pancreatitis. Int Immunopharmacol 2024; 141:112923. [PMID: 39137629 DOI: 10.1016/j.intimp.2024.112923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Exogenous inhibition of neutrophil extracellular traps (NETs) was believed to alleviate acute pancreatitis (AP). This study aimed to comprehensively explore the key biological behavior of NETs including timing and pathogenesis in AP by integrating of single cell RNA sequencing(scRNA-seq) and bulk RNA-seq. METHODS Differentially expressed NETs-related genes and the hub genes of NETs were screened by bulk RNA-seq. ScRNA-seq was used to identify the cell types in pancreas of AP mice and to depict the transcriptomic maps in neutrophils. The mouse AP models were build to verify the timing of initiation of NETs and underlying pathogenesis of damage on pancreas acinar cells. RESULTS Tlr4 and Ccl3 were screened for hub genes by bulk RNA-seq. The trajectory analysis of neutrophils showed that high expression of Ccl3, Cybb and Padi4 can be observed in the middle stage during AP. Macrophages might be essential in the biological behavior of neutrophils and NETs. Through animal models, we presented that extensive NETs structures were formed at mid-stage of inflammation, accompanied by more serious pancreas and lung damage. NETs might promote necroptosis and macrophage infiltration in AP, and the damage on pancreatic injury could be regulated by Tlr4 pathway. Ccl3 was considered to recruit neutrophils and promote NETs formation. CONCLUSION The findings explored the underlying timing and pathogenesis of NETs in AP for the first time, which provided gene targets for further studies.
Collapse
Affiliation(s)
- Haoyu Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China
| | - Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China
| | - Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China.
| |
Collapse
|
2
|
Niu C, Zhang J, Okolo PI. Therapeutic potential of plant polyphenols in acute pancreatitis. Inflammopharmacology 2024:10.1007/s10787-024-01584-y. [PMID: 39497005 DOI: 10.1007/s10787-024-01584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
Acute pancreatitis is a potentially life-threatening inflammatory disorder of the exocrine pancreas characterized by early activation of pancreatic enzymes followed by macrophage-driven inflammation, and pancreatic acinar cell death. The most common causes are gallstones and excessive alcohol consumption. Inflammation and oxidative stress play critical roles in its pathogenesis. Despite increasing incidence, currently, no specific drug therapy is available to treat or prevent acute pancreatitis, in particular severe acute pancreatitis. New therapeutic agents are very much needed. Plant polyphenols have attracted extensive attention in the field of acute pancreatitis due to their diverse pharmacological properties. In this review, we discuss the potential of plant polyphenols in inhibiting the occurrence and development of acute pancreatitis via modulation of inflammation, oxidative stress, calcium overload, autophagy, and apoptosis, based on the currently available in vitro, in vivo animal and very few clinical human studies. We also outline the opportunities and challenges in the clinical translation of plant polyphenols for the treatment of the disease. We concluded that plant polyphenols have a potential therapeutic effect in the management and treatment of acute pancreatitis. Knowledge gained from this review will hopefully inspire new research ideas and directions for the development and application of plant polyphenols for treating this disease.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Carillion Clinic, Roanoke, VA, 24014, USA
| |
Collapse
|
3
|
Zhang R, Zhu Z, Ma Y, Tang T, Wu J, Huang F, Xu L, Wang Y, Zhou J. Rhizoma Alismatis Decoction improved mitochondrial dysfunction to alleviate SASP by enhancing autophagy flux and apoptosis in hyperlipidemia acute pancreatitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155629. [PMID: 38677271 DOI: 10.1016/j.phymed.2024.155629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disorder of the exocrine pancreas, especially hyperlipidemia acute pancreatitis (HLAP) is the third leading cause of acute pancreatitis which is more severe with a greater incidence of persistent multiorgan failure. HLAP inflicts injury upon the organelles within the acinar cell, particularly mitochondria, the endolysosomal-autophagy system, and is accompanied by senescence-associated secretory phenotype (SASP). RAD, only two consists of Rhizoma Alismatis and Atractylodes macrocephala Rhizoma, which is best known for its ability to anti-inflammatory and lipid-lowering. Nevertheless, the mechanism by which RAD alleviates HLAP remains obscure, necessitating further investigation. PURPOSE The study aimed to assess the effects of the RAD on HLAP and to elucidate the underlying mechanism in vivo and in vitro, offering a potential medicine for clinical treatment for HLAP. STUDY DESIGN AND METHODS C57BL/6 mice with hyperlipidemia acute pancreatitis were induced by HFD and CER, then administrated with RAD. AR42J