1
|
Dogru S, Alba GM, Pierce KC, Wang T, Kia DS, Albro MB. Cell mediated reactions create TGF-β delivery limitations in engineered cartilage. Acta Biomater 2024:S1742-7061(24)00624-X. [PMID: 39447669 DOI: 10.1016/j.actbio.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
During native cartilage development, endogenous TGF-β activity is tightly regulated by cell-mediated chemical reactions in the extracellular milieu (e.g., matrix and receptor binding), providing spatiotemporal control in a manner that is localized and short acting. These regulatory paradigms appear to be at odds with TGF-β delivery needs in tissue engineering (TE) where administered TGF-β is required to transport long distances or reside in tissues for extended durations. In this study, we perform a novel examination of the influence of cell-mediated reactions on the spatiotemporal distribution of administered TGF-β in cartilage TE applications. Reaction rates of TGF-β binding to cell-deposited ECM and TGF-β internalization by cell receptors are experimentally characterized in bovine chondrocyte-seeded tissue constructs. TGF-β binding to the construct ECM exhibits non-linear Brunauer-Emmett-Teller (BET) adsorption behavior, indicating that as many as seven TGF-β molecules can aggregate at a binding site. Cell-mediated TGF-β internalization rates exhibit a biphasic trend, following a Michaelis-Menten relation (Vmax = 2.4 molecules cell-1 s-1, Km = 1.7 ng mL-1) at low ligand doses (≤130 ng/mL), but exhibit an unanticipated non-saturating power trend at higher doses (≥130 ng/mL). Computational models are developed to illustrate the influence of these reactions on TGF-β spatiotemporal delivery profiles for conventional TGF-β administration platforms. For TGF-β delivery via supplementation in culture medium, these reactions give rise to pronounced steady state TGF-β spatial gradients; TGF-β concentration decays by ∼90 % at a depth of only 500 μm from the media-exposed surface. For TGF-β delivery via heparin-conjugated affinity scaffolds, cell mediated internalization reactions significantly reduce the TGF-β scaffold retention time (160-360-fold reduction) relative to acellular heparin scaffolds. This work establishes the significant limitations that cell-mediated chemical reactions engender for TGF-β delivery and highlights the need for novel delivery platforms that account for these reactions to achieve optimal TGF-β exposure profiles. STATEMENT OF SIGNIFICANCE: During native cartilage development, endogenous TGF-β activity is tightly regulated by cell-mediated chemical reactions in the extracellular milieu (e.g., matrix and receptor binding), providing spatiotemporal control in a manner that is localized and short acting. However, the effect of these reactions on the delivery of exogenous TGF-β to engineered cartilage tissues remains not well understood. In this study, we demonstrate that cell-mediated reactions significantly restrict the delivery of TGF-β to cells in engineered cartilage tissue constructs. For delivery via media supplementation, reactions significantly limit TGF-β penetration into constructs. For delivery via scaffold loading, reactions significantly limit TGF-β residence time in constructs. Overall, these results illustrate the impact of cell-mediated chemical reactions on TGF-β delivery profiles and support the importance of accounting for these reactions when designing TGF-β delivery platforms for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Sedat Dogru
- College of Engineering, Boston University, Boston, MA, United States
| | - Gabriela M Alba
- College of Engineering, Boston University, Boston, MA, United States
| | - Kirk C Pierce
- College of Engineering, Boston University, Boston, MA, United States
| | - Tianbai Wang
- College of Engineering, Boston University, Boston, MA, United States
| | | | - Michael B Albro
- College of Engineering, Boston University, Boston, MA, United States.
| |
Collapse
|
2
|
Sisto M, Lisi S. Towards a Unified Approach in Autoimmune Fibrotic Signalling Pathways. Int J Mol Sci 2023; 24:ijms24109060. [PMID: 37240405 DOI: 10.3390/ijms24109060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Autoimmunity is a chronic process resulting in inflammation, tissue damage, and subsequent tissue remodelling and organ fibrosis. In contrast to acute inflammatory reactions, pathogenic fibrosis typically results from the chronic inflammatory reactions characterizing autoimmune diseases. Despite having obvious aetiological and clinical outcome distinctions, most chronic autoimmune fibrotic disorders have in common a persistent and sustained production of growth factors, proteolytic enzymes, angiogenic factors, and fibrogenic cytokines, which together stimulate the deposition of connective tissue elements or epithelial to mesenchymal transformation (EMT) that progressively remodels and destroys normal tissue architecture leading to organ failure. Despite its enormous impact on human health, there are currently no approved treatments that directly target the molecular mechanisms of fibrosis. The primary goal of this review is to discuss the most recent identified mechanisms of chronic autoimmune diseases characterized by a fibrotic evolution with the aim to identify possible common and unique mechanisms of fibrogenesis that might be exploited in the development of effective antifibrotic therapies.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Piazza Giulio Cesare 1, I-70124 Bari, Italy
| |
Collapse
|
3
|
Rahman MM, Watton PN, Neu CP, Pierce DM. A chemo-mechano-biological modeling framework for cartilage evolving in health, disease, injury, and treatment. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107419. [PMID: 36842346 DOI: 10.1016/j.cmpb.2023.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Osteoarthritis (OA) is a pervasive and debilitating disease, wherein degeneration of cartilage features prominently. Despite extensive research, we do not yet understand the cause or progression of OA. Studies show biochemical, mechanical, and biological factors affect cartilage health. Mechanical loads influence synthesis of biochemical constituents which build and/or break down cartilage, and which in turn affect mechanical loads. OA-associated biochemical profiles activate cellular activity that disrupts homeostasis. To understand the complex interplay among mechanical stimuli, biochemical signaling, and cartilage function requires integrating vast research on experimental mechanics and mechanobiology-a task approachable only with computational models. At present, mechanical models of cartilage generally lack chemo-biological effects, and biochemical models lack coupled mechanics, let alone interactions over time. METHODS We establish a first-of-its kind virtual cartilage: a modeling framework that considers time-dependent, chemo-mechano-biologically induced turnover of key constituents resulting from biochemical, mechanical, and/or biological activity. We include the "minimally essential" yet complex chemical and mechanobiological mechanisms. Our 3-D framework integrates a constitutive model for the mechanics of cartilage with a novel model of homeostatic adaptation by chondrocytes to pathological mechanical stimuli, and a new application of anisotropic growth (loss) to simulate degradation clinically observed as cartilage thinning. RESULTS Using a single set of representative parameters, our simulations of immobilizing and overloading successfully captured loss of cartilage quantified experimentally. Simulations of immobilizing, overloading, and injuring cartilage predicted dose-dependent recovery of cartilage when treated with suramin, a proposed therapeutic for OA. The modeling framework prompted us to add growth factors to the suramin treatment, which predicted even better recovery. CONCLUSIONS Our flexible framework is a first step toward computational investigations of how cartilage and chondrocytes mechanically and biochemically evolve in degeneration of OA and respond to pharmacological therapies. Our framework will enable future studies to link physical activity and resulting mechanical stimuli to progression of OA and loss of cartilage function, facilitating new fundamental understanding of the complex progression of OA and elucidating new perspectives on causes, treatments, and possible preventions.
Collapse
Affiliation(s)
| | - Paul N Watton
- Department of Computer Science & Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - David M Pierce
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
4
|
Pang T, Liu C, Yao J, Li J, Li Z, Lou H, Lei S, Zhang J, Dong L, Wang Y. Mechanisms of the Bushen Huoxue formula in the treatment of osteoarthritis based on network pharmacology-molecular targets. Medicine (Baltimore) 2022; 101:e29345. [PMID: 35960090 PMCID: PMC9371512 DOI: 10.1097/md.0000000000029345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Osteoarthritis is a common degenerative disease with a high incidence, high disability rate, and poor prognosis. Clinical studies have shown that Bushen Huoxue formula can relieve joint swelling and pain and improve limb function and joint mobility, but there is a lack of high-quality scientific basis. Using network pharmacology and molecular docking technology to study the mechanism of Bushen Huoxue formula in the treatment of osteoarthritis. METHODS First, the active ingredients and corresponding target predictions of the formula were obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and the China National Knowledge Infrastructure. Meanwhile, the osteoarthritis disease targets were obtained through the genome annotation database platform (GeneCards) and the DrugBank database, and the target proteins obtained above were standardized using the Uniprot (https://www.uniprot.org) database standardization of names. Then, the Venn diagram was created by taking the intersection of the active ingredient and the target of the disease, and the "active ingredient-target" network was constructed and analyzed using Cytoscape 3.7.2 software. At the same time, the intersecting targets were imported into the Search Tool for the Retrieval of Interaction Gene/Proteins database to build a protein-protein interaction network and to screen the core targets; the intersecting targets were visualized by using the Database for Annotation, Visualization and Integrated Discovery 6.8 database for gene ontology functional analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and construct the "active ingredient-target-pathway" network. Finally, the main active ingredients of the formula for tonifying the kidney and invigorating the blood were validated by molecular docking with the core targets. RESULTS A total of 194 active ingredients and 365 targets of the Bushen Huoxue formula were collected, 776 targets for osteoarthritis diseases and 96 targets for the intersection of active ingredients and diseases. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis yielded 104 relevant pathways, including tumor necrosis factor signaling pathways, cancer signaling pathways, nucleotide-binding oligomerization domain-like receptor signaling pathways, Toll-like receptors signaling pathways, and osteoclast differentiation, apoptosis, T-cell receptor signaling pathway, and other related pathways. The molecular docking results showed good binding of the main active ingredients to the core targets. CONCLUSION This study shows that the treatment of osteoarthritis involves multicomponent, multitarget, and multipathway processes. The mechanism of anti-inflammatory, antioxidant, inhibition of cartilage matrix degradation, and reduction of subchondral bone destruction may be an important mechanism for the therapeutic effect.
Collapse
Affiliation(s)
- Tingting Pang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Chang Liu
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Junjie Yao
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jiahui Li
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Zhongxu Li
- Department of Tuina, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Huijuan Lou
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Siyuan Lei
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jiangchun Zhang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Li Dong
- Department of Rehabilitation Medicine College, Changchun University of Chinese Medicine, Changchun, China
| | - Yufeng Wang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Yufeng Wang, Department of Tuina, Traditional Chinese Medicine Hospital of Jinlin Province, Changchun 130000, China (e-mail: )
| |
Collapse
|
5
|
Li T, Peng J, Li Q, Shu Y, Zhu P, Hao L. The Mechanism and Role of ADAMTS Protein Family in Osteoarthritis. Biomolecules 2022; 12:biom12070959. [PMID: 35883515 PMCID: PMC9313267 DOI: 10.3390/biom12070959] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Osteoarthritis (OA) is a principal cause of aches and disability worldwide. It is characterized by the inflammation of the bone leading to degeneration and loss of cartilage function. Factors, including diet, age, and obesity, impact and/or lead to osteoarthritis. In the past few years, OA has received considerable scholarly attention owing to its increasing prevalence, resulting in a cumbersome burden. At present, most of the interventions only relieve short-term symptoms, and some treatments and drugs can aggravate the disease in the long run. There is a pressing need to address the safety problems due to osteoarthritis. A disintegrin-like and metalloprotease domain with thrombospondin type 1 repeats (ADAMTS) metalloproteinase is a kind of secretory zinc endopeptidase, comprising 19 kinds of zinc endopeptidases. ADAMTS has been implicated in several human diseases, including OA. For example, aggrecanases, ADAMTS-4 and ADAMTS-5, participate in the cleavage of aggrecan in the extracellular matrix (ECM); ADAMTS-7 and ADAMTS-12 participate in the fission of Cartilage Oligomeric Matrix Protein (COMP) into COMP lyase, and ADAMTS-2, ADAMTS-3, and ADAMTS-14 promote the formation of collagen fibers. In this article, we principally review the role of ADAMTS metalloproteinases in osteoarthritis. From three different dimensions, we explain how ADAMTS participates in all the following aspects of osteoarthritis: ECM, cartilage degeneration, and synovial inflammation. Thus, ADAMTS may be a potential therapeutic target in osteoarthritis, and this article may render a theoretical basis for the study of new therapeutic methods for osteoarthritis.
