1
|
Culturing Articular Cartilage Explants in the Presence of Autologous Adipose Tissue Modifies Their Inflammatory Response to Lipopolysaccharide. Mediators Inflamm 2020; 2020:8811001. [PMID: 33273890 PMCID: PMC7676937 DOI: 10.1155/2020/8811001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022] Open
Abstract
The purpose of the current study was to explore the effect of autologous adipose tissue on cartilage responses to lipopolysaccharide (LPS). We hypothesized that LPS elicits an inflammatory response in cartilage, and that response is augmented in the presence of adipose tissue. Furthermore, we hypothesized that this augmented inflammatory response is due, at least in part, to increased exposure of cartilage to adipose tissue-derived c3a. Porcine cartilage explants from market-weight pigs were cultured in the presence or absence of autologous adipose tissue for 96 hours, the final 48 hours of which they were stimulated with LPS (0 or 10 μg/mL). Adipose tissue explants were also cultured alone, in the presence or absence of LPS. Media from all cartilage treatments was assayed for c3a/c3a des Arg, PGE2, GAG, and NO, and the viability of cartilage tissue was determined by differential fluorescent staining. Media from adipose tissue explants was assayed for c3a/c3a des Arg and PGE2. LPS produced a significant increase in PGE2, GAG, and NO production when cartilage was cultured in the absence of adipose tissue. Coculture of adipose tissue prevented a significant increase in PGE2 in cartilage explants. There was no effect of adipose tissue on LPS-induced GAG or NO, but the presence of adipose tissue significantly reduced cell viability in LPS-stimulated cartilage explants. Adipose tissue explants from lean animals reduced inflammatory responses of cartilage to LPS via a c3a/c3a des Arg-independent mechanism and were associated with a significant decline in cell viability. Thus, contrary to our hypothesis, adipose tissue from lean animals does not augment the inflammatory response of cartilage to stimulation by LPS. The mechanism of modulatory effects of adipose tissue on LPS-induced increase in PGE2 and decline in chondrocyte viability requires further research but appears to have occurred via a mechanism that is independent of adipocentric c3a/c3a des Arg.
Collapse
|
2
|
Intraarticular injection of liposomal adenosine reduces cartilage damage in established murine and rat models of osteoarthritis. Sci Rep 2020; 10:13477. [PMID: 32778777 PMCID: PMC7418027 DOI: 10.1038/s41598-020-68302-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/12/2020] [Indexed: 01/17/2023] Open
Abstract
Osteoarthritis (OA) affects nearly 10% of the population of the United States and other industrialized countries and, at present, short of surgical joint replacement, there is no therapy available that can reverse the progression of the disease. Adenosine, acting at its A2A receptor (A2AR), is a critical autocrine factor for maintenance of cartilage homeostasis and here we report that injection of liposomal suspensions of either adenosine or a selective A2AR agonist, CGS21680, significantly reduced OA cartilage damage in a murine model of obesity-induced OA. The same treatment also improved swelling and preserved cartilage in the affected knees in a rat model of established post-traumatic OA (PTOA). Differential expression analysis of mRNA from chondrocytes harvested from knees of rats with PTOA treated with liposomal A2AR agonist revealed downregulation of genes associated with matrix degradation and upregulation of genes associated with cell proliferation as compared to liposomes alone. Studies in vitro and in affected joints demonstrated that A2AR ligation increased the nuclear P-SMAD2/3/P-SMAD1/5/8 ratio, a change associated with repression of terminal chondrocyte differentiation. These results strongly suggest that targeting the A2AR is an effective approach to treat OA.