were stimulated by cerulein or conditioned medium and then cultured with RAD. Serums were analyzed to evaluate potential pancreas and liver damage. Furthermore, tissue samples were obtained for histological, and protein investigations by H&E, Oil red staining, and Western blot. In addition, western blot and immunofluorescent staining were utilized to estimate the effect of RAD on mitochondrial function, autophagy flux, and SASP. RESULTS In vivo, RAD considerably alleviated systemic inflammation while attenuating TC, TG, AMY, LPS, inflammatory cytokines, histopathology changes, oxidative damage, mitochondrial fission, and autophagy markers in HLAP mice. Impaired autophagy flux and mitochondrial dysfunction resulted in a significant enhancement of NLRP3 and IL-1β in the pancreas. RAD could reverse these changes. In vitro, RAD significantly restored mitochondrial membrane potential and oxidative phosphorylation levels. RAD decreased Beclin-1 and LC3-II expression and increased LAMP-1 and Parkin-Pink expression, which showed that RAD significantly ameliorated HLAP-induced damage to the mitochondria function by suppressing mitochondrial oxidative damage and enhancing autophagy flux and mitophagy to remove the damaged mitochondria. In addition, we found that RAD could up-regulate the expression of BAX, and Bad and down-regulate the expression of p16, and p21, indicating that RAD could promote damaged cell apoptosis and alleviate SASP. CONCLUSIONS This study revealed that RAD ameliorates mitochondrial function to alleviate SASP through enhancing autophagy flux, mitophagy, and apoptosis which provided a molecular basis for the advancement and development of protection strategies against HLAP.
Collapse
Affiliation(s)
- Rongzhan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhiyong Zhu
- Wuxi Huishan District People's Hospital, Wuxi, 214187, China; Affiliated Hushan Hospital of Xingling College, Nantong University, 226019, China
| | - Yumei Ma
- Digestive Department of Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Tiantian Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiejie Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fang Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Luzhou Xu
- Gastroenterology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, China
| | - Yaping Wang
- Wuxi Huishan District People's Hospital, Wuxi, 214187, China; Affiliated Hushan Hospital of Xingling College, Nantong University, 226019, China.
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Zhang H, Wang X, Zhao L, Zhang K, Cui J, Xu G. Biochanin a ameliorates DSS-induced ulcerative colitis by improving colonic barrier function and protects against the development of spontaneous colitis in the Muc2 deficient mice. Chem Biol Interact 2024; 395:111014. [PMID: 38648921 DOI: 10.1016/j.cbi.2024.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
There is an increasing appreciation that colonic barrier function is closely related to the development and progression of colitis. The mucus layer is a crucial component of the colonic barrier, responsible for preventing harmful bacteria from invading the intestinal epithelium and causing inflammation. Furthermore, a defective mucus barrier is also a significant characteristic of ulcerative colitis (UC). Biochanin A (BCA), an isoflavonoid, has garnered increasing interest due to its significant biological activities. However, the impact of BCA on UC has not been reported yet. In this study, we used a dextran sodium sulfate (DSS)-induced ulcerative colitis model and the Muc2 deficient (Muc2-/-) mice spontaneous colitis model to explore the mechanisms of BCA in the treatment of UC. Here, we verified that DSS-induced UC was observably attenuated and spontaneous colitis in Muc2-/- mice was relieved by BCA. Treatment with BCA improved colitis-related symptoms and reduced intestinal permeability by upregulating the levels of goblet cells and tight junction (TJ) proteins. In addition, we confirmed that BCA promotes autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway, thereby alleviating DSS-induced UC. In addition, the administration of BCA was able to reduce apoptosis and promote proliferation by suppressing Cleaved Caspase-3 (Cleaved Cas-3) expression, and increasing PCNA and Ki67 levels. Further research revealed that BCA treatment ameliorated spontaneous colitis and alleviated epithelial damage in Muc2-/- mice by restoring the intestinal barrier and promoting autophagy. Our results demonstrated that BCA alleviated UC by enhancing intestinal barrier function and promoting autophagy. These findings indicate that BCA may be a novel treatment alternative for UC.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Rehabilitation, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Xueqi Wang
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, PR China
| | - Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Jiaming Cui
- Changchun University of Chinese Medicine, Jilin University, Changchun, 130000, PR China
| | - Guangmeng Xu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China.