Collapse
Affiliation(s)
- Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Qingqing Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Peijun Zhu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Correspondence: ; Tel.: +86-13607008562; Fax: +86-86415785
| |
Collapse
|
6
|
Cilek MZ, de Vega S, Shiozawa J, Yoshinaga C, Miyamae Y, Chijiiwa M, Mochizuki S, Ito M, Kaneko H, Kaneko K, Ishijima M, Okada Y. Synergistic upregulation of ADAMTS4 (aggrecanase-1) by cytokines and its suppression in knee osteoarthritic synovial fibroblasts. J Transl Med 2022; 102:102-111. [PMID: 34718343 DOI: 10.1038/s41374-021-00685-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/15/2023] Open
Abstract
The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family includes nine members with aggrecan-degrading activity, i.e., ADAMTS1, 4, 5, 8, 9, 15, 16, 18, and 20. However, their systematic expression profile in knee osteoarthritis (OA) synovium and effects of cytokines and growth factors on the expression in OA synovial fibroblasts remain elusive. In this study, expression of all nine aggrecanolytic ADAMTS species was assessed by quantitative real-time PCR in OA and control normal synovial tissues. OA synovial fibroblasts were treated with interleukin-1α (IL-1α), IL-1β, tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), vascular endothelial growth factor165, and heparin-binding epidermal growth factor, and analyzed for the expression of the ADAMTS species. The signaling pathways and inhibition of ADAMTS4 expression by high-molecular-weight hyaluronan, adalimumab, tocilizumab, and signaling molecule inhibitors were studied. ADAMTS1, 4, 5, 9, and 16 were expressed in OA synovium, but only ADAMTS4 expression was significantly higher in OA as compared to normal synovium. IL-1α, TNF-α, and TGF-β markedly increased ADAMTS4 expression, while their effects were minimal for the other ADAMTS species. ADAMTS4 was synergistically upregulated by treatment with IL-1α and TNF-α, IL-1α and TGF-β, or IL-1α, TNF-α and TGF-β. The signaling molecules' inhibitors demonstrated that IL-1α-induced ADAMTS4 expression is predominantly through TGF-β-associated kinase 1 (TAK1), and the TNF-α-stimulated expression is via TAK1 and nuclear factor-κB (NF-κB). The TGF-β-promoted expression was through the activin receptor-like kinase 5 (ALK5)/Smad2/3, TAK1, and non-TAK1 pathways. Adalimumab blocked TNF-α-stimulated expression. ADAMTS4 expression co-stimulated with IL-1α, TNF-α and TGF-β was abolished by treatment with adalimumab, TAK1 inhibitor, and ALK5/Smad2/3 inhibitor. These data demonstrate marked and synergistic upregulation of ADAMTS4 by IL-1α, TNF-α and TGF-β in OA synovial fibroblasts, and suggest that concurrent therapy with an anti-TNF-α drug and inhibitor(s) may be useful for prevention against aggrecan degradation in OA.
Collapse
Affiliation(s)
- Mehmet Zeynel Cilek
- Sportology Center, Juntendo University, Tokyo, Japan
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susana de Vega
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jun Shiozawa
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chiho Yoshinaga
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuka Miyamae
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Miyuki Chijiiwa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Satsuki Mochizuki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Ito
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Haruka Kaneko
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuo Kaneko
- Sportology Center, Juntendo University, Tokyo, Japan
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Sportology Center, Juntendo University, Tokyo, Japan
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
7
|
Sisto M, Ribatti D, Lisi S. Organ Fibrosis and Autoimmunity: The Role of Inflammation in TGFβ-Dependent EMT. Biomolecules 2021; 11:biom11020310. [PMID: 33670735 PMCID: PMC7922523 DOI: 10.3390/biom11020310] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances in our understanding of the molecular pathways that control the link of inflammation with organ fibrosis and autoimmune diseases point to the epithelial to mesenchymal transition (EMT) as the common association in the progression of these diseases characterized by an intense inflammatory response. EMT, a process in which epithelial cells are gradually transformed to mesenchymal cells, is a major contributor to the pathogenesis of fibrosis. Importantly, the chronic inflammatory microenvironment has emerged as a decisive factor in the induction of pathological EMT. Transforming growth factor-β (TGF-β), a multifunctional cytokine, plays a crucial role in the induction of fibrosis, often associated with chronic phases of inflammatory diseases, contributing to marked fibrotic changes that severely impair normal tissue architecture and function. The understanding of molecular mechanisms underlying EMT-dependent fibrosis has both a basic and a translational relevance, since it may be useful to design therapies aimed at counteracting organ deterioration and failure. To this end, we reviewed the recent literature to better elucidate the molecular response to inflammatory/fibrogenic signals in autoimmune diseases in order to further the specific regulation of EMT-dependent fibrosis in more targeted therapies.
Collapse
|
8
|
Murata D, Fujimoto R, Nakayama K. Osteochondral Regeneration Using Adipose Tissue-Derived Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:ijms21103589. [PMID: 32438742 PMCID: PMC7279226 DOI: 10.3390/ijms21103589] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a major joint disease that promotes locomotor deficiency during the middle- to old-age, with the associated disability potentially decreasing quality of life. Recently, surgical strategies to reconstruct both articular cartilage and subchondral bone for OA have been diligently investigated for restoring joint structure and function. Adipose tissue-derived mesenchymal stem cells (AT-MSCs), which maintain pluripotency and self-proliferation ability, have recently received attention as a useful tool to regenerate osteocartilage for OA. In this review, several studies were described related to AT-MSC spheroids, with scaffold and scaffold-free three-dimensional (3D) constructs produced using “mold” or “Kenzan” methods for osteochondral regeneration. First, several examples of articular cartilage regeneration using AT-MSCs were introduced. Second, studies of osteochondral regeneration (not only cartilage but also subchondral bone) using AT-MSCs were described. Third, examples were presented wherein spheroids were produced using AT-MSCs for cartilage regeneration. Fourth, osteochondral regeneration following autologous implantation of AT-MSC scaffold-free 3D constructs, fabricated using the “mold” or “Kenzan” method, was considered. Finally, prospects of osteochondral regeneration by scaffold-free 3D constructs using AT-MSC spheroids were discussed.
Collapse
Affiliation(s)
- Daiki Murata
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Honjo-machi, Saga 840-8502, Japan; (R.F.); (K.N.)
- Correspondence: ; Tel.: +81-952-28-8480
| | - Ryota Fujimoto
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Honjo-machi, Saga 840-8502, Japan; (R.F.); (K.N.)
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Honjo-machi, Saga 840-8502, Japan; (R.F.); (K.N.)
| |
Collapse
|
9
|
Özler K. The role of increased synovial fluid A disintegrin and metalloproteinase with thrombospondin motifs4 and serglycin levels in osteoarthritis. Ir J Med Sci 2018; 188:867-872. [PMID: 30536194 DOI: 10.1007/s11845-018-1945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND The first research to determine synovial fluid ADAMTS4 and serglycin levels in osteoarthritis and OA progression. AIM We aimed to determine ADAMTS4 and serglycin levels, interactions, and changes in the synovial fluid of knee OA, and also to determine effective in OA progression. METHODS A case-control study was carried out including a total of 88 participants (29 patients late OA [LOA], 28 early OA [EOA], and 30 controls). Synovial fluid serglycin and ADAMTS4 levels were measured by commercially available ELISA kits, and knee functions of the patients were evaluated with The Western Ontario and McMaster Universities Osteoarthritis score (WOMAC). Logistic regression analysis was applied for the associated with progression of OA. RESULTS Synovial fluid ADAMTS4 and serglycin levels were significantly higher in LOA than EOA and control groups (p < .001 and p < .001; p = .038 and p = .007, respectively). All parameters were evaluated after adjustment for age. LOA patients had significantly higher levels of WOMAC score than EOA and controls (p < .001 and p < .001). According to the logistic regression analysis, synovial fluid ADAMTS4, serglycin levels, and WOMAC score were found to be significantly associated with progression of OA.
Collapse
Affiliation(s)
- Kenan Özler
- Konya Beysehir State Hospital, Beyşehir Devlet Hastanesi, 042100, Konya, Turkey.
| |
Collapse
|
10
|
Adler N, Schoeniger A, Fuhrmann H. Effects of transforming growth factor-β and interleukin-1β on inflammatory markers of osteoarthritis in cultured canine chondrocytes. Am J Vet Res 2017; 78:1264-1272. [DOI: 10.2460/ajvr.78.11.1264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Expression of matrix metalloproteinase genes during basement membrane degradation in the metamorphosis of Bombyx mori. Gene 2017; 638:26-35. [PMID: 28943345 DOI: 10.1016/j.gene.2017.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 11/20/2022]
Abstract
The present study was conducted to clarify the involvement of the basement membrane (BM) in insect metamorphosis through analysis of the expression profile of two types of metalloproteinase (MMP and ADAMTS) genes in several organs, their ecdysone involvement, and the histological change of BM. BM was observed around wing sac and in the wing cavity and around fat bodies at the W0 stage but disappeared after the W3 stage, and wing discs evaginated and fat body cells scattered after the W3 stage. The disappearance of the BM of midgut and silk glands was not observed after the W3 stage, but degenerated epithelium cells in the midgut and shrunken cells in the silk gland were observed after the W3 stage. BmMMP1 showed a peak at P0 in the wing discs, fat bodies, midgut, and silk gland. BmMMP2 showed a broad peak around pupation in the wing discs, fat bodies, midgut, and silk gland. BmADAMTS-1 showed enhanced expression at W2 in the wing discs, fat bodies, midgut, and hemocyte, while BmADAMTS-L showed enhanced expression at W3 in the fat bodies, midgut, silk gland, and hemocyte. After pupation, they showed a different expression in different organs. All of four genes were induced by 20-hydroxyecdysone in wing discs in vitro. The present results suggested the involvement of MMPs and ADAMTS in the BM digestion and the morphogenesis of organs during Bombyx metamorphosis.
