1
|
Pestereva N, Ivleva I, Zubov A, Tikhomirova M, Karpenko M. m-Calpain is released from striatal synaptosomes. Int J Neurosci 2023; 133:215-221. [PMID: 33688783 DOI: 10.1080/00207454.2021.1901697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Purpose of the study: We aimed to investigate whether m-calpain (a Ca2+-dependent neutral cysteine protease) is released from synaptosomes.Materials and methods: This research was carry on Wistar male rats and isolated nerve endings - synaptosomes. The synaptosomal integrity was checked by the method of measuring LDH activity. Activity of calpains was measured by the casein zymography in gel and in solution. Extracellular calpain was detected by immunoprecipitation and immunoblotting procedures Prediction of secreted proteins peptide on a protein sequence through a local version of the PrediSi tool (http://www.predisi.de). The probability of calpain isoform nonclassical secretion was analyzed by using SecretomeP (http://www.cbs.dtu.dk/services/SecretomeP2.0) software.Results: It has been shown that calcium- and time-dependent m-calpain is released from synaptosomes in an activated form or in a form capable of activation, and this process is not a result of a violation of the integrity of synaptosomes. Analysis of the probability of secretion of the small catalytic subunit of rat m-calpain along a nonclassical pathway showed a high probability of its secretion. Additionally, the release of calpain from synaptosomes revealed by us is suppressed by the addition of glyburide, an ABC transporter inhibitor, to the incubation medium. Among extracellular proteins, potential substrates of calpains are of calpains are found, for example, matrix metalloprotease-2 and -9, alpha-synuclein, etc.Conclusions: Active m-calpain is present in the media generated from striatal synaptosomes. Glyburide prevents m-calpain release from striatal synaptosomes.
Collapse
Affiliation(s)
- Nina Pestereva
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia
| | - Irina Ivleva
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia
| | - Alexander Zubov
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia
| | - Maria Tikhomirova
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Marina Karpenko
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia.,Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
2
|
Hua Y, Nair S. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications. Biochim Biophys Acta Mol Basis Dis 2014; 1852:195-208. [PMID: 24815358 DOI: 10.1016/j.bbadis.2014.04.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is the leading cause of death in the U.S. and other developed countries. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is a major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechanisms are far from clear. Proteases are enzymes that break down proteins, many of which have been implicated in various diseases including cardiac disease. Matrix metalloproteinase (MMP), calpain, cathepsin and caspase are among the major proteases involved in cardiac remodeling. Recent studies have also implicated proteases in the pathogenesis of cardiometabolic disease. Elevated expression and activities of proteases in atherosclerosis, coronary heart disease, obesity/insulin-associated heart disease as well as hypertensive heart disease have been documented. Furthermore, transgenic animals that are deficient in or over-express proteases allow scientists to understand the causal relationship between proteases and cardiometabolic disease. Mechanistically, MMPs and cathepsins exert their effect on cardiometabolic diseases mainly through modifying the extracellular matrix. However, MMP and cathepsin are also reported to affect intracellular proteins, by which they contribute to the development of cardiometabolic diseases. On the other hand, activation of calpain and caspases has been shown to influence intracellular signaling cascade including the NF-κB and apoptosis pathways. Clinically, proteases are reported to function as biomarkers of cardiometabolic diseases. More importantly, the inhibitors of proteases are credited with beneficial cardiometabolic profile, although the exact molecular mechanisms underlying these salutary effects are still under investigation. A better understanding of the role of MMPs, cathepsins, calpains and caspases in cardiometabolic diseases process may yield novel therapeutic targets for treating or controlling these diseases. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| | - Sreejayan Nair
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
3
|
Randriamboavonjy V, Fleming I. All cut up! The consequences of calpain activation on platelet function. Vascul Pharmacol 2012; 56:210-5. [DOI: 10.1016/j.vph.2012.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/15/2012] [Accepted: 02/16/2012] [Indexed: 11/29/2022]
|
4
|
Letavernier E, Zafrani L, Perez J, Letavernier B, Haymann JP, Baud L. The role of calpains in myocardial remodelling and heart failure. Cardiovasc Res 2012; 96:38-45. [DOI: 10.1093/cvr/cvs099] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
5
|