| |
Collapse
|
5
|
Lu X, Shi C, Fan C. Involvement of circ_0029407 in Caerulein-Evoked Cytotoxicity in Human Pancreatic Cells via the miR-579-3p/TLR4/NF-κB Pathway. Mol Biotechnol 2024:10.1007/s12033-024-01175-w. [PMID: 38755468 DOI: 10.1007/s12033-024-01175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Acute pancreatitis (AP) is the most prevalent gastrointestinal inflammatory disease. Circular RNAs (circRNAs) are implicated in the development of AP. Here, we identified the precise action of circ_0029407 in AP development. Human pancreatic epithelial cells (HPECs) were stimulated with caerulein. Cell viability, proliferation, and apoptosis were gauged by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays, respectively. Circ_0029407, microRNA (miR)-579-3p, and toll-like receptor 4 (TLR4) were quantified by a qRT-PCR or western blot assay. Dual-luciferase reporter and RNA pull-down assays were performed to evaluate the direct relationship between miR-579-3p and circ_0029407 or TLR4. Our results indicated that circ_0029407 was markedly overexpressed in AP serum samples and caerulein-stimulated HPECs. Reduction of circ_0029407 attenuated caerulein-imposed HPEC damage by promoting cell proliferation and repressing cell apoptosis and inflammation. Mechanistically, circ_0029407 contained a miR-579-3p binding site, and miR-579-3p downregulation reversed the effect of circ_0029407 reduction on caerulein-imposed HPEC damage. TLR4 was identified as a direct and functional target of miR-579-3p, and TLR4 overexpression reversed the impact of miR-579-3p upregulation on attenuating caerulein-imposed HPEC damage. Moreover, circ_0029407 regulated the TLR4/nuclear factor NF-kappaB (NF-κB) signaling by acting as a competing endogenous RNA (ceRNA) for miR-579-3p. Our study suggests that circ_0029407 regulates caerulein-imposed cell injury in human pancreatic cells at least in part via the TLR4/NF-κB signaling pathway by functioning as a ceRNA for miR-579-3p.