Collapse
|
12
|
Gok K, Cemeroglu O, Cakirbay H, Gunduz E, Acar M, Cetin EN, Gunduz M, Demircan K. Relationship between cytosine-adenine repeat polymorphism of ADAMTS9 gene and clinical and radiologic severity of knee osteoarthritis. Int J Rheum Dis 2016; 21:821-827. [PMID: 27230574 DOI: 10.1111/1756-185x.12849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study is to determine the role of cytosine-adenine (CA) micro-satellite repeat sequence of ADAMTS9 gene on the development and progression of osteoarthritis (OA). METHODS A total of 110 participants, including those with primary knee OA and healthy controls were enrolled in the study. Patients were stratified into two groups using the Kellgren-Lawrence staging (K-L staging) as group 1 for controls and mild OA and group 2 for moderate and severe OA. Genetic analyses were performed to determine the CA repeat length in ADAMTS9 gene. RESULTS Twenty CA repeats were found to be statistically significant for differentiating groups 1 and 2 (P = 0.020). Age was the most significant risk factor involved, followed by ≥ 20 CA repeats and body mass index (P < 0.05). CA repeat length of ≥ 20 showed a 6.1-fold increase in probability for having OA at stage 3 or 4 compared to those of CA repeat length of < 20 (P = 0.004). In conclusion, the CA repeat length of ≥ 20 has a six-fold increase in probability for having severe OA. CONCLUSION ADAMTS9 gene CA repeat polymorphism may be used to determine the prognosis for OA radiologic progression. Being the first in the literature reporting the CA repeat in the promotor region of ADAMTS9 gene in patients with OA, our study could be highlighted further in future research with larger sample size.
Collapse
Affiliation(s)
- Kevser Gok
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ozlem Cemeroglu
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Hasim Cakirbay
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Esra Gunduz
- Department of Medical Genetics, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Muradiye Acar
- Department of Medical Genetics, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Elif Nihan Cetin
- Department of Medical Genetics, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Mehmet Gunduz
- Department of Medical Genetics, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey.,Department of Otolaryngology, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Kadir Demircan
- Department of Medical Biology, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| |
Collapse
|
13
|
Latief N, Raza FA, Bhatti FUR, Tarar MN, Khan SN, Riazuddin S. Adipose stem cells differentiated chondrocytes regenerate damaged cartilage in rat model of osteoarthritis. Cell Biol Int 2016; 40:579-88. [PMID: 26888708 DOI: 10.1002/cbin.10596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/14/2016] [Indexed: 12/16/2022]
Abstract
Transplantation of mesenchymal stem cells (MSCs) or autologous chondrocytes has been shown to repair damages to articular cartilage due to osteoarthritis (OA). However, survival of transplanted cells is considerably reduced in the osteoarthritic environment and it affects successful outcome of the transplantation of the cells. Differentiated chrondroytes derived from adipose stem cells have been proposed as an alternative source and our study investigated this possibility in rats. We investigated the regenerative potential of ADSCs and DCs in osteoarthritic environment in the repair of cartilage in rats. We found that ADSCs maintained fibroblast morphology in vitro and also expressed CD90 and CD29. Furthermore, ADSCs differentiated into chondrocytes, accompanied by increased level of proteoglycans and expression of chondrocytes specific genes, such as, Acan, and Col2a1. Histological examination of transplanted knee joints showed regeneration of cartilage tissue compared to control OA knee joints. Increase in gene expression for Acan, Col2a1 with concomitant decrease in the expression of Col1a1 suggested formation of hyaline like cartilage. A significant increase in differentiation index was observed in DCs and ADSCs transplanted knee joints (P = 0.0110 vs. P = 0.0429) when compared to that in OA control knee joints. Furthermore, transplanted DCs showed increased proliferation along with reduction in apoptosis as compared to untreated control. In conclusion, DCs showed better survival and regeneration potential as compared with ADSCs in rat model of OA and thus may serve a better option for regeneration of osteoarthritic cartilage.
Collapse
Affiliation(s)
- Noreen Latief
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Fahad Ali Raza
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Fazal-Ur-Rehman Bhatti
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Moazzam Nazir Tarar
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Shaheen N Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.,Shaheed Zulfiqar Ali Bhutto University of Medical Sciences, PIMS, Islamabad, Pakistan
| |
Collapse
|
14
|
Zhou S, Thornhill TS, Meng F, Xie L, Wright J, Glowacki J. Influence of osteoarthritis grade on molecular signature of human cartilage. J Orthop Res 2016; 34:454-62. [PMID: 26336057 DOI: 10.1002/jor.23043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/31/2015] [Indexed: 02/04/2023]
Abstract
Articular chondrocytes maintain cartilage matrix turnover and have the capacity for anabolic and catabolic activities that can be influenced by injury and disease. This study tested the hypothesis that catabolic genes are upregulated with regional osteoarthritis (OA) disease severity within a joint. With IRB approval, specimens of knee cartilage obtained as discarded tissues from subjects undergoing arthroplasty were partitioned for each subject by OA disease severity and evaluated for gene expression by RT-PCR. There was regional OA grade-associated upregulation of expected inflammatory mediators TNF-α, TNF receptors, IFN-γ, and interleukins as well as genes encoding proteolytic enzymes, including Adamts-5 and MMPs. Osteoclast-related genes, cathepsin K, tartrate-resistant acid phosphatase (TRAP), RANKL, RANK, M-CSF, and c-fms, but not osteoprotegerin, were induced in advanced grades. In vitro treatment of normal human chondrocytes with interleukin-1β upregulated similar genes; this provides evidence that chondrocytes per se can be the source of osteoclast-related factors. Immunohistochemical staining showed that RANK- and RANKL-positive cells were abundant in advanced grades, especially in chondrocyte clusters. This suggests a possible autocrine mechanism by which an osteoclast phenotype is induced in articular chondrocytes. In sum, these studies identified gene expression signatures in human OA cartilage based upon regional disease severity within a joint. There was an effect of OA Grade on expression of osteoclastic lytic enzymes and regulatory factors in human articular chondrocytes. Induction of an osteoclast-like phenotype in chondrocytes may be part of OA progression and suggests specific therapeutic approaches.
Collapse
Affiliation(s)
- Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Thomas S Thornhill
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fangang Meng
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Xie
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - John Wright
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
15
|
Chameettachal S, Murab S, Vaid R, Midha S, Ghosh S. Effect of visco-elastic silk-chitosan microcomposite scaffolds on matrix deposition and biomechanical functionality for cartilage tissue engineering. J Tissue Eng Regen Med 2015; 11:1212-1229. [DOI: 10.1002/term.2024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/16/2015] [Accepted: 02/23/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Shibu Chameettachal
- Department of Textile Technology; Indian Institute of Technology; Delhi India
| | - Sumit Murab
- Department of Textile Technology; Indian Institute of Technology; Delhi India
| | - Radhika Vaid
- Department of Textile Technology; Indian Institute of Technology; Delhi India
| | - Swati Midha
- Department of Textile Technology; Indian Institute of Technology; Delhi India
| | - Sourabh Ghosh
- Department of Textile Technology; Indian Institute of Technology; Delhi India
| |
Collapse
|
16
|
Li B, Su YJ, Zheng XF, Yang YH, Jiang SD, Jiang LS. Evidence for an Important Role of Smad-7 in Intervertebral Disc Degeneration. J Interferon Cytokine Res 2015; 35:569-79. [PMID: 25811233 DOI: 10.1089/jir.2014.0216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Smad-7 inhibited the transforming growth factor beta (TGF-β)-induced proteoglycan synthesis in chondrocytes and completely antagonized the effect of TGF-β on the proliferation of the cells. The aim of this study was to evaluate the contribution of Smad-7 to the pathophysiology of disc degeneration by determining the expression of Smad-7 in the degenerative intervertebral discs and its effect on the extracellular matrix metabolism of disc cells. Instability of the lumbar spine produced by imbalanced dynamic and static forces was used to induce intervertebral disc degeneration in rats. The expression of Smad-7 was assessed by the immunohistochemical method. Disc cell apoptosis was detected by in situ TUNEL staining. The effect of Smad-7 overexpression on the matrix metabolism of disc cells was analyzed in vitro by real-time polymerase chain reaction (PCR) and Western blotting. Finally, intradiscal injection of the Smad-7 overexpression lentivirus was performed to evaluate the in vivo effect of Smad-7 on disc degeneration. Radiographic and histomorphological examinations showed that lumbar disc degeneration became more and more severe in the rats with induced instability. Immunohistochemical observation demonstrated increasing protein expression of Smad-7 in the degenerative discs. A significantly positive correlation was found between Smad-7 expression and the degree of disc degeneration and between Smad-7 expression and disc cell apoptosis. Overexpression of Smad-7 in disc cells inhibited the expression of TGF-β1, collagen type-I, collagen type-II, and aggrecan and promoted the expression of MMP-13, but did not change the expression of ADAMTS-5. The in vivo findings illustrated that intradiscal injection of lentivirus vector with Smad-7 overexpression accelerated the progress of disc degeneration. In conclusion, Smad-7 was highly expressed in the degenerative discs. Overexpression of Smad-7 weakened the protective role of TGF-β and accelerated the progress of disc degeneration. Interference on Smad-7 might be a potential therapeutic method for the prevention and treatment of degenerative disc diseases.
Collapse
Affiliation(s)
- Bo Li
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Yi-Jun Su
- 2 Department of Biochemistry and Molecular & Cellular Biology, Georgetown University , Washington, District of Columbia
| | - Xin-Feng Zheng
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Yue-Hua Yang
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Sheng-Dan Jiang
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Lei-Sheng Jiang
- 1 Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| |
Collapse
|
17
|
Gao SG, Zeng C, Song Y, Tian J, Cheng C, Yang T, Li H, Zhang FJ, Lei GH. Effect of osteopontin on the mRNA expression of ADAMTS4 and ADAMTS5 in chondrocytes from patients with knee osteoarthritis. Exp Ther Med 2015; 9:1979-1983. [PMID: 26136925 DOI: 10.3892/etm.2015.2310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/11/2015] [Indexed: 01/07/2023] Open
Abstract
Previous studies have demonstrated that osteopontin (OPN) levels are elevated in the synovial fluid and articular cartilage, and are associated with the severity of knee osteoarthritis (OA). However, the role of OPN in the pathogenesis of OA has yet to be elucidated. The present study aimed to investigate the effects of OPN on the expression of the aggrecanases, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)4 and ADAMTS5, in human OA chondrocytes, as they serve a key function in aggrecan degradation. Human OA chondrocytes were obtained from the knees of 16 patients with OA, and subsequently cultured in a monolayer. The chondrocytes were divided into three groups, which included the control (no treatment), N-OPN (treated with 100 ng/ml OPN, the normal circulating OPN concentration) and the H-OPN groups (treated with 1 µg/ml OPN, a high OPN concentration). Reverse transcription-quantitative polymerase chain reaction was performed to quantify the relative mRNA expression levels of ADAMTS4, ADAMTS5 and aggrecan in the chondrocytes. The mRNA expression levels of ADAMTS4 were significantly reduced in the N-OPN and H-OPN groups when compared with the control group (P<0.0001). In addition, the mRNA expression levels of ADAMTS4 were lower in the H-OPN group when compared with the N-OPN group (P<0.001). However, no statistically significant difference was observed in the relative mRNA expression levels of ADAMTS5 among the three groups (P>0.05). Furthermore, the mRNA expression levels of aggrecan were higher in the N-OPN and H-OPN groups when compared with the control group (P<0.0001), and a statistically significant difference was observed between the N-OPN and H-OPN groups with regard to the mRNA expression of aggrecan (P<0.0001). These results demonstrated that OPN may exert a protective effect in human OA chondrocytes against aggrecan degradation by suppressing the expression of ADAMTS4.