Silver K, Leloup L, Freeman LC, Wells A, Lillich JD. Non-steroidal anti-inflammatory drugs inhibit calpain activity and membrane localization of calpain 2 protease. Int J Biochem Cell Biol 2010; 42:2030-6. [PMID: 20854926 PMCID: PMC3269911 DOI: 10.1016/j.biocel.2010.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/10/2010] [Indexed: 12/15/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are used frequently worldwide for the alleviation of pain despite their capacity to cause adverse gastrointestinal (GI) side effects. GI toxicity, once thought to be the result of non-specific inhibition of cyclooxegenase (COX) enzymes, is now hypothesized to have multiple other causes that are COX independent. In particular, NSAIDs inhibit intestinal epithelial restitution, the process by which barrier function in intestinal mucosa is restored at sites of epithelial wounds within hours through cell spreading and migration. Accordingly, recent evidence indicates that the expression of calpain proteases, which play a key role in cell migration, is decreased by NSAIDs that inhibit cell migration in intestinal epithelial cells (IEC). Here, we examine the effect of NSAIDs on calpain activity and membrane expression in IEC-6 cells. Indomethacin, NS-398, and SC-560 inhibited calpain activity and decreased expression of calpain 2 in total membrane fractions and in plasma membranes involved in cell attachment to the substrate. Additionally, we demonstrated that inhibition of calpain activity by NSAIDs or ALLM, a calpain inhibitor, limits cell migration and in vitro wound healing of IEC-6 cells. Our results indicate that NSAIDs may inhibit cell migration by decreasing calpain activity and membrane-associated expression of calpain 2. Our results provide valuable insight into the mechanisms behind NSAID-induced GI toxicity and provide a potential pathway through which these negative side effects can be avoided in future members of the NSAID class.
Collapse
Affiliation(s)
- Kristopher Silver
- Department of Clinical Science, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
6
|
Abstract
Mature aggrecan is generally C-terminally truncated at several sites in the CS (chondroitin sulfate) region. Aggrecanases and MMPs (matrix metalloproteinases) have been suggested to be responsible for this digestion. To identify whether calpain, a common intracellular protease, has a specific role in the proteolysis of aggrecan we developed neoepitope antibodies (anti-PGVA, anti-GDLS and anti-EDLS) against calpain cleavage sites and used Western blot analysis to identify calpain-generated fragments in normal and OA (osteoarthritis) knee cartilage and SF (synovial fluid) samples. Our results showed that human aggrecan contains six calpain cleavage sites: one in the IGD (interglobular domain), one in the KS (keratan sulfate) region, two in the CS1 and two in the CS2 region. Kinetic studies of calpain proteolysis against aggrecan showed that the aggrecan molecule was cleaved in a specific order where cuts in CS1 was the most preferred and cuts in KS region was the second most preferred cleavage. OA and normal cartilage contained low amounts of a calpain-generated G1–PGVA fragment (0.5–2%) compared with aggrecanase-generated G1–TEGE (71–76%) and MMP-generated G1–IPEN (23–29%) fragments. Significant amounts of calpain-generated GDLS and EDLS fragments were found in OA and normal cartilage, and a ARGS–EDLS fragment was detected in arthritic SF samples. The results of the present study indicate that calpains are involved in the C-terminal truncation of aggrecan and might have a minor role in arthritic diseases.
Collapse
|
7
|
Levesque S, Wilson B, Gregoria V, Thorpe LB, Dallas S, Polikov VS, Hong JS, Block ML. Reactive microgliosis: extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity. ACTA ACUST UNITED AC 2010; 133:808-21. [PMID: 20123724 DOI: 10.1093/brain/awp333] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microglia, the innate immune cells in the brain, can become chronically activated in response to dopaminergic neuron death, fuelling a self-renewing cycle of microglial activation followed by further neuron damage (reactive microgliosis), which is implicated in the progressive nature of Parkinson's disease. Here, we use an in vitro approach to separate neuron injury factors from the cellular actors of reactive microgliosis and discover molecular signals responsible for chronic and toxic microglial activation. Upon injury with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium, N27 cells (dopaminergic neuron cell line) released soluble neuron injury factors that activated microglia and were selectively toxic to dopaminergic neurons in mixed mesencephalic neuron-glia cultures through nicotinamide adenine dinucleotide phosphate oxidase. mu-Calpain was identified as a key signal released from damaged neurons, causing selective dopaminergic neuron death through activation of microglial nicotinamide adenine dinucleotide phosphate oxidase and superoxide production. These findings suggest that dopaminergic neurons may be inherently susceptible to the pro-inflammatory effects of neuron damage, i.e. reactive microgliosis, providing much needed insight into the chronic nature of Parkinson's disease.