Collapse
|
3
|
Elevated synovial fluid concentration of adenosine triphosphate in dogs with osteoarthritis or sodium urate-induced synovitis of the stifle. Vet Comp Orthop Traumatol 2016; 29:344-6. [PMID: 27432274 DOI: 10.3415/vcot-15-06-0111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 03/15/2016] [Indexed: 11/17/2022]
Abstract
Adenosine triphosphate has been shown to stimulate nociceptive nerve terminals in joints. Elevated synovial fluid adenosine triphosphate concentrations as well as a correlation between synovial fluid adenosine triphosphate concentrations and osteoarthritic knee pain has been demonstrated in humans, but not yet in dogs. This study documented elevated synovial fluid adenosine triphosphate concentrations in the stifles of dogs with secondary osteoarthritis and urate-induced synovitis, as compared to normal stifles.
Collapse
|
4
|
Koizumi H, Arito M, Endo W, Kurokawa MS, Okamoto K, Omoteyama K, Suematsu N, Beppu M, Kato T. Effects of tofacitinib on nucleic acid metabolism in human articular chondrocytes. Mod Rheumatol 2015; 25:522-7. [PMID: 25496463 DOI: 10.3109/14397595.2014.995874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE In our previous screening of chondrocyte protein profiles, the amount of adenosine monophosphate deaminase (AMPD) 2 was found to be decreased by tofacitinib. Extending the study, here we confirmed the decrease of AMPD2 by tofacitinib and further investigated effects of tofacitinib on purine nucleotide metabolism. METHODS Human articular chondrocytes and a chondrosarcoma cell line: OUMS-27 were stimulated with tofacitinib. Then the levels of AMPD2 and its related enzymes were investigated by Western blot. The levels of AMP and adenosine were assessed by mass spectrometry. RESULTS We confirmed the significant decrease of AMPD2 by tofacitinib in chondrocytes (p = 0.025). The levels of adenosine kinase and 5'-nucleotidase were decreased in chondrocytes, although they did not meet statistical significance (p = 0.067 and p = 0.074, respectively). The results from OUMS-27 were similar to those from the chondrocytes. The cellular adenosine levels were significantly decreased by tofacitinib in OUMS-27 (p = 0.014). The cellular AMP levels were increased, although they did not meet statistical significance in OUMS-27 (p = 0.066). CONCLUSION Our data indicate that tofacitinib increases the cellular levels of adenosine, which is known to have anti-inflammatory activity, through the downregulation of AMPD2. This would be a novel functional aspect of tofacitinib.
Collapse
Affiliation(s)
- Hideki Koizumi
- Clinical Proteomics & Molecular Medicine, St. Marianna University Graduate School of Medicine , Sugao, Miyamae, Kawasaki, Kanagawa , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Burnstock G, Arnett TR, Orriss IR. Purinergic signalling in the musculoskeletal system. Purinergic Signal 2013; 9:541-72. [PMID: 23943493 PMCID: PMC3889393 DOI: 10.1007/s11302-013-9381-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
Abstract
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
6
|
Mediero A, Cronstein BN. Adenosine and bone metabolism. Trends Endocrinol Metab 2013; 24:290-300. [PMID: 23499155 PMCID: PMC3669669 DOI: 10.1016/j.tem.2013.02.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/12/2013] [Accepted: 02/15/2013] [Indexed: 01/09/2023]
Abstract
Bone is a dynamic organ that undergoes continuous remodeling while maintaining a balance between bone formation and resorption. Osteoblasts, which synthesize and mineralize new bone, and osteoclasts, the cells that resorb bone, act in concert to maintain bone homeostasis. In recent years, there has been increasing appreciation of purinergic regulation of bone metabolism. Adenosine, released locally, mediates its physiologic and pharmacologic actions via interactions with G protein-coupled receptors, and recent work has indicated that these receptors are involved in the regulation of osteoclast differentiation and function, as well as in osteoblast differentiation and bone formation. Moreover, adenosine receptors also regulate chondrocyte and cartilage homeostasis. These recent findings underscore the potential therapeutic importance of adenosine receptors in regulating bone physiology and pathology.