Collapse
Affiliation(s)
- Shu-Guang Gao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Orthopedics Institute, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chao Zeng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yang Song
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Department of Orthopedics, Linyi People's Hospital, Linyi, Shandong 276001, P.R. China
| | - Jian Tian
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chao Cheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tuo Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hui Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fang-Jie Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guang-Hua Lei
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Orthopedics Institute, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
18
|
Upregulation of tumor necrosis factor α and ADAMTS-5, but not ADAMTS-4, in human intervertebral cartilage endplate with modic changes. Spine (Phila Pa 1976) 2014; 39:E817-25. [PMID: 24732836 DOI: 10.1097/brs.0000000000000362] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN This study investigated the expression of 2 types of ADAMTS in human intervertebral cartilage endplate (CEP) and related mechanisms concerning tumor necrosis factor α (TNF-α)-induced nuclear factor κB signaling pathway. OBJECTIVE To determine which type of ADAMTS is more strongly expressed and the role of TNF-α in CEP. SUMMARY OF BACKGROUND DATA ADAMTS-4 and ADAMTS-5 were proven to be essential in the degeneration of articular cartilage and intervertebral disc. CEP is an important structure adjacent to the disc. However, the activities of ADAMTS in CEP are unclear. METHODS CEPs were obtained from subjects after spinal surgery and categorized as members of either the Modic change group or the control group. Sections of these tissues were stained with hematoxylin-eosin, safranin O, and immunohistochemistry procedures for ADAMTS-4, ADAMTS-5, and TNF-α. Transcriptional levels of aggrecan, type I collagen, type II collagen, type X collagen, ADAMTS-4, ADAMTS-5, and TNF-α were investigated by quantitative real-time polymerase chain reaction. In addition, the effect of TNF-α on ADAMTS-5 and its potential mechanisms are investigated in cultured bovine endplate chondrocytes in vitro. RESULTS Our data demonstrated that the degenerative changes associated with the expression of extracellular matrix proteins were correlated with increased levels of ADAMTS-5, but not ADAMTS-4, in the CEP of patients with Modic changes. The expression levels of TNF-α in the Modic change group were significantly increased, which was correlated with the enhanced expression of ADAMTS-5. Additional in vitro investigation confirmed that TNF-α could upregulate the expression of ADAMTS-5 by activating nuclear factor κB pathway in cultured bovine endplate chondrocytes. CONCLUSION We conclude that the upregulation of TNF-α and ADAMTS-5, but not ADAMTS-4, may play an important role in degenerative CEP-induced low back pain. LEVEL OF EVIDENCE N/A.
Collapse
|
19
|
Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct. Arch Plast Surg 2013; 40:676-86. [PMID: 24286039 PMCID: PMC3840173 DOI: 10.5999/aps.2013.40.6.676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/21/2013] [Accepted: 09/05/2013] [Indexed: 01/31/2023] Open
Abstract
Background To overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-β1 (LTGF) into an electrospun poly(L-lactide) scaffold. Methods The electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats. Results Chemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen. Conclusions We have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.
Collapse
|
20
|
Peng S, Zheng Q, Zhang X, Dai L, Zhu J, Pi Y, Hu X, Cheng W, Zhou C, Sha Y, Ao Y. Detection of ADAMTS-4 activity using a fluorogenic peptide-conjugated Au nanoparticle probe in human knee synovial fluid. ACS APPLIED MATERIALS & INTERFACES 2013; 5:6089-96. [PMID: 23716507 DOI: 10.1021/am400854z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A disintegrin and metalloproteinase with thrombospondin motif-4 (ADAMTS-4) plays a pivotal role in degrading aggrecan, which is an early event in cartilage degrading joint diseases such as osteoarthritis (OA). Detection of ADAMTS-4 activity could provide useful clinical information for early diagnosis of such diseases and disease-modifying therapy. Therefore, we developed a ADAMTS-4 detective fluorescent turn-on AuNP probe (ADAMTS-4-D-Au probe) by conjugating gold nanoparticles with a FITC-modified ADAMTS-4-specific peptide (DVQEFRGVTAVIR). When the ADAMTS-4-D-Au probe was incubated with ADAMTS-4, the fluorescence recovered and fluorescence intensity markedly increased in proportion to concentrations of ADAMTS-4 and the probe. A nearly 3-fold increase in fluorescent intensity in response to only 3.9 pM of ADAMTS-4 was detected, whereas almost no fluorescence recovery was observed when the probe was incubated with matrix metalloproteinase (MMP)-1, -3, and -13. These results indicate a relative high sensitivity and specificity of the probe. Moreover, ADAMTS-4-D-Au probe was used to detect ADAMTS-4 activity in synovial fluid from 11 knee surgery patients. A substantial increase in fluorescent intensity was observed in the acute joint injury group as compared to the chronic joint injury and end-stage OA groups, indicating that this simple and low-cost sensing system might serve as a new detection method for ADAMTS-4 activity in biological samples and in screens for inhibitors for ADAMTS-4-related joint diseases. Additionally, this probe could be a potential biomarker for early diagnosis of cartilage-degrading joint diseases.
Collapse
Affiliation(s)
- Shi Peng
- Institute of Sports Medicine, Peking University Third Hospital, Haidian District, Beijing, P R China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kataoka Y, Ariyoshi W, Okinaga T, Kaneuji T, Mitsugi S, Takahashi T, Nishihara T. Mechanisms involved in suppression of ADAMTS4 expression in synoviocytes by high molecular weight hyaluronic acid. Biochem Biophys Res Commun 2013; 432:580-5. [PMID: 23438438 DOI: 10.1016/j.bbrc.2013.02.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
Abstract
Aggrecan degradation is considered to play a key role in the progression of osteoarthritis (OA). Aggrecanases are members of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family, and degrade aggrecan in OA cartilage. The aim of this study was to clarify the mechanisms of expression of ADAMTS4 induced by IL-1β in human fibroblast-like synoviocyte (HFLS) cells by high molecular weight hyaluronan (HMW-HA), a therapeutic agent used for OA. Monolayer cultures of HFLS cells were incubated with IL-1β and HMW-HA. In some experiments, cells were pretreated with the CD44 function-blocking monoclonal antibody or inhibitors of signaling pathways prior to addition of IL-1β and HMW-HA. The expressions of ADAMTS4 mRNA and protein were monitored using real-time RT-PCR, Western blotting, and immunofluorescence microscopy. To further determine the role of HMW-HA in IL-1β-induced ADAMTS4 expression, activation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), Akt, and NF-κB were analyzed by Western blotting. HMW-HA suppressed ADAMTS4 mRNA and protein expressions induced by IL-1β. Pretreatment with the anti-CD44 monoclonal antibody recovered the inhibitory effect of HMW-HA on expression of ADAMTS4 mRNA induced by IL-1β. Western blotting analysis revealed that IL-1β-induced phosphorylation of p38 MAPK and JNK protein were diminished by HMW-HA. Furthermore, inhibition of the p38 MAPK and JNK pathways by chemical inhibitors suppressed ADAMTS4 mRNA expression stimulated by IL-1β. These results suggest that HMW-HA plays an important role as a regulatory factor in synovial tissue inflammation.
Collapse
Affiliation(s)
- Yoshihiro Kataoka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Kumar S, Rao N, Ge R. Emerging Roles of ADAMTSs in Angiogenesis and Cancer. Cancers (Basel) 2012; 4:1252-99. [PMID: 24213506 PMCID: PMC3712723 DOI: 10.3390/cancers4041252] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 12/18/2022] Open
Abstract
A Disintegrin-like And Metalloproteinase with ThromboSpondin motifs—ADAMTSs—are a multi-domain, secreted, extracellular zinc metalloproteinase family with 19 members in humans. These extracellular metalloproteinases are known to cleave a wide range of substrates in the extracellular matrix. They have been implicated in various physiological processes, such as extracellular matrix turnover, melanoblast development, interdigital web regression, blood coagulation, ovulation, etc. ADAMTSs are also critical in pathological processes such as arthritis, atherosclerosis, cancer, angiogenesis, wound healing, etc. In the past few years, there has been an explosion of reports concerning the role of ADAMTS family members in angiogenesis and cancer. To date, 10 out of the 19 members have been demonstrated to be involved in regulating angiogenesis and/or cancer. The mechanism involved in their regulation of angiogenesis or cancer differs among different members. Both angiogenesis-dependent and -independent regulation of cancer have been reported. This review summarizes our current understanding on the roles of ADAMTS in angiogenesis and cancer and highlights their implications in cancer therapeutic development.
Collapse
Affiliation(s)
- Saran Kumar
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | | | | |
Collapse
|
23
|
Al Faqeh H, Nor Hamdan BMY, Chen HC, Aminuddin BS, Ruszymah BHI. The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp Gerontol 2012; 47:458-64. [PMID: 22759409 DOI: 10.1016/j.exger.2012.03.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/08/2012] [Accepted: 03/29/2012] [Indexed: 12/13/2022]
Abstract
In recent years, the use of bone marrow mesenchymal stem cell (BMSC) implantation has provided an alternative treatment for osteoarthritis. The objective of this study is to determine whether or not an intra-articular injection of a single dose of autologous chondrogenic induced BMSC could retard the progressive destruction of cartilage in a surgically induced osteoarthritis in sheep. Sheep BMSCs were isolated and divided into two groups. One group was cultured in chondrogenic media containing (Ham's F12:DMEM, 1:1) FD+1% FBS+5 ng/ml TGFβ3+50 ng/ml IGF-1 (CM), and the other group was cultured in the basal media, FD+10% FBS (BM). The procedure for surgically induced osteoarthritis was performed on the donor sheep 6 weeks prior to intra-articular injection into the knee joint of a single dose of BMSC from either group, suspended in 5 ml FD at density of 2 million cells/ml. The control groups were injected with basal media, without cells. Six weeks after injection, gross evidence of retardation of cartilage destruction was seen in the osteoarthritic knee joints treated with CM as well as BM. No significant ICRS (International Cartilage Repair Society) scoring was detected between the two groups with cells. However macroscopically, meniscus repair was observed in the knee joint treated with CM. Severe osteoarthritis and meniscal injury was observed in the control group. Interestingly, histologically the CM group demonstrated good cartilage histoarchitecture, thickness and quality, comparable to normal knee joint cartilage. As a conclusion, intra-articular injection of a single dose of BMSC either chondrogenically induced or not, could retard the progression of osteoarthritis (OA) in a sheep model, but the induced cells indicated better results especially in meniscus regeneration.