Collapse
Affiliation(s)
- Shannon Levesque
- Department of Anatomy & Neurobiology, Sanger Hall, Room 9-048, 1101 E. Marshall Street, Virginia Commonwealth University Medical Campus, Box 980709, Richmond, VA 23298-0709, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Li X, Ellman M, Muddasani P, Wang JHC, Cs-Szabo G, van Wijnen AJ, Im HJ. Prostaglandin E2 and its cognate EP receptors control human adult articular cartilage homeostasis and are linked to the pathophysiology of osteoarthritis. ACTA ACUST UNITED AC 2009; 60:513-23. [PMID: 19180509 DOI: 10.1002/art.24258] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To elucidate the pathophysiologic links between prostaglandin E(2) (PGE(2)) and osteoarthritis (OA) by characterizing the catabolic effects of PGE(2) and its unique receptors in human adult articular chondrocytes. METHODS Human adult articular chondrocytes were cultured in monolayer or alginate beads with and without PGE(2) and/or agonists of EP receptors, antagonists of EP receptors, and cytokines. Cell survival, proliferation, and total proteoglycan synthesis and accumulation were measured in alginate beads. Chondrocyte-related gene expression and phosphatidylinositol 3-kinase/Akt signaling were assessed by real-time reverse transcription-polymerase chain reaction and Western blotting, respectively, using a monolayer cell culture model. RESULTS Stimulation of human articular chondrocytes with PGE(2) through the EP2 receptor suppressed proteoglycan accumulation and synthesis, suppressed aggrecan gene expression, did not appreciably affect expression of matrix-degrading enzymes, and decreased the type II collagen:type I collagen ratio. EP2 and EP4 receptors were expressed at higher levels in knee cartilage than in ankle cartilage and in a grade-dependent manner. PGE(2) titration combined with interleukin-1 (IL-1) synergistically accelerated expression of pain-associated molecules such as inducible nitric oxide synthase and IL-6. Finally, stimulation with exogenous PGE(2) or an EP2 receptor-specific agonist inhibited activation of Akt that was induced by insulin-like growth factor 1. CONCLUSION PGE(2) exerts an antianabolic effect on human adult articular cartilage in vitro, and EP2 and EP4 receptor antagonists may represent effective therapeutic agents for the treatment of OA.
Collapse
Affiliation(s)
- Xin Li
- Rush University Medical Center, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
9
|
Aspirin Has Antitumor Effects via Expression of Calpain Gene in Cervical Cancer Cells. JOURNAL OF ONCOLOGY 2008; 2008:285374. [PMID: 19266085 PMCID: PMC2648633 DOI: 10.1155/2008/285374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 07/17/2008] [Accepted: 07/22/2008] [Indexed: 11/17/2022]
Abstract
Aspirin and other nonsteroidal anti-inflammatory drugs show efficacy in the prevention of cancers. It is known that they can inhibit cyclooxygenases, and some studies have shown that they can induce apoptosis. Our objective in this study was to investigate the mechanism by which aspirin exerts its apoptosis effects in human cervical cancer HeLa cells. The effect of aspirin on the gene expression was studied by differential mRNA display RT-PCR. Among the isolated genes, mu-type calpain gene was upregulated by aspirin treatment. To examine whether calpain mediates the antitumor effects, HeLa cells were stably transfected with the mammalian expression vector pCR3.1 containing mu-type calpain cDNA (pCRCAL/HeLa), and tumor formations were measured in nude mice. When tumor burden was measured by day 49, HeLa cells and pCR/HeLa cells (vector control) produced tumors of 2126 mm3 and 1638 mm3, respectively, while pCRCAL/HeLa cells produced markedly smaller tumor of 434 mm3 in volume. The caspase-3 activity was markedly elevated in pCRCAL/HeLa cells. The increased activity levels of caspase-3 in pCRCAL/HeLa cells, in parallel with the decreased tumor formation, suggest a correlation between caspase-3 activity and calpain protein. Therefore, we conclude that aspirin-induced calpain mediates an antitumor effect via caspase-3 in cervical cancer cells.