Collapse
Affiliation(s)
- Xingwen Lu
- Department of Intensive Care Medicine, Baoan Central Hospital of Shenzhen, Shenzhen, 518102, Guangdong, China
| | - Caiyan Shi
- Department of Medical Oncology and Radiotherapy, Hainan West Central Hospital, Danzhou, 571700, Hainan, China
| | - Cunlin Fan
- Department of Clinical Laboratory, Ganzhou People's Hospital, No. 18, Meiguan Avenue, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
6
|
Mattke J, Darden CM, Lawrence MC, Kuncha J, Shah YA, Kane RR, Naziruddin B. Toll-like receptor 4 in pancreatic damage and immune infiltration in acute pancreatitis. Front Immunol 2024; 15:1362727. [PMID: 38585277 PMCID: PMC10995222 DOI: 10.3389/fimmu.2024.1362727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Acute pancreatitis is a complex inflammatory disease resulting in extreme pain and can result in significant morbidity and mortality. It can be caused by several factors ranging from genetics, alcohol use, gall stones, and ductal obstruction caused by calcification or neutrophil extracellular traps. Acute pancreatitis is also characterized by immune cell infiltration of neutrophils and M1 macrophages. Toll-like receptor 4 (TLR4) is a pattern recognition receptor that has been noted to respond to endogenous ligands such as high mobility group box 1 (HMGB1) protein and or exogenous ligands such as lipopolysaccharide both of which can be present during the progression of acute pancreatitis. This receptor can be found on a variety of cell types from endothelial cells to resident and infiltrating immune cells leading to production of pro-inflammatory cytokines as well as immune cell activation and maturation resulting in the furthering of pancreatic damage during acute pancreatitis. In this review we will address the various mechanisms mediated by TLR4 in the advancement of acute pancreatitis and how targeting this receptor could lead to improved outcomes for patients suffering from this condition.
Collapse
Affiliation(s)
- Jordan Mattke
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Carly M. Darden
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| | - Michael C. Lawrence
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Jayachandra Kuncha
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Yumna Ali Shah
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Robert R. Kane
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Bashoo Naziruddin
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| |
Collapse
|
7
|
Li P, Zhang J, Wu J, Ma J, Huang W, Gong J, Xie Z, Chen Y, Liao Q. Integrating serum pharmacochemistry and network pharmacology to reveal the mechanism of chickpea in improving insulin resistance. Fitoterapia 2024; 172:105750. [PMID: 37977304 DOI: 10.1016/j.fitote.2023.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Although chickpea have great potential in the treatment of obesity and diabetes, the bioactive components and therapeutic targets of chickpea to prevent insulin resistance (IR) are still unclear. The purpose of this study was to investigate the chemical and pharmacological characteristics of chickpea on IR through serum pharmacochemistry and network pharmacology. The results revealed that compared with other polar fractions, the ethyl acetate extract of chickpea (CE) had the definitive performance on enhancing the capacities of glucose consumption and glycogen synthesis. In addition, we analyzed the components of CE in vivo and in vitro based on UPLC-Q-Orbitrap HRMS technology. There were 28 kinds of in vitro chemical components, among which the isoflavones included biochanin A, formononetin, ononin, sissotrin, and astragalin, etc. Concerningly, the chief prototype components of CE absorbed into the blood were biochanin A, formononetin, loliolide, and lenticin, etc. Furthermore, a total of 209 common targets between IR and active components of CE were screened out by network pharmacology, among which the key targets involved PI3K p85, NF-κB p65 and estrogen receptor 1, etc. Specifically, KEGG pathway analysis indicated that PI3K-AKT signaling pathway, HIF-1 signaling pathway, and AGE-RAGE signaling pathway may play critical roles in the IR remission by CE. Finally, the in vitro validation experiments disclosed that CE significantly balanced the oxidative stress state of IR-HepG2 cells and inhibited expressions of inflammatory cytokines. In conclusion, the present study will be an important reference for clarifying the pharmacodynamic substance basis and underlying mechanism of chickpea to alleviate IR.