Collapse
Affiliation(s)
- Hamoud Al Faqeh
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia.
| | | | | | | | | |
Collapse
|
24
|
Patel L, Sun W, Glasson SS, Morris EA, Flannery CR, Chockalingam PS. Tenascin-C induces inflammatory mediators and matrix degradation in osteoarthritic cartilage. BMC Musculoskelet Disord 2011; 12:164. [PMID: 21762512 PMCID: PMC3146914 DOI: 10.1186/1471-2474-12-164] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/15/2011] [Indexed: 11/25/2022] Open
Abstract
Background Tenascin-C (TN-C) is an extracellular matrix glycoprotein that is involved in tissue injury and repair processes. We analyzed TN-C expression in normal and osteoarthritic (OA) human cartilage, and evaluated its capacity to induce inflammatory and catabolic mediators in chondrocytes in vitro. The effect of TN-C on proteoglycan loss from articular cartilage in culture was also assessed. Methods TN-C in culture media, cartilage extracts, and synovial fluid of human and animal joints was quantified using a sandwich ELISA and/or analyzed by Western immunoblotting. mRNA expression of TN-C and aggrecanases were analyzed by Taqman assays. Human and bovine primary chondrocytes and/or explant culture systems were utilized to study TN-C induced inflammatory or catabolic mediators and proteoglycan loss. Total proteoglycan and aggrecanase -generated ARG-aggrecan fragments were quantified in human and rat synovial fluids by ELISA. Results TN-C protein and mRNA expression were significantly upregulated in OA cartilage with a concomitant elevation of TN-C levels in the synovial fluid of OA patients. IL-1 enhanced TN-C expression in articular cartilage. Addition of TN-C induced IL-6, PGE2, and nitrate release and upregulated ADAMTS4 mRNA in cultured primary human and bovine chondrocytes. TN-C treatment resulted in an increased loss of proteoglycan from cartilage explants in culture. A correlation was observed between TN-C and aggrecanase generated ARG-aggrecan fragment levels in the synovial fluid of human OA joints and in the lavage of rat joints that underwent surgical induction of OA. Conclusions TN-C expression in the knee cartilage and TN-C levels measured in the synovial fluid are significantly enhanced in OA patients. Our findings suggest that the elevated levels of TN-C could induce inflammatory mediators and promote matrix degradation in OA joints.
Collapse
Affiliation(s)
- Lisha Patel
- Tissue Repair, BioTherapeutics Research & Development, Pfizer, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Rogerson FM, Chung YM, Deutscher ME, Last K, Fosang AJ. Cytokine-induced increases in ADAMTS-4 messenger RNA expression do not lead to increased aggrecanase activity in ADAMTS-5-deficient mice. ACTA ACUST UNITED AC 2010; 62:3365-73. [PMID: 20662062 DOI: 10.1002/art.27661] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To compare the regulation of aggrecanase messenger RNA (mRNA) and enzyme activity by proinflammatory cytokines in primary mouse chondrocytes. METHODS Primary chondrocytes were isolated from knee epiphyses of 6-8-day-old mice and cultured as monolayers. The cells were incubated with tumor necrosis factor α (TNFα), oncostatin M (OSM), or interleukin-6 (IL-6)/soluble IL-6 receptor, and mRNA levels were measured by quantitative polymerase chain reaction at various time points. To measure aggrecanase activity, the cells were incubated with cytokine in the presence of exogenous aggrecan, and substrate cleavage was measured using antibodies to neoepitopes. RESULTS Expression of both ADAMTS-4 and ADAMTS-5 mRNA was up-regulated by TNFα and OSM. ADAMTS-5 mRNA expression was also up-regulated by IL-6. Treatment of wild-type mouse chondrocytes with each of the 3 cytokines increased cleavage of aggrecan at Glu(373)↓(374) Ala and Glu(1670)↓(1671) Gly; in chondrocytes lacking ADAMTS-5 activity, there was negligible cleavage at either site despite increased expression of ADAMTS-4 mRNA in the presence of TNFα or OSM. None of the cytokines substantially altered mRNA expression of ADAMTS-1 or ADAMTS-9. CONCLUSION Despite substantial increases in the expression of ADAMTS-4 mRNA induced by TNFα and OSM, these cytokines induced little if any increase in aggrecanolysis in ADAMTS-5-deficient mouse chondrocytes. Our data show a poor correlation between the level of cytokine-induced ADAMTS-4 mRNA expression and the level of aggrecan-degrading activity in cultured chondrocytes.
Collapse
Affiliation(s)
- Fraser M Rogerson
- University of Melbourne, Murdoch Childrens Research Institute, and Royal Children's Hospital, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
26
|
Adult bone marrow stromal cell-based tissue-engineered aggrecan exhibits ultrastructure and nanomechanical properties superior to native cartilage. Osteoarthritis Cartilage 2010; 18:1477-86. [PMID: 20692354 PMCID: PMC2975943 DOI: 10.1016/j.joca.2010.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 06/23/2010] [Accepted: 07/30/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To quantify the structural characteristics and nanomechanical properties of aggrecan produced by adult bone marrow stromal cells (BMSCs) in peptide hydrogel scaffolds and compare to aggrecan from adult articular cartilage. DESIGN Adult equine BMSCs were encapsulated in 3D-peptide hydrogels and cultured for 21 days with TGF-β1 to induce chondrogenic differentiation. BMSC-aggrecan was extracted and compared with aggrecan from age-matched adult equine articular cartilage. Single molecules of aggrecan were visualized by atomic force microscopy-based imaging and aggrecan nanomechanical stiffness was quantified by high resolution force microscopy. Population-averaged measures of aggrecan hydrodynamic size, core protein structures and CS sulfation compositions were determined by size-exclusion chromatography, Western analysis, and fluorescence-assisted carbohydrate electrophoresis (FACE). RESULTS BMSC-aggrecan was primarily full-length while cartilage-aggrecan had many fragments. Single molecule measurements showed that core protein and GAG chains of BMSC-aggrecan were markedly longer than those of cartilage-aggrecan. Comparing full-length aggrecan of both species, BMSC-aggrecan had longer GAG chains, while the core protein trace lengths were similar. FACE analysis detected a ∼ 1:1 ratio of chondroitin-4-sulfate to chondroitin-6-sulfate in BMSC-GAG, a phenotype consistent with aggrecan from skeletally-immature cartilage. The nanomechanical stiffness of BMSC-aggrecan was demonstrably greater than that of cartilage-aggrecan at the same total sGAG (fixed charge) density. CONCLUSIONS The higher proportion of full-length monomers, longer GAG chains and greater stiffness of the BMSC-aggrecan makes it biomechanically superior to adult cartilage-aggrecan. Aggrecan stiffness was not solely dependent on fixed charge density, but also on GAG molecular ultrastructure. These results support the use of adult BMSCs for cell-based cartilage repair.
Collapse
|
27
|
Fosang AJ, Rogerson FM. Identifying the human aggrecanase. Osteoarthritis Cartilage 2010; 18:1109-16. [PMID: 20633677 DOI: 10.1016/j.joca.2010.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 02/02/2023]
Abstract
It is clear that A Disintegrin And Metalloproteinase with ThromboSpondin motif (ADAMTS)-5 is the major aggrecanase in mouse cartilage, however it is not at all clear which enzyme is the major aggrecanase in human cartilage. Identifying the human aggrecanase is difficult because multiple, independent, molecular processes determine the final level of enzyme activity. As investigators, we have good methods for measuring changes in the expression of ADAMTS mRNA, and good methods for detecting aggrecanase activity, but no methods that distinguish the source of the activity. In between gene expression and enzyme action there are many processes that can potentially enhance or inhibit the final level of activity. In this editorial we discuss how each of these processes affects ADAMTS activity and argue that measuring any one process in isolation has little value in predicting overall ADAMTS activity in vivo.
Collapse
Affiliation(s)
- A J Fosang
- University of Melbourne, Department of Paediatrics, Royal Children's Hospital, Parkville, Australia.
| | | |
Collapse
|
28
|
Immunological response to tissue-engineered cartilage derived from auricular chondrocytes and a PLLA scaffold in transgenic mice. Biomaterials 2010; 31:1227-34. [DOI: 10.1016/j.biomaterials.2009.10.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/25/2009] [Indexed: 11/21/2022]
|
29
|
Embree MC, Kilts TM, Ono M, Inkson CA, Syed-Picard F, Karsdal MA, Oldberg A, Bi Y, Young MF. Biglycan and fibromodulin have essential roles in regulating chondrogenesis and extracellular matrix turnover in temporomandibular joint osteoarthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:812-26. [PMID: 20035055 DOI: 10.2353/ajpath.2010.090450] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The temporomandibular joint is critical for jaw movements and allows for mastication, digestion of food, and speech. Temporomandibular joint osteoarthritis is a degenerative disease that is marked by permanent cartilage destruction and loss of extracellular matrix (ECM). To understand how the ECM regulates mandibular condylar chondrocyte (MCC) differentiation and function, we used a genetic mouse model of temporomandibular joint osteoarthritis that is deficient in two ECM proteins, biglycan and fibromodulin (Bgn(-/0)Fmod(-/-)). Given the unavailability of cell lines, we first isolated primary MCCs and found that they were phenotypically unique from hyaline articular chondrocytes isolated from the knee joint. Using Bgn(-/0) Fmod(-/-) MCCs, we discovered the early basis for temporomandibular joint osteoarthritis arises from abnormal and accelerated chondrogenesis. Transforming growth factor (TGF)-beta1 is a growth factor that is critical for chondrogenesis and binds to both biglycan and fibromodulin. Our studies revealed the sequestration of TGF-beta1 was decreased within the ECM of Bgn(-/0) Fmod(-/-) MCCs, leading to overactive TGF-beta1 signal transduction. Using an explant culture system, we found that overactive TGF-beta1 signals induced chondrogenesis and ECM turnover in this model. We demonstrated for the first time a comprehensive study revealing the importance of the ECM in maintaining the mandibular condylar cartilage integrity and identified biglycan and fibromodulin as novel key players in regulating chondrogenesis and ECM turnover during temoporomandibular joint osteoarthritis pathology.
Collapse
Affiliation(s)
- Mildred C Embree
- Craniofacial and Skeletal Diseases Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wilson CG, Nishimuta JF, Levenston ME. Chondrocytes and meniscal fibrochondrocytes differentially process aggrecan during de novo extracellular matrix assembly. Tissue Eng Part A 2009; 15:1513-22. [PMID: 19260779 DOI: 10.1089/ten.tea.2008.0106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aggrecan is an extracellular matrix molecule that contributes to the mechanical properties of articular cartilage and meniscal fibrocartilage, but the abundance and processing of aggrecan in these tissues are different. The objective of this study was to compare patterns of aggrecan processing by chondrocytes and meniscal fibrochondrocytes in tissue explants and cell-agarose constructs. The effects of transforming growth factor-beta 1 (TGF-beta1) stimulation on aggrecan deposition and processing were examined, and construct mechanical properties were measured. Fibrochondrocytes synthesized and retained less proteoglycans than did chondrocytes in tissue explants and agarose constructs. In chondrocyte constructs, TGF-beta1 induced the accumulation of a 120-kDa aggrecan species previously detected in mature bovine cartilage. Fibrochondrocyte-seeded constructs contained high-molecular-weight aggrecan but lacked aggrecanase-generated fragments found in native, immature meniscus. In addition, reflecting the lesser matrix accumulation, fibrochondrocyte constructs had significantly lower compression moduli than did chondrocyte constructs. These cell type-specific differences in aggrecan synthesis, retention, and processing may have implications for the development of functional engineered tissue grafts.