Collapse
Affiliation(s)
- Aránzazu Mediero
- Department of Medicine, Division of Translational Medicine, New York University School of Medicine, 550 First Avenue, MSB251, New York, NY 10016, USA
| | | |
Collapse
|
7
|
Pulsed electromagnetic fields increased the anti-inflammatory effect of A₂A and A₃ adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One 2013; 8:e65561. [PMID: 23741498 PMCID: PMC3669296 DOI: 10.1371/journal.pone.0065561] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/27/2013] [Indexed: 12/30/2022] Open
Abstract
Adenosine receptors (ARs) have an important role in the regulation of inflammation and their activation is involved in the inhibition of pro-inflammatory cytokine release. The effects of pulsed electromagnetic fields (PEMFs) on inflammation have been reported and we have demonstrated that PEMFs increased A2A and A3AR density and functionality in different cell lines. Chondrocytes and osteoblasts are two key cell types in the skeletal system that play important role in cartilage and bone metabolism representing an interesting target to study the effect of PEMFs. The primary aim of the present study was to evaluate if PEMF exposure potentiated the anti-inflammatory effect of A2A and/or A3ARs in T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. Immunofluorescence, mRNA analysis and saturation binding assays revealed that PEMF exposure up-regulated A2A and A3AR expression. A2A and A3ARs were able to modulate cAMP production and cell proliferation. The activation of A2A and A3ARs resulted in the decrease of some of the most relevant pro-inflammatory cytokine release such as interleukin (IL)-6 and IL-8, following the treatment with IL-1β as an inflammatory stimuli. In human chondrocyte and osteoblast cell lines, the inhibitory effect of A2A and A3AR stimulation on the release of prostaglandin E2 (PGE2), an important lipid inflammatory mediator, was observed. In addition, in T/C-28a2 cells, the activation of A2A or A3ARs elicited an inhibition of vascular endothelial growth factor (VEGF) secretion. In hFOB 1.19 osteoblasts, PEMF exposure determined an increase of osteoprotegerin (OPG) production. The effect of the A2A or A3AR agonists in the examined cells was enhanced in the presence of PEMFs and completely blocked by using well-known selective antagonists. These results demonstrated that PEMF exposure significantly increase the anti-inflammatory effect of A2A or A3ARs suggesting their potential therapeutic use in the therapy of inflammatory bone and joint disorders.
Collapse
|
8
|
Abstract
Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5'-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically.
Collapse
Affiliation(s)
- Detlev Boison
- Legacy Research Institute, 1225 NE 16th Ave, Portland, OR 97202, USA.
| |
Collapse
|
9
|
Brossi PM, Baccarin RY, Massoco CO. Do blood components affect the production of reactive oxygen species (ROS) by equine synovial cells in vitro? PESQUISA VETERINÁRIA BRASILEIRA 2012. [DOI: 10.1590/s0100-736x2012001200023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blood-derived products are commonly administered to horses and humans to treat many musculoskeletal diseases, due to their potential antioxidant and anti-inflammatory effects. Nevertheless, antioxidant effects have never been shown upon horse synovial fluid cells in vitro. If proved, this could give a new perspective to justify the clinical application of blood-derived products. The aim of the present study was to investigate the antioxidant effects of two blood-derived products - plasma (unconditioned blood product - UBP) and a commercial blood preparation (conditioned blood product - CBP)¹ - upon stimulated equine synovial fluid cells. Healthy tarsocrural joints (60) were tapped to obtain synovial fluid cells; these cells were pooled, processed, stimulated with lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA), and evaluated by flow cytometry for the production of reactive oxygen species (ROS). Upon addition of any blood-derived product here used - UBP and CBP - there was a significant decrease in the oxidative burst of synovial fluid cells (P<0.05). There was no difference between UBP and CBP effects. In conclusion, treatment of stimulated equine synovial cells with either UBP or CBP efficiently restored their redox equilibrium.