Collapse
|
10
|
Raveendran NN, Silver K, Freeman LC, Narvaez D, Weng K, Ganta S, Lillich JD. Drug-Induced Alterations to Gene and Protein Expression in Intestinal Epithelial Cell 6 Cells Suggest a Role for Calpains in the Gastrointestinal Toxicity of Nonsteroidal Anti-Inflammatory Agents. J Pharmacol Exp Ther 2008; 325:389-99. [DOI: 10.1124/jpet.107.127720] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
11
|
Alvarez-Soria MA, Largo R, Sanchez-Pernaute O, Calvo E, Egido J, Herrero-Beaumont G. Prostaglandin E2 receptors EP1 and EP4 are up-regulated in rabbit chondrocytes by IL-1β, but not by TNFα. Rheumatol Int 2007; 27:911-7. [PMID: 17401567 DOI: 10.1007/s00296-007-0328-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 02/24/2007] [Indexed: 10/23/2022]
Abstract
Prostaglandin E2 (PGE2) exerts its actions through the binding of the high affinity EP receptors. We wanted to evaluate the regulation of EP1 and EP4, and the expression of cyclooxygenase (COX)-2, main enzyme responsible for PGE2 synthesis in inflammatory situations, in healthy rabbit chondrocytes stimulated with inflammatory mediators locally increased during osteoarthritis. Articular chondrocytes obtained from healthy rabbits were stimulated with interleukin (IL)-1beta (0.1-100 u/ml) or tumour necrosis factor (TNF)alpha (100 ng/ml). Where indicated, cells were preincubated with non-steroidal antiinflammatory drugs (NSAIDs) (10(-6) M) to inhibit PGE2 synthesis. IL-1beta induced a dose and time-dependent increase in EP1, EP4 and COX-2 expression. However, TNFalpha presence did not induce a significant modification in EP1, EP4 or COX-2 gene expression at any time of study. NSAID presence significantly inhibited PGE2 release but did not modify the EP receptors or COX-2 expression induced by IL-1beta. Our results indicate that EP1 and EP4 receptors, and COX-2 are up-regulated in IL-1beta-stimulated chondrocytes, while no significant modifications are observed in TNFalpha-stimulated cells. NSAIDs were unable to modify the expression of these mediators induced by IL-1beta. Therefore, the increase in PGE2 synthesis, induced by IL-1beta, does not seem to mediate the increase in EP receptor expression, in rabbit chondrocytes.
Collapse
Affiliation(s)
- M Angeles Alvarez-Soria
- Joint and Bone Research Unit, Fundación Jiménez Díaz, Universidad Autónoma, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Fushimi K, Nakashima S, You F, Takigawa M, Shimizu K. Prostaglandin E2 downregulates TNF-α-induced production of matrix metalloproteinase-1 in HCS-2/8 chondrocytes by inhibiting Raf-1/MEK/ERK cascade through EP4 prostanoid receptor activation. J Cell Biochem 2007; 100:783-93. [PMID: 17031853 DOI: 10.1002/jcb.21099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinase-1 (MMP-1, collagenase-1) plays a pivotal role in the process of joint destruction in degenerative joint diseases. We have examined the regulation of MMP-1 production in human chondrocytic HCS-2/8 cells stimulated by tumor necrosis factor-alpha (TNF-alpha). In response to TNF-alpha, MMP-1 is induced and actively released from HCS-2/8 cells. The induction of MMP-1 expression correlates with activation of ERK1/2, MEK, and Raf-1, and is potently prevented by U0126, a selective inhibitor of MEK1/2 activation. In contrast, SB203580, a selective p38 mitogen-activated protein kinases (MAPK) inhibitor, had no effects on TNF-alpha-induced MMP-1 release. A serine/threonine kinase, Akt was not activated in TNF-alpha-stimulated HCS-2/8 cells. TNF-alpha stimulated the production of PGE(2) in addition to MMP-1 in HCS-2/8 cells. Exogenously added PGE(2) potently inhibited TNF-alpha-induced both MMP-1 production and activation of ERK1/2. The effects of PGE(2) were mimicked by ONO-AE1-329, a selective EP4 receptor agonist but not by butaprost, a selective EP2 agonist. In contrast, blockade of endogenously produced PGE(2) signaling by ONO-AE3-208, a selective EP4 receptor antagonist, enhanced TNF-alpha-induced MMP-1 production. Furthermore, the suppression of MMP-1 production by exogenously added PGE(2) was reversed by ONO-AE3-208. Activation of EP4 receptor resulted in cAMP-mediated phosphorylation of Raf-1 on Ser259, a negative regulatory site, and blocked activation of Raf-1/MEK/ERK cascade. Taken together, these findings indicate that Raf-1/MEK/ERK signaling pathway plays a crucial role in the production of MMP-1 in HCS-2/8 cells in response to TNF-alpha, and that the produced PGE(2) downregulates the expression of MMP-1 by blockage of TNF-alpha-induced Raf-1 activation through EP4-PGE(2) receptor activation.