Collapse
Affiliation(s)
- Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiaxian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinyun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
8
|
Feng Z, Zhang N, Bai J, Lin QY, Xie Y, Xia YL. Biochanin A inhibits cardiac hypertrophy and fibrosis in vivo and in vitro. Biomed Pharmacother 2024; 170:116002. [PMID: 38091641 DOI: 10.1016/j.biopha.2023.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
The heart undergoes pathological cardiac hypertrophy as an adaptive response to prolonged pathological stimulation, leading to cardiomyocyte hypertrophy, fibroblast proliferation, and an increase in extracellular matrix. Chinese medicine monomers are now receiving much attention for the treatment of cardiac hypertrophy and myocardial remodeling. Biochanin A (BCA) is a kind of flavonoid structural monomer, which has a certain therapeutic effect on bone thinning disease, aging syndrome, lung cancer, etc. Moreover, it exhibits hypoglycemic, anti-inflammatory, anti-oxidation, anti-bacteria and other pharmacological properties. It is still unknown whether BCA has an impact on the mechanism of TAC-induced cardiac hypertrophy. Here, cardiac remodeling was induced by TAC. BCA was injected intraperitoneally at 25 and 50 mg/kg/day one week in advance. Masson, WGA, DHE and other pathological staining and serum were used to detect the inhibitory effect of BCA on cardiac hypertrophy in mice. The anti-hypertrophic effect of BCA was demonstrated by studying the pathological manifestations of Neonatal rat cardiomyocytes (NRCMs) and cardiac fibroblasts (CFs) in vitro. The results showed that BCA significantly reduced TAC-induced fibrosis, inflammation, oxidative stress, and myocardial hypertrophy. BCA inhibited Ang II-induced cell hypertrophy and oxidative stress in NRCMs in vitro and Ang II-induced CF migration, proliferation, and collagen secretion. This suggests that BCA plays a key role in inhibiting the progression of myocardial remodeling, suggesting that BCA may be a promising agent for the treatment of myocardial hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Zhenyu Feng
- Institute of Cardiovascular Diseases, The first affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Ningning Zhang
- Department of Hematology, the First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Jie Bai
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, Dalian, People's Republic of China
| | - Qiu-Yue Lin
- Institute of Cardiovascular Diseases, The first affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yunpeng Xie
- Institute of Cardiovascular Diseases, The first affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
| | - Yun-Long Xia
- Institute of Cardiovascular Diseases, The first affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
9
|
Liu Q, Li J, Gu M, Kong W, Lin Z, Mao J, Zhang M, Jiang L, Liu C, Wang Y, Liu J. High-Throughput Phytochemical Unscrambling of Flowers Originating from Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) P. K. Hsiao and Astragalus membranaceus (Fisch.) Bug. by Applying the Intagretive Plant Metabolomics Method Using UHPLC-Q-TOF-MS/MS. Molecules 2023; 28:6115. [PMID: 37630367 PMCID: PMC10458299 DOI: 10.3390/molecules28166115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) P. K. Hsiao (MO) and Astragalus membranaceus (Fisch.) Bug. (ME) are two primary sources of the Astragalus herb, also known as "Huangqi" in China, which is widely applied to treat hypertension, glomerulonephritis, ischemic heart disease, and diabetes mellitus. As two different sources of the Astragalus herb, the chemical profiles of MO and ME may be different. Previous studies showed abundant differences in chemical composition between MO and ME. Therefore, the by-products of MO and ME, such as Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) P. K. Hsiao flower (MOF) and Astragalus membranaceus (Fisch.) Bug. flower (MEF), may have different phytochemical profiles. In this paper, a metabolomics method combined with ultra-high-performance liquid chromatography and electrospray ionization/quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was employed to analyze the components of MOF and MEF. Consequently, the results of principal component analysis (PCA) showed that MOF and MEF could be separated clearly. In total, 31 chemical markers differentiating MOF and MEF were successfully identified, including 22 flavonoids, 8 isoflavones and 1 benzopyran. Among them, the contents of 18 components, including Calycosin, Cyanidin-3-O-glucoside, Quercetin, Rutin, Kaempferol, Formononetin, Isomucronulatol and Prim-O-glucosylcimifugin in MEF, were significantly higher than in MOF. In turn, the contents of another 13 components, covering Biochanin A, Tectoridin, Isomucronulatol-7-O-glucoside, Liquiritin, Rhamnetin, etc., were lower in the MEF group than that in the MOF group. It is worth noting that flavonoids, especially flavonoid glycosides, were the primary active chemical ingredients in MOF and MEF. The 18 ingredients in MEF with a higher level carried out diverse activities, like anti-oxidant, anti-inflammatory, anti-bacterial and anti-tumor activities, which led us to speculate that MEF may have greater pharmacological effects and potential development prospects than MOF. The present results displayed that the contents of ingredients in the two different species of plants were radically different, and there was significant uniqueness to the components of MOF and MEF. Our study not only provides helpful chemical information for further quality assessment and active mechanism research of MOF and MEF but also offers scientific support for the resource utilization of MOF and MEF.