Collapse
|
10
|
Cohen SB, Proudman S, Kivitz AJ, Burch FX, Donohue JP, Burstein D, Sun YN, Banfield C, Vincent MS, Ni L, Zack DJ. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee. Arthritis Res Ther 2011; 13:R125. [PMID: 21801403 PMCID: PMC3239365 DOI: 10.1186/ar3430] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/06/2011] [Accepted: 07/29/2011] [Indexed: 11/24/2022] Open
Abstract
Introduction AMG 108 is a fully human, immunoglobulin subclass G2 (IgG2) monoclonal antibody that binds the human interleukin-1 (IL-1) receptor type 1, inhibiting the activity of IL-1a and IL-1b. In preclinical studies, IL-1 inhibition was shown to be beneficial in models of osteoarthritis (OA). The purpose of this two-part study was to evaluate the safety and pharmacokinetics (PK; Part A) and clinical effect (Part B) of AMG 108 in a double-blind, placebo-controlled, multiple-dose study in patients with OA of the knee. Methods In Part A, patients received placebo or AMG 108 subcutaneously (SC; 75 mg or 300 mg) or intravenously (IV; 100 mg or 300 mg) once every 4 weeks for 12 weeks; in Part B, patients received placebo or 300 mg AMG 108 SC, once every 4 weeks for 12 weeks. The clinical effect of AMG 108 was measured in Part B by using the Western Ontario and McMaster Universities (WOMAC) osteoarthritis index pain score. Results In Part A, 68 patients were randomized, and 64 received investigational product. In Part B, 160 patients were randomized, and 159 received investigational product. AMG 108 was well tolerated. Most adverse events (AEs), infectious AEs, serious AEs and infections, as well as withdrawals from the study due to AEs occurred at similar rates in both active and placebo groups. One death was reported in an 80-year-old patient (Part A, 300 mg IV AMG 108; due to complications of lobar pneumonia). AMG 108 serum concentration-time profiles exhibited nonlinear PK. The AMG 108 group in Part B had statistically insignificant but numerically greater improvement in pain compared with the placebo group, as shown by the WOMAC pain scores (median change, -63.0 versus -37.0, respectively). Conclusions The safety profile of AMG 108 SC and IV was comparable with placebo in patients with OA of the knee. Patients who received AMG 108 showed statistically insignificant but numerically greater improvements in pain; however, minimal, if any, clinical benefit was observed. Trial Registration This study is registered with ClinicalTrials.gov with the identifier NCT00110942.
Collapse
Affiliation(s)
- Stanley B Cohen
- Rheumatology, Metroplex Clinical Research Center, 8144 Walnut Hill Lane, Dallas, TX 75231, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Klawitter M, Quero L, Bertolo A, Mehr M, Stoyanov J, Nerlich AG, Klasen J, Aebli N, Boos N, Wuertz K. Human MMP28 expression is unresponsive to inflammatory stimuli and does not correlate to the grade of intervertebral disc degeneration. J Negat Results Biomed 2011; 10:9. [PMID: 21801383 PMCID: PMC3169505 DOI: 10.1186/1477-5751-10-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/29/2011] [Indexed: 12/20/2022] Open
Abstract
Background MMP28 (epilysin) is a recently discovered member of the MMP (matrix metalloproteinase) family that is, amongst others, expressed in osteoarthritic cartilage and intervertebral disc (IVD) tissue. In this study the hypothesis that increased expression of MMP28 correlates with higher grades of degeneration and is stimulated by the presence of proinflammatory molecules was tested. Gene expression levels of MMP28 were investigated in traumatic and degenerative human IVD tissue and correlated to the type of disease and the degree of degeneration (Thompson grade). Quantification of MMP28 gene expression in human IVD tissue or in isolated cells after stimulation with the inflammatory mediators lipopolysaccharide (LPS), interleukin (IL)-1β, tumor necrosis factor (TNF)-α or the histondeacetylase inhibitor trichostatin A was performed by real-time RT PCR. Results While MMP28 expression was increased in individual cases with trauma or disc degeneration, there was no significant correlation between the grade of disease and MMP28 expression. Stimulation with LPS, IL-1β, TNF-α or trichostatin A did not alter MMP28 gene expression at any investigated time point or any concentration. Conclusions Our results demonstrate that gene expression of MMP28 in the IVD is not regulated by inflammatory mechanisms, is donor-dependent and cannot be positively or negatively linked to the grade of degeneration and only weakly to the occurrence of trauma. New hypotheses and future studies are needed to find the role of MMP28 in the intervertebral disc.