Collapse
Affiliation(s)
- Kazunari Fushimi
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | | | | | | | | |
Collapse
|
13
|
Frangié C, Zhang W, Perez J, Dubois YCX, Haymann JP, Baud L. Extracellular calpains increase tubular epithelial cell mobility. Implications for kidney repair after ischemia. J Biol Chem 2006; 281:26624-32. [PMID: 16822870 DOI: 10.1074/jbc.m603007200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calpains are intracellular Ca2+-dependent cysteine proteases that are released in the extracellular milieu by tubular epithelial cells following renal ischemia. Here we show that externalized calpains increase epithelial cell mobility and thus are critical for tubule repair. In vitro, exposure of human tubular epithelial cells (HK-2 cells) to mu-calpain limited their adhesion to extracellular matrix and increased their mobility. Calpains acted primarily by promoting the cleavage of fibronectin, thus preventing fibronectin binding to the integrin alphavbeta3. Analyzing downstream integrin effects, we found that the cyclic AMP-dependent protein kinase A pathway was activated in response to alphavbeta3 disengagement and was essential for calpain-mediated increase in HK-2 cell mobility. In a murine model of ischemic acute renal failure, injection of a fragment of calpastatin, which specifically blocked calpain activity in extracellular milieu, markedly delayed tubule repair, increasing functional and histological lesions after 24 and 48 h of reperfusion. These findings suggest that externalized calpains are critical for tubule repair process in acute renal failure.
Collapse
Affiliation(s)
- Carlos Frangié
- INSERM U702; Université Pierre et Marie Curie, 75020 Paris, France
| | | | | | | | | | | |
Collapse
|
14
|
Morita M, Banno Y, Dohjima T, Nozawa S, Fushimi K, Fan DG, Ohno T, Miyazawa K, Liu N, Shimizu K. μ-Calpain is involved in the regulation of TNF-α-induced matrix metalloproteinase-3 release in a rheumatoid synovial cell line. Biochem Biophys Res Commun 2006; 343:937-42. [PMID: 16574073 DOI: 10.1016/j.bbrc.2006.02.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
Calpain is secreted by intra-articular synovial cells and degrades the main components of cartilage matrix proteins, proteoglycan, and collagen, causing cartilage destruction. Matrix metalloproteinase-3 (MMP-3) has also been detected in synovial fluid and serum, and is involved in the development and progression of rheumatoid arthritis by degradation of the extracellular matrix and cartilage destruction. To investigate the relationship between calpain and MMP-3 in rheumatic inflammation, we utilized the rheumatic synovial cell line, MH7A. Tumor necrosis factor (TNF-alpha) stimulation-induced increased expression of mu-calpain, m-calpain, and MMP-3 in these cells, as well as the release of calpain and MMP-3 into the culture medium. The calpain inhibitors, ALLN (calpain inhibitor I) and calpeptin, did not affect the intracellular expression of MMP-3, but reduced the secretion of MMP-3 in a concentration-dependent manner. Down-regulation of mu- but not m-calpain by small interfering RNAs abolished TNF-alpha-induced MMP-3 release from the synovial cells. These findings suggest that calpain, particularly mu-calpain, regulates MMP-3 release by rheumatic synovial cells, in addition to exerting its own degradative action on cartilage.
Collapse
Affiliation(s)
- Masaji Morita
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|