Collapse
Affiliation(s)
- Christopher G Wilson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
31
|
Onyekwelu I, Goldring MB, Hidaka C. Chondrogenesis, joint formation, and articular cartilage regeneration. J Cell Biochem 2009; 107:383-92. [PMID: 19343794 DOI: 10.1002/jcb.22149] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The repair of joint surface defects remains a clinical challenge, as articular cartilage has a limited healing response. Despite this, articular cartilage does have the capacity to grow and remodel extensively during pre- and post-natal development. As such, the elucidation of developmental mechanisms, particularly those in post-natal animals, may shed valuable light on processes that could be harnessed to develop novel approaches for articular cartilage tissue engineering and/or regeneration to treat injuries or degeneration in adult joints. Much has been learned through mouse genetics regarding the embryonic development of joints. This knowledge, as well as the less extensive available information regarding post-natal joint development is reviewed here and discussed in relation to their possible relevance to future directions in cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Ikemefuna Onyekwelu
- Tissue Engineering Regeneration and Repair Program, Hospital for Special Surgery, New York, New York, USA
| | | | | |
Collapse
|
32
|
Lee JH, Fitzgerald JB, DiMicco MA, Cheng DM, Flannery CR, Sandy JD, Plaas AH, Grodzinsky AJ. Co-culture of mechanically injured cartilage with joint capsule tissue alters chondrocyte expression patterns and increases ADAMTS5 production. Arch Biochem Biophys 2009; 489:118-26. [PMID: 19607802 DOI: 10.1016/j.abb.2009.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/29/2009] [Accepted: 07/09/2009] [Indexed: 01/24/2023]
Abstract
We studied changes in chondrocyte gene expression, aggrecan degradation, and aggrecanase production and activity in normal and mechanically injured cartilage co-cultured with joint capsule tissue. Chondrocyte expression of 21 genes was measured at 1, 2, 4, 6, 12, and 24h after treatment; clustering analysis enabled identification of co-expression profiles. Aggrecan fragments retained in cartilage and released to medium and loss of cartilage sGAG were quantified. Increased expression of MMP-13 and ADAMTS4 clustered with effects of co-culture, while increased expression of ADAMTS5, MMP-3, TGF-beta, c-fos, c-jun clustered with cartilage injury. ADAMTS5 protein within cartilage (immunohistochemistry) increased following injury and with co-culture. Cartilage sGAG decreased over 16-days, most severely following injury plus co-culture. Cartilage aggrecan was cleaved at aggrecanase sites in the interglobular and C-terminal domains, resulting in loss of the G3 domain, especially after injury plus co-culture. Together, these results support the hypothesis that interactions between injured cartilage and other joint tissues are important in matrix catabolism after joint injury.
Collapse
Affiliation(s)
- J H Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kenagy RD, Min SK, Clowes AW, Sandy JD. Cell death-associated ADAMTS4 and versican degradation in vascular tissue. J Histochem Cytochem 2009; 57:889-97. [PMID: 19506088 DOI: 10.1369/jhc.2009.953901] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High blood flow through baboon polytetrafluorethylene aorto-iliac grafts increases neointimal vascular smooth muscle cell (SMC) death, neointimal atrophy, and cleavage of versican to generate the DPEAAE neoepitope, a marker of ADAMTS-mediated proteolysis. In this study, we have determined the effect of high blood flow on transcript abundance in the neointima for ADAMTS1, -4, -5, -8, -9, -15, and -20. We found that after 24 hr of flow, the mRNA for ADAMTS4 was significantly increased, whereas that for the other family members was unchanged. Because vascular SMC death is markedly increased in the graft after 24 hr of high flow, we next examined the possibility that the ADAMTS4 induction and the cell death are causally related. The addition of Fas ligand to SMC cultures increased both ADAMTS4 mRNA and cell death approximately 5-fold, consistent with the idea that ADAMTS4-dependent cleavage of versican may be partly responsible for cell death and tissue atrophy under these conditions.
Collapse
Affiliation(s)
- Richard D Kenagy
- Center for Cardiovascular Biology, PO Box 358050, University of Washington School of Medicine, 815 Mercer St., Seattle, WA 98109.
| | | | | | | |
Collapse
|
34
|
Sawaji Y, Hynes J, Vincent T, Saklatvala J. Fibroblast growth factor 2 inhibits induction of aggrecanase activity in human articular cartilage. ACTA ACUST UNITED AC 2009; 58:3498-509. [PMID: 18975307 DOI: 10.1002/art.24025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Articular chondrocytes are surrounded by an extracellular pool of fibroblast growth factor 2 (FGF-2). We undertook this study to investigate the possible role of FGF-2 in aggrecan catabolism by aggrecanase in human articular cartilage. METHODS Aggrecan catabolism was induced by interleukin-1alpha (IL-1alpha) in normal human articular cartilage and assessed by measuring the release of glycosaminoglycan (GAG) and aggrecanase-dependent fragments by Western blotting with antibodies against neoepitopes. ADAMTS-4 and ADAMTS-5 messenger RNA (mRNA) expression was measured by quantitative real-time reverse transcriptase-polymerase chain reaction. Production of matrix metalloproteinases (MMPs) 1, 3, and 13 and tissue inhibitors of metalloproteinases (TIMPs) 1 and 3 was measured by Western blotting. IL-6 and IL-8 were measured by enzyme-linked immunosorbent assay. Proteoglycan synthesis was monitored by 35S-sulfate incorporation. RESULTS IL-1alpha caused cleavage of aggrecan in cultured human articular cartilage explants, with release of GAG and aggrecan fragments containing ARGS and AGEG neoepitopes. This was inhibited by FGF-2 (1-100 ng/ml). Tumor necrosis factor alpha and retinoic acid also stimulated release of neoepitope, and this was also suppressed by FGF-2. IL-1alpha induced ADAMTS-4 and ADAMTS-5 mRNA in primary human chondrocytes, and this was inhibited by FGF-2. IL-1alpha-induced aggrecan breakdown was inhibited by TIMP-1 or by the N-terminal portion of TIMP-3, although FGF-2 did not affect production of the inhibitors TIMP-1 and TIMP-3 when IL-1alpha was present. FGF-2 did not prevent IL-1alpha suppression of proteoglycan synthesis and did not negate its ability to stimulate the production of IL-6, IL-8, and MMPs 1, 3, and 13. CONCLUSION Our findings suggest that FGF-2 may play a chondroprotective role in human articular cartilage by controlling the expression and activity of the aggrecanases ADAMTS-4 and ADAMTS-5.
Collapse
|
35
|
Sandell LJ, Xing X, Franz C, Davies S, Chang LW, Patra D. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1beta. Osteoarthritis Cartilage 2008; 16:1560-71. [PMID: 18565769 PMCID: PMC2605974 DOI: 10.1016/j.joca.2008.04.027] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 04/27/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To provide a more complete picture of the effect of interleukin-1 beta (IL-1beta) on adult human articular chondrocyte gene expression, in contrast to the candidate gene approach. DESIGN Chondrocytes from human knee cartilage were cultured in medium containing IL-1beta. Changes in gene expression were analyzed by microarray and reverse transcriptase-polymerase chain reaction analysis. The ability of transforming growth factor beta-1 (TGF-beta1), fibroblast growth factor (FGF)-18, and bone morphogenetic protein 2 (BMP-2) to alter the effects of IL-1beta was analyzed. Computational analysis of the promoter regions of differentially expressed genes for transcription factor binding motifs was performed. RESULTS IL-1beta-treated human chondrocytes showed significant increases in the expression of granulocyte colony stimulating factor-3, endothelial leukocyte adhesion molecule 1 and leukemia inhibitory factor as well as for a large group of chemokines that include CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, CCL2, CCL3, CCL4, CCL5, CCL8, CCL20, CCL3L1, CX3CL1 and the cytokine IL-6. As expected, the mRNA for matrix metalloproteinase (MMP)-13 and BMP-2 also increased while mRNA for the matrix genes COL2A1 and aggrecan was down-regulated. A subset of chemokines increased rapidly at very low levels of IL-1beta. The phenotype induced by IL-1beta was partially reversed by TGF-beta1, but not by BMP-2. In the presence of IL-1beta, FGF-18 increased expression of ADAMTS-4, aggrecan, BMP-2, COL2A1, CCL3, CCL4, CCL20, CXCL1, CXCL3, CXCL6, IL-1beta, IL-6, and IL-8 and decreased ADAMTS-5, MMP-13, CCL2, and CCL8. Computational analysis revealed a high likelihood that the most up-regulated chemokines are regulated by the transcription factors myocyte enhancer binding factor-3 (MEF-3), CCAAT/enhancer binding protein (C/EBP) and nuclear factor-kappa B (NF-kappaB). CONCLUSION IL-1beta has a diverse effect on gene expression profile in human chondrocytes affecting matrix genes as well as chemokines and cytokines. TGF-beta1 has the ability to antagonize some of the phenotype induced by IL-1beta.
Collapse
Affiliation(s)
- Linda J. Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110
| | - Xiaoyun Xing
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110
| | - Carl Franz
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110
| | - Sherri Davies
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110
| | - Li-Wei Chang
- Department of Pathology and Immunology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110
| | - Debabrata Patra
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110
| |
Collapse
|
36
|
Davies LC, Blain EJ, Gilbert SJ, Caterson B, Duance VC. The potential of IGF-1 and TGFbeta1 for promoting "adult" articular cartilage repair: an in vitro study. Tissue Eng Part A 2008; 14:1251-61. [PMID: 18399732 DOI: 10.1089/ten.tea.2007.0211] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research into articular cartilage repair, a tissue unable to spontaneously regenerate once injured, has focused on the generation of a biomechanically functional repair tissue with the characteristics of hyaline cartilage. This study was undertaken to provide insight into how to improve ex vivo chondrocyte amplification, without cellular dedifferentiation for cell-based methods of cartilage repair. We investigated the effects of insulin-like growth factor 1 (IGF-1) and transforming growth factor beta 1 (TGFbeta1) on cell proliferation and the de novo synthesis of sulfated glycosaminoglycans and collagen in chondrocytes isolated from skeletally mature bovine articular cartilage, whilst maintaining their chondrocytic phenotype. Here we demonstrate that mature differentiated chondrocytes respond to growth factor stimulation to promote de novo synthesis of matrix macromolecules. Additionally, chondrocytes stimulated with IGF-1 or TGFbeta1 induced receptor expression. We conclude that IGF-1 and TGFbeta1 in addition to autoregulatory effects have differential effects on each other when used in combination. This may be mediated by regulation of receptor expression or endogenous factors; these findings offer further options for improving strategies for repair of cartilage defects.