Collapse
Affiliation(s)
- Marina Klawitter
- Spine Research Group, Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
de Grauw JC, van de Lest CHA, van Weeren PR. Inflammatory mediators and cartilage biomarkers in synovial fluid after a single inflammatory insult: a longitudinal experimental study. Arthritis Res Ther 2009; 11:R35. [PMID: 19272138 PMCID: PMC2688180 DOI: 10.1186/ar2640] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/16/2009] [Accepted: 03/09/2009] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Inflammation is an important feature of many joint diseases, and levels of cartilage biomarkers measured in synovial fluid may be influenced by local inflammatory status. Little is known about the magnitude and time course of inflammation-induced changes in cartilage tissue turnover as measured in vivo by synovial fluid markers. We aimed to study temporal changes in concentrations of inflammatory mediators, matrix metalloproteinase activity and cartilage biomarkers over 1 week in joints with experimentally induced inflammation. METHODS Localized inflammation was induced in the intercarpal joint of six horses by sterile injection of 0.5 ng lipopolysaccharide, and synovial fluid was collected at post-injection hours (PIH) 0, 8, 24 and 168. Concentrations of inflammatory mediators (prostaglandin E2, substance P, and bradykinin), general matrix metalloproteinase activity and markers of collagen II turnover (CPII and C2C) as well as aggrecan turnover (CS846 and glycosaminoglycans) were measured with appropriate assays. One-way analysis of variance on repeated measures was used to analyze differences in synovial fluid marker levels over time. RESULTS Lipopolysaccharide-injection led to a sharp rise in prostaglandin E2 at PIH 8, while substance P, bradykinin and matrix metalloproteinase activity showed more sustained increases at PIH 8 and 24. Glycosaminoglycan release paralleled changes in the CS846 epitope, with an increase by PIH 8, a peak at PIH 24, and return to baseline by PIH 168. For type II collagen, a parallel time course between catabolic (C2C) and anabolic (CPII) markers was also observed, but the time course differed from that seen for proteoglycan markers: collagen II markers peaked later, at PIH 24, and were still elevated over baseline at PIH 168. CONCLUSIONS A primary intra-articular inflammatory insult, characterized by local release of peptide and lipid mediators and matrix metalloproteinase activation, can alter synovial fluid levels of proteoglycan biomarkers as early as 8 hours post-induction, and can lead to sustained rises in collagen II biomarkers during at least 1 week after onset.
