1
|
Esberg A, Kindstedt E, Isehed C, Lindquist S, Holmlund A, Lundberg P. LIGHT protein: A novel gingival crevicular fluid biomarker associated with increased probing depth after periodontal surgery. J Clin Periodontol 2024; 51:852-862. [PMID: 38390754 DOI: 10.1111/jcpe.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
AIM To evaluate the protein profiles in gingival crevicular fluid (GCF) in relation to clinical outcomes after periodontal surgery and examine if any selected proteins affect the mRNA expression of pro-inflammatory cytokines in human gingival fibroblasts. MATERIALS AND METHODS This exploratory study included 21 consecutive patients with periodontitis. GCF was collected, and the protein pattern (n = 92) and clinical parameters were evaluated prior to surgery and 3, 6 and 12 months after surgery. Fibroblastic gene expression was analysed by real-time quantitative polymerase chain reaction. RESULTS Surgical treatment reduced periodontal pocket depth (PPD) and changed the GCF protein pattern. Twelve months after surgery, 17% of the pockets showed an increase in PPD. Levels of a number of proteins in the GCF decreased after surgical treatment but increased with early signs of tissue destruction, with LIGHT being one of the proteins that showed the strongest association. Furthermore, LIGHT up-regulated the mRNA expression of pro-inflammatory cytokines interleukin (IL)-6, IL-8 and MMP9 in human gingival fibroblasts. CONCLUSIONS LIGHT can potentially detect subjects at high risk of periodontitis recurrence after surgical treatment. Moreover, LIGHT induces the expression of inflammatory cytokines and tissue-degrading enzymes in gingival fibroblasts.
Collapse
Affiliation(s)
- Anders Esberg
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Elin Kindstedt
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Catrine Isehed
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
- Department of Periodontology, Public Dental Health County Council of Gävleborg, Gävle County Hospital, Gävle, Sweden
- Center for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Susanne Lindquist
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Anders Holmlund
- Department of Periodontology, Public Dental Health County Council of Gävleborg, Gävle County Hospital, Gävle, Sweden
- Center for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Pernilla Lundberg
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Zhao X, Liu W, Wu Z, He X, Tang Y, He Q, Lin C, Chen Y, Luo G, Yu T, Wang X. Hepatocyte growth factor is protective in early stage but bone-destructive in late stage of experimental periodontitis. J Periodontal Res 2024; 59:565-575. [PMID: 38240289 DOI: 10.1111/jre.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/01/2023] [Accepted: 12/25/2023] [Indexed: 05/24/2024]
Abstract
BACKGROUND AND OBJECTIVE Clinical studies found high levels of hepatocyte growth factor (HGF) expression in patients with periodontitis. Studies suggest that HGF plays an important role in periodontitis, is involved in inflammation, and modulates alveolar bone integrity in periodontitis. This study aims to investigate the effects and mechanisms of HGF in the progression of experimental periodontitis. METHODS We used silk thread ligation to induce periodontitis in HGF-overexpressing transgenic (HGF-Tg) and wild-type C57BL/6J mice. The effects of HGF overexpression on alveolar bone destruction were assessed by microcomputed tomography imaging at baseline and on days 7, 14, 21, and 28. We analyzed the cytokines (IL-6 and TNF-α) and lymphocytes in periodontitis tissues by enzyme-linked immunosorbent assay and flow cytometry. The effects of HGF on alveolar bone destruction were further tested by quantifying the systemic bone metabolism markers CTXI and PINP and by RNA sequencing for the signaling pathways involved in bone destruction. Western blotting and immunohistochemistry were performed to further elucidate the involved signaling pathways. RESULTS We found that experimental periodontitis increased HGF production in periodontitis tissues; however, the effects of HGF overexpression were inconsistent with disease progression. In the early stage of periodontitis, periodontal inflammation and alveolar bone destruction were significantly lower in HGF-Tg mice than in wild-type mice. In the late stage, HGF-Tg mice showed higher inflammatory responses and progressively aggravated bone destruction with continued stimulation of inflammation. We identified the IL-17/RANKL/TRAF6 pathway as a signaling pathway involved in the HGF effects on the progression of periodontitis. CONCLUSION HGF plays divergent effects in the progression of experimental periodontitis and accelerates osteoclastic activity and bone destruction in the late stage of inflammation.
Collapse
Affiliation(s)
- Xiaomin Zhao
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weijia Liu
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhicong Wu
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoxi He
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinghua Tang
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian He
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chuyin Lin
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yannan Chen
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gang Luo
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting Yu
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinhong Wang
- School and Hospital of Stomatology, Guangzhou key Laboratory of Basic and Applied Research of oral Regenerative Medine & Optional Institutions, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|