Collapse
Affiliation(s)
- Lindsay C Davies
- Department of Oral Surgery, Medicine, and Pathology, School of Dentistry, Cardiff University, Heath Park, Cardiff, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ. Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 2008; 22:351-84. [PMID: 18455690 DOI: 10.1016/j.berh.2008.02.001] [Citation(s) in RCA: 350] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The preservation of articular cartilage depends on keeping the cartilage architecture intact. Cartilage strength and function depend on both the properties of the tissue and on their structural parameters. The main structural macromolecules are collagen and proteoglycans (aggrecan). During life, cartilage matrix turnover is mediated by a multitude of complex autocrine and paracrine anabolic and catabolic factors. These act on the chondrocytes and can lead to repair, remodeling or catabolic processes like those that occur in osteoarthritis. Osteoarthritis is characterized by degradation and loss of articular cartilage, subchondral bone remodeling, and, at the clinical stage of the disease, inflammation of the synovial membrane. The alterations in osteoarthritic cartilage are numerous and involve morphologic and metabolic changes in chondrocytes, as well as biochemical and structural alterations in the extracellular matrix macromolecules.
Collapse
|
38
|
Takizawa M, Yatabe T, Okada A, Chijiiwa M, Mochizuki S, Ghosh P, Okada Y. Calcium pentosan polysulfate directly inhibits enzymatic activity of ADAMTS4 (aggrecanase-1) in osteoarthritic chondrocytes. FEBS Lett 2008; 582:2945-9. [DOI: 10.1016/j.febslet.2008.07.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/04/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|
39
|
Yatabe T, Mochizuki S, Takizawa M, Chijiiwa M, Okada A, Kimura T, Fujita Y, Matsumoto H, Toyama Y, Okada Y. Hyaluronan inhibits expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic chondrocytes. Ann Rheum Dis 2008; 68:1051-8. [PMID: 18662930 PMCID: PMC2674548 DOI: 10.1136/ard.2007.086884] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background: Intra-articular injection of hyaluronan (HA) has been suggested to have a disease-modifying effect in osteoarthritis, but little is known about the possible mechanisms. Objective: To investigate the effects of HA species of different molecular mass, including 800 kDa (HA800) and 2700 kDa (HA2700), on the expression of aggrecanases (ie, ADAMTS species), which play a key role in aggrecan degradation. Methods: The effects of HA species on the expression of ADAMTS1, 4, 5, 8, 9 and 15 in interleukin 1α (IL1α)-stimulated osteoarthritic chondrocytes were studied by reverse transcription PCR and real-time PCR. Expression of ADAMTS4 protein and aggrecanase activity and signal transduction pathways of IL1, CD44 and intracellular adhesion molecule 1 (ICAM1) were examined by immunoblotting. Results: IL1α treatment of chondrocytes induced ADAMTS4, and HA800 and HA2700 significantly decreased IL1α-induced expression of ADAMTS4 mRNA and protein. IL1α-stimulated aggrecanase activity in osteoarthritic chondrocytes was reduced by treatment with HA2700 or transfection of small interfering RNA for ADAMTS4. A similar result was obtained when HA2700 was added to explant cultures of osteoarthritic cartilage. HA2700 neither directly inhibited nor bound to ADAMTS4. Downregulation of ADAMTS4 expression by HA2700 was attenuated by treatment of IL1α-treated chondrocytes with antibodies to CD44 and/or ICAM1. The increased phosphorylation of IL1 receptor-associated kinase-1 and extracellular signal-regulated protein kinase1/2 induced by the IL1α treatment was downregulated by enhanced IRAK-M expression after HA2700 treatment. Conclusion: These data suggest that HA2700 suppresses aggrecan degradation by downregulating IL1α-induced ADAMTS4 expression through the CD44 and ICAM1 signalling pathways in osteoarthritic chondrocytes.
Collapse
Affiliation(s)
- T Yatabe
- Department of Pathology, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Guillén M, Megías J, Gomar F, Alcaraz M. Haem oxygenase-1 regulates catabolic and anabolic processes in osteoarthritic chondrocytes. J Pathol 2008; 214:515-22. [PMID: 18200630 DOI: 10.1002/path.2313] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pro-inflammatory cytokines, matrix metalloproteinases (MMPs) and other catabolic factors participate in the pathogenesis of cartilage damage in osteoarthritis (OA). Pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) mediate cartilage degradation and might be involved in the progression of OA. Previously, we found that haem oxygenase-1 (HO-1) is down-regulated by pro-inflammatory cytokines and up-regulated by IL-10 in OA chondrocytes. The aim of this study was to determine whether HO-1 can modify the catabolic effects of IL-1beta in OA cartilage and chondrocytes. Up-regulation of HO-1 by cobalt protoporphyrin IX significantly reduced glycosaminoglycan degradation elicited by IL-1beta in OA cartilage explants but increased glycosaminoglycan synthesis and the expression of collagen II in OA chondrocytes in primary culture, as determined by radiometric procedures, immunoblotting and immunocytochemistry. HO-1 decreased the activation of extracellular signal-regulated kinase 1/2. This was accompanied by a significant inhibition in MMP activity and expression of collagenases MMP-1 and MMP-13 at the protein and mRNA levels. In addition, HO-1 induction caused a significant increase in the production of insulin-like growth factor-1 and a reduction in the levels of insulin-like growth factor binding protein-3. We have shown in primary culture of chondrocytes and articular explants from OA patients that HO-1 counteracts the catabolic and anti-anabolic effects of IL-1beta. Our data thus suggest that HO-1 may be a factor regulating the degradation and synthesis of extracellular matrix components in OA.
Collapse
Affiliation(s)
- Mi Guillén
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Spain
| | | | | | | |
Collapse
|
41
|
Davies LC, Blain EJ, Gilbert SJ, Caterson B, Duance VC. The Potential of IGF-1 and TGFβ1 for Promoting “Adult” Articular Cartilage Repair: An In VitroStudy. Tissue Eng Part A 2008. [DOI: 10.1089/tea.2007.0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Corps AN, Jones GC, Harrall RL, Curry VA, Hazleman BL, Riley GP. The regulation of aggrecanase ADAMTS-4 expression in human Achilles tendon and tendon-derived cells. Matrix Biol 2008; 27:393-401. [PMID: 18387286 PMCID: PMC2443387 DOI: 10.1016/j.matbio.2008.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/06/2008] [Accepted: 02/07/2008] [Indexed: 02/07/2023]
Abstract
Several members of the ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) family have been identified as aggrecanases, whose substrates include versican, the principal large proteoglycan in the tendon extracellular matrix. We have characterized the expression of ADAMTS-4 in human Achilles tendon and tendon-derived cells. ADAMTS-4 mRNA levels were higher in ruptured tendon compared with normal tendon or chronic painful tendinopathy. In tissue extracts probed by Western blotting, mature ADAMTS-4 (68 kDa) was detected only in ruptured tendons, while processed ADAMTS-4 (53 kDa) was detected also in chronic painful tendinopathy and in normal tendon. In cultured Achilles tendon cells, transforming growth factor-β (TGF-β) stimulated ADAMTS-4 mRNA expression (typically 20-fold after 24 h), while interleukin-1 induced a smaller, shorter-term stimulation which synergised markedly with that induced by TGF-β. Increased levels of immunoreactive proteins consistent with mature and processed forms of ADAMTS-4 were detected in TGF-β-stimulated cells. ADAMTS-4 mRNA was expressed at higher levels by tendon cells in collagen gels than in monolayer cultures. In contrast, the expression of ADAMTS-1 and -5 mRNA was lower in collagen gels compared with monolayers, and these mRNA showed smaller or opposite responses to growth factors and cytokines compared with that of ADAMTS-4 mRNA. We conclude that both ADAMTS-4 mRNA and ADAMTS-4 protein processing may be differentially regulated in normal and damaged tendons and that both the matrix environment and growth factors such as TGF-β are potentially important factors controlling ADAMTS aggrecanase activities in tendon pathology.
Collapse
Affiliation(s)
- Anthony N Corps
- Rheumatology Research Unit, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
43
|
Megías J, Guillén MI, Bru A, Gomar F, Alcaraz MJ. The carbon monoxide-releasing molecule tricarbonyldichlororuthenium(II) dimer protects human osteoarthritic chondrocytes and cartilage from the catabolic actions of interleukin-1beta. J Pharmacol Exp Ther 2008; 325:56-61. [PMID: 18195133 DOI: 10.1124/jpet.107.134650] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have investigated the effects of a carbon monoxide-releasing molecule, tricarbonyldichlororuthenium(II) dimer (CORM-2), on catabolic processes in human osteoarthritis (OA) cartilage and chondrocytes activated with interleukin-1beta. In these cells, proinflammatory cytokines induce the synthesis of matrix metalloproteinases (MMPs) and aggrecanases, including members of a disintegrin and metalloproteinase with thrombospondin domain (ADAMTS) family, which may contribute to cartilage loss. CORM-2 down-regulated MMP-1, MMP-3, MMP-10, MMP-13, and ADAMTS-5 in OA chondrocytes, and it inhibited cartilage degradation. These effects were accompanied by increased aggrecan synthesis and collagen II expression in chondrocytes. Our results also indicate that the inhibition of extracellular signal-regulated kinase 1/2 and p38 activation by CORM-2 may contribute to the maintenance of extracellular matrix homeostasis. These observations suggest that CORM-2 could exert chondroprotective effects due to the inhibition of catabolic activities and the enhancement of aggrecan synthesis.