Collapse
Affiliation(s)
- Janny C de Grauw
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
13
|
De Mattei M, Varani K, Masieri FF, Pellati A, Ongaro A, Fini M, Cadossi R, Vincenzi F, Borea PA, Caruso A. Adenosine analogs and electromagnetic fields inhibit prostaglandin E2 release in bovine synovial fibroblasts. Osteoarthritis Cartilage 2009; 17:252-62. [PMID: 18640059 DOI: 10.1016/j.joca.2008.06.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 06/07/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the role of adenosine analogs and electromagnetic field (EMF) stimulation on prostaglandin E(2) (PGE(2)) release and cyclooxygenase-2 (COX-2) expression in bovine synovial fibroblasts (SFs). METHODS SFs isolated from synovia were cultured in monolayer. Saturation and binding experiments were performed by using typical adenosine agonists: N6-cyclohexyladenosine (CHA, A(1)), 2-[p-(2-carboxyethyl)-phenetyl-amino]-5'-N-ethylcarboxamidoadenosine (CGS 21680, A(2A)), 5'-N-ethylcarboxamidoadenosine (NECA, non-selective), N6-(3-iodobenzyl)2-chloroadenosine-5'-N-methyluronamide (Cl-IB-MECA, A(3)). SFs were treated with TNF-alpha (10 ng/ml) and lipopolysaccharide (LPS) (1 microg/ml) to activate inflammatory response. Adenosine analogs were added to control and TNF-alpha- or LPS-treated cultures both in the absence and in the presence of adenosine deaminase (ADA) which is used to deplete endogenous adenosine. Parallel cultures were exposed to EMFs (75 Hz, 1.5 mT) during the period in culture (24h). PGE(2) release was measured by immunoassay. COX-2 expression was evaluated by RT-PCR. RESULTS TNF-alpha and LPS stimulated PGE(2) release. All adenosine agonists, except for Cl-IB-MECA, significantly inhibited PGE(2) production. EMFs inhibited PGE(2) production in the absence of adenosine agonists and increased the effects of CHA, CGS 21680 and NECA. In ADA, the inhibition on PGE(2) release induced by CHA, CGS and NECA was stronger than in the absence of ADA and the EMF-inhibitory effect was lost. Changes in PGE(2) levels were associated to modification of COX-2 expression. CONCLUSIONS This study supports anti-inflammatory activities of A(1) and A(2A) adenosine receptors and EMFs in bovine SFs. EMF activity appears mediated by an EMF-induced up-regulation of A(2A) receptors. Biophysical and/or pharmacological modulation of adenosine pathways may play an important role to control joint inflammation.
Collapse
Affiliation(s)
- M De Mattei
- Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bolt DM, Ishihara A, Weisbrode SE, Bertone AL. Effects of triamcinolone acetonide, sodium hyaluronate, amikacin sulfate, and mepivacaine hydrochloride, alone and in combination, on morphology and matrix composition of lipopolysaccharide-challenged and unchallenged equine articular cartilage explants. Am J Vet Res 2008; 69:861-7. [DOI: 10.2460/ajvr.69.7.861] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Aota Y, An HS, Imai Y, Thonar EJ, Muehleman C, Masuda K. Comparison of cellular response in bovine intervertebral disc cells and articular chondrocytes: effects .of lipopolysaccharide on proteoglycan metabolism. Cell Tissue Res 2006; 326:787-93. [PMID: 16788835 DOI: 10.1007/s00441-006-0225-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Accepted: 04/20/2006] [Indexed: 01/09/2023]
Abstract
Lipopolysaccharide (LPS) induces matrix degradation and markedly stimulates the production of several cytokines, i.e., interleukin-1beta, -6, and -10, by disc cells and chondrocytes. We performed a series of experiments to compare cellular responses of cells from the bovine intervertebral disc (nucleus pulposus and annulus fibrosus) and from bovine articular cartilage to LPS. Alginate beads containing cells isolated from bovine intervertebral discs and articular cartilage were cultured with or without LPS in the presence of 10% fetal bovine serum. The DNA content and the rate of proteoglycan synthesis and degradation were determined. In articular chondrocytes, LPS strongly suppressed cell proliferation and proteoglycan synthesis in a dose-dependent manner and stimulated proteoglycan degradation. Compared with articular chondrocytes, nucleus pulposus cells responded in a similar, although less pronounced manner. However, treatment of annulus fibrosus cells with LPS showed no significant effects on proteoglycan synthesis or degradation. A slight, but statistically significant, inhibition of cell proliferation was observed at high concentrations of LPS in annulus fibrosus cells. Thus, LPS suppressed proteoglycan synthesis and stimulated proteoglycan degradation by articular chondrocytes and nucleus pulposus cells. The effects of LPS on annulus fibrosus cells were minor compared with those on the other two cell types. The dissimilar effects of LPS on the various cell types suggest metabolic differences between these cells and may further indicate a divergence in pathways of LPS signaling and a differential sensitivity to exogenous stimuli such as LPS.
Collapse
Affiliation(s)
- Yoichi Aota
- Department of Orthopedic Surgery, Rush Medical College at Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|