Collapse
Affiliation(s)
- Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Jinghui Li
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Meiling Gu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Wanying Kong
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Zhao Lin
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Jialin Mao
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Meng Zhang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Liyan Jiang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Can Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Yumei Wang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Jicheng Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
- The Research Institute of Astragalus Industry, Qiqihar Academy of Medical Sciences, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China
| |
Collapse
|
10
|
Yang J, Sha X, Wu D, Wu B, Pan X, Pan LL, Gu Y, Dong X. Formononetin alleviates acute pancreatitis by reducing oxidative stress and modulating intestinal barrier. Chin Med 2023; 18:78. [PMID: 37370098 DOI: 10.1186/s13020-023-00773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a recurrent inflammatory disease. Studies have shown that intestinal homeostasis is essential for the treatment of AP. Formononetin is a plant-derived isoflavone with antioxidant properties that can effectively treat a variety of inflammatory diseases. This study aims to investigate the role of formononetin in protecting against AP and underlying mechanism. METHODS Caerulein was used to induce AP. The inflammatory cytokines were detected using Quantitative real-time PCR and commercial kits. Histological examination was applied with hematoxylin and eosin staining. Western blot was conducted to detect expression of intestinal barrier protein and signaling molecular. Molecular docking was performed to assess protein-ligand interaction. RESULTS In this study, we found formononetin administration significantly reduced pancreatic edema, the activities of serum amylase, lipase, myeloperoxidase, and serum endotoxin. The mRNA levels of inflammatory cytokines such as tumor necrosis factor α, monocyte chemoattractant protein-1, interleukin-6, and interleukin-1 beta (IL-1β) in pancreas were also significantly decreased by formononetin. The following data showed formononetin pretreatment up-regulated the expressions of tight junction proteins in the colon, and decreased Escherichia coli translocation in the pancreas. In addition, formononetin inhibited the activation of nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing 3 in pancreatic and colonic tissues of AP mice. Moreover, formononetin activated Kelch Like ECH Associated Protein 1 (Keap1) / Nuclear factor erythroid2-related factor 2 (Nrf2) signaling pathway to reduce reactive oxygen species (ROS) levels. Docking results showed that formononetin interact with Keap1 through hydrogen bond. CONCLUSIONS These findings demonstrate that formononetin administration significantly mitigate AP through reducing oxidative stress and restoring intestinal homeostasis, and provide insights into the new treatment for AP.
Collapse
Affiliation(s)
- Jun Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Xiaowei Sha
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Di Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Bo Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Xiaohua Pan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yuanlong Gu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| | - Xiaoliang Dong
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Feng ZJ, Lai WF. Chemical and Biological Properties of Biochanin A and Its Pharmaceutical Applications. Pharmaceutics 2023; 15:pharmaceutics15041105. [PMID: 37111591 PMCID: PMC10143291 DOI: 10.3390/pharmaceutics15041105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Biochanin A (BCA), an isoflavone derived from various plants such as chickpea, red clover and soybean, is attracting increasing attention and is considered to have applications in the development of pharmaceuticals and nutraceuticals due to its anti-inflammatory, anti-oxidant, anti-cancer and neuroprotective properties. To design optimised and targeted BCA formulations, on one hand there is a need for more in-depth studies on the biological functions of BCA. On the other hand, further studies on the chemical conformation, metabolic composition and bioavailability of BCA need to be conducted. This review highlights the various biological functions, extraction methods, metabolism, bioavailability, and application prospects of BCA. It is hoped that this review will provide a basis for understanding the mechanism, safety and toxicity of BCA and implementing the development of BCA formulations.
Collapse
Affiliation(s)
- Zhen-Jie Feng
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|