Collapse
Affiliation(s)
- Javier Megías
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjasot, Valencia, Spain
| | | | | | | | | |
Collapse
|
44
|
Naito S, Shiomi T, Okada A, Kimura T, Chijiiwa M, Fujita Y, Yatabe T, Komiya K, Enomoto H, Fujikawa K, Okada Y. Expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic cartilage. Pathol Int 2007; 57:703-11. [DOI: 10.1111/j.1440-1827.2007.02167.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Poleni PE, Bianchi A, Etienne S, Koufany M, Sebillaud S, Netter P, Terlain B, Jouzeau JY. Agonists of peroxisome proliferators-activated receptors (PPAR) alpha, beta/delta or gamma reduce transforming growth factor (TGF)-beta-induced proteoglycans' production in chondrocytes. Osteoarthritis Cartilage 2007; 15:493-505. [PMID: 17140817 DOI: 10.1016/j.joca.2006.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 10/14/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the potency of selective agonists of peroxisome proliferators-activated receptors' (PPAR) isotypes (alpha, beta/delta or gamma) to modulate the stimulating effect of transforming growth factor-beta1 (TGF-beta1) on proteoglycans' (PGs) synthesis in chondrocytes. METHOD Rat chondrocytes embedded in alginate beads and cultured under low serum conditions were exposed to TGF-beta1 (10 ng/ml), alone or in combination with the following agonists: Wy14643 for PPARalpha, GW501516 for PPARbeta/delta, rosiglitazone (ROSI) for PPARgamma, in the presence or absence of PPAR antagonists (GW6471 for PPARalpha, GW9662 for PPARgamma). PGs' synthesis was evaluated by radiolabelled sulphate incorporation and glycosaminoglycans' (GAGs) content by Alcian blue staining of beads and colorimetric 1.9 dimethyl-methylene blue assay after beads' solubilization. Phosphorylation of Extracellular Signal-related Kinase1/2 (ERK1/2), Smad2/3 and p38-MAPK was assessed by Western Blot and production of prostaglandin E2 (PGE2) by Enzyme immuno-assay (EIA). Levels of mRNA for PPAR target genes [acyl-CoA oxidase (ACO) for PPARalpha; mitochondrial carnitin palmitoyl transferase-1 (CPT-1) for PPARbeta/delta and adiponectin for PPARgamma], aggrecan, TGF-beta1 and genes controlling GAGs' side chains' synthesis were quantified by real time polymerase chain reaction and normalized over RP29 housekeeping gene. RESULTS ACO was selectively up-regulated by 100 microM of Wy14643, CPT-1 by 100 nM of GW501516 and adiponectin by 10 microM of ROSI without cell toxicity. TGF-beta1 increased PGs' synthesis by four-fold, GAGs' content and deposition by 3.5-fold and six-fold, respectively, while inducing aggrecan expression around 10-fold without modifying mRNA levels of GAGs' controlling enzymes. PPAR agonists inhibited the stimulating effect of TGF-beta1 by 24-44% on PGs' synthesis and over 75% on aggrecan, GAGs' content and deposition with the following rank order of potency: ROSI>GW501516> or =Wy14643. TGF-beta1-induced phosphorylation of Smad2/3 and ERK1/2 was reduced by ROSI over GW501516 but not by Wy14643 whereas stimulated PGE2 production was inhibited by Wy14643 over GW501516 but not by ROSI. The effect of PPAR agonists on PPAR target genes and TGF-beta1-induced aggrecan expression was reversed selectively by PPAR antagonists. CONCLUSION In chondrocytes' beads, PPAR agonists reduced the stimulating effect of TGF-beta1 on PGs by inhibiting TGF-beta1-induced aggrecan expression in an isotype-selective manner. Thus, PPAR agonists could be deleterious in situation of cartilage repair although being protective in situation of cartilage degradation.
Collapse
Affiliation(s)
- P E Poleni
- Laboratoire de Physiopathologie et Pharmacologie Articulaires (LPPA), UMR 7561 CNRS-UHP Nancy 1, Avenue de la Forêt de Haye, BP 184, 54505 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhu H, Leung PCK, MacCalman CD. Expression of ADAMTS-5/implantin in human decidual stromal cells: regulatory effects of cytokines. Hum Reprod 2006; 22:63-74. [PMID: 17067994 DOI: 10.1093/humrep/del356] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The restricted expression of ADAMTS-5 (A Disintegrin And Metalloproteinase with ThromboSpondin repeats-5) to the maternal-fetal interface in mice has led to this novel metalloproteinase being assigned the trivial name 'implantin'. METHODS As a first step in determining whether ADAMTS-5 also contributes to the implantation process in humans, we have examined the spatiotemporal expression of this ADAMTS subtype in the endometrium during the menstrual cycle and pregnancy by immunohistochemical analysis. A quantitative competitive PCR (QC-PCR) strategy and western blotting were subsequently used to determine whether interleukin (IL)-1beta and transforming growth factor (TGF)-beta1, two cytokines involved in the formation of the maternal-fetal interface, were capable of regulating ADAMTS-5 messenger RNA (mRNA) and protein levels in primary cultures of stromal cells isolated from first trimester decidual tissues. RESULTS ADAMTS-5 expression in the stroma of the human endometrium correlates with decidualization of this cellular compartment in vivo. IL-1beta was found to increase (P < 0.05) whereas TGF-beta1 decreased (P < 0.05) ADAMTS-5 mRNA and protein levels in decidual stromal cell cultures in a concentration- and time-dependent manner. These regulatory effects were attenuated by function-perturbing antibodies directed against either cytokine. CONCLUSIONS ADAMTS-5 expression is restricted to decidualized stromal cells of the human endometrium in vivo and is subject to regulation by cytokines in vitro.
Collapse
Affiliation(s)
- H Zhu
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
47
|
Goldring MB. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheumatol 2006; 20:1003-25. [PMID: 16980220 DOI: 10.1016/j.berh.2006.06.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) is a joint disease that involves degeneration of articular cartilage, limited intraarticular inflammation manifested by synovitis and changes in the subchondral bone. The aetiology of OA is largely unknown, but since it may involve multiple factors, including mechanical, biochemical and genetic factors, it has been difficult to identify unique targets for therapy. Chondrocytes, which are the unique cellular component of adult articular cartilage, are capable of responding to structural changes in the surrounding cartilage matrix. Since the initial stages of OA involve increased cell proliferation and synthesis of matrix proteins, proteinases and cytokines in the cartilage, laboratory investigations have focused on the chondrocyte as a target for therapeutic intervention. The capacity of the adult articular chondrocyte to regenerate the normal cartilage matrix architecture is limited, however, and the damage becomes irreversible unless the destructive process is interrupted. Current pharmacological interventions that address chronic pain are insufficient and no proven disease-modifying therapy is available. Identification of methods for early diagnosis is of key importance, since therapeutic interventions aimed at blocking or reversing structural damage will be more effective when there is the possibility of preserving normal homeostasis. At later stages, cartilage tissue engineering with or without gene therapy with anabolic factors will also require therapy to inhibit inflammation and block damage to newly repaired cartilage. This review will focus on experimental approaches currently under study that may lead to elucidation of effective strategies for therapy in OA, with emphasis on mediators that affect the function of chondrocytes and interactions with surrounding tissues.
Collapse
Affiliation(s)
- Mary B Goldring
- Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Thomas M, Sabatini M, Bensaude F, Mignard B, Ortuno JC, Caron I, Boutin JA, Ferry G. A microplate assay for the screening of ADAMTS-4 inhibitors. Matrix Biol 2006; 25:261-7. [PMID: 16442274 DOI: 10.1016/j.matbio.2005.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Aggrecanase plays a major role in cartilage proteoglycan degradation in rheumatic diseases such as osteoarthritis and rheumatoid arthritis. The search of new inhibitors of aggrecanase activity necessitates a robust assays in order to be able to screen large numbers of compounds. We present in this paper an assay based on the cleavage of His-tagged aggrecan interglobular domain by N- and C- terminus truncated, active aggrecanase-1/ADAMTS-4, with formation of the aggrecanase-specific ARGSV neoepitope. This is detected by anti-ARGSV antibody, in turn recognized by a fluorescent anti-IgG. Furthermore, the formation of the reaction products was confirmed by high-pressure capillary electrophoresis. This assay allows the rapid screening of aggrecanase inhibitors in a 96-well plate format, allowing an immediate transposition to high-throughput scale up.
Collapse
Affiliation(s)
- Marie Thomas
- Division of Rheumatology, Institut de Recherches Servier, IdRS, 11 rue des Moulineaux, 92150 Suresnes, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Stewart MC, Fosang AJ, Bai Y, Osborn B, Plaas A, Sandy JD. ADAMTS5-mediated aggrecanolysis in murine epiphyseal chondrocyte cultures. Osteoarthritis Cartilage 2006; 14:392-402. [PMID: 16406703 DOI: 10.1016/j.joca.2005.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 11/19/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Aggrecan degradation by aggrecanases [a disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTS) 1, 4, 5, 8, 9, 15] is considered to initiate much of the cartilage pathology seen in human arthritis, however, the proteinase responsible and its mode of control is unclear. The present work was done to examine mechanisms of aggrecanase control in a novel murine epiphyseal cell system and to determine whether ADAMTS5 alone is responsible for aggrecanolysis by these cells. METHODS Epiphyseal cells from 4-day-old mice (wild type, TS-5 (-/-), CD44(-/-), syndecan-1(-/-), membrane type-4 matrix metalloproteinase [MT4MMP(-/-)]) were maintained in non-adherent aggregate cultures and aggrecanolysis studied by biochemical and histochemical methods. Confocal immunolocalization analyses were done with specific probes for ADAMTS5, hyaluronan (HA) and aggrecanase-generated fragments of aggrecan. RESULTS Aggrecanolysis by these cells was specifically aggrecanase-mediated and it occurred spontaneously without the need for addition of catabolic stimulators. Chondrocytes from ADAMTS5-null mice were aggrecanase-inactive whereas all other mutant cells behaved as wild type in this regard suggesting that ADAMTS5 activity is not controlled by CD44, syndecan-1 or MT4MMP in this system. Immunohistochemical analysis supported the central role for ADAMTS5 in the degradative pathway and indicated that aggrecanolysis occurs primarily in the HA-poor pericellular region in these cultures. CONCLUSION These findings are consistent with published in vivo studies showing that single-gene ADAMTS5 ablation confers significant protection on cartilage in murine arthritis. We propose that this culture system and the analytical approaches described provide a valuable framework to further delineate the expression, activity and control of ADAMTS-mediated aggrecanolysis in human arthritis.
Collapse
Affiliation(s)
- M C Stewart
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign, USA
| | | | | | | | | | | |
Collapse
|
50
|
Tortorella MD, Arner EC, Hills R, Gormley J, Fok K, Pegg L, Munie G, Malfait AM. ADAMTS-4 (aggrecanase-1): N-Terminal activation mechanisms. Arch Biochem Biophys 2005; 444:34-44. [PMID: 16289022 DOI: 10.1016/j.abb.2005.09.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 09/22/2005] [Accepted: 09/22/2005] [Indexed: 10/25/2022]
Abstract
ADAMTS-4 (aggrecanase 1) is synthesized as a latent precursor protein that may require activation through removal of its prodomain before it can exert catalytic activity. We examined various proteinases as well as auto-activation under a wide range of conditions for removal of the prodomain and induction of enzymatic activity. The proprotein convertases, furin, PACE4, and PC5/6 efficiently removed the prodomain through cleavage at Arg(212)/Phe(213), generating an active enzyme. Of a broad range of proteases evaluated, only MMP-9 and trypsin were capable of removing the prodomain. In the presence of mercuric compounds, removal of the prodomain through autocatalysis was not observed, nor was it observed at temperatures from 22 to 65 degrees C, at ionic strengths from 0.1 to 1M, or at acidic/neutral pH. At basic pH 8-10, removal of the prodomain by autocatalysis occurred, generating an active enzyme. In conclusion, the pro-form of ADAMTS-4 is not catalytically active and only a limited number of mechanisms mediate its N-terminal activation.
Collapse
Affiliation(s)
- Micky D Tortorella
- Pfizer Global Research and Development, 700 Chesterfield Parkway, Chesterfield, MO 60013, USA.
| | | | | | | | | | | | | | | |
Collapse
|