1
|
Cheung C, Tu S, Feng Y, Wan C, Ai H, Chen Z. Mitochondrial quality control dysfunction in osteoarthritis: Mechanisms, therapeutic strategies & future prospects. Arch Gerontol Geriatr 2024; 125:105522. [PMID: 38861889 DOI: 10.1016/j.archger.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic joint disease characterized by articular cartilage degeneration, pain, and disability. Emerging evidence indicates that mitochondrial quality control dysfunction contributes to OA pathogenesis. Mitochondria are essential organelles to generate cellular energy via oxidative phosphorylation and regulate vital processes. Impaired mitochondria can negatively impact cellular metabolism and result in the generation of harmful reactive oxygen species (ROS). Dysfunction in mitochondrial quality control mechanisms has been increasingly linked to OA onset and progression. This review summarizes current knowledge on the role of mitochondrial quality control disruption in OA, highlighting disturbed mitochondrial dynamics, impaired mitochondrial biogenesis, antioxidant defenses and mitophagy. The review also discusses potential therapeutic strategies targeting mitochondrial Quality Control in OA, offering future perspectives on advancing OA therapeutic strategies.
Collapse
Affiliation(s)
- Chiyuen Cheung
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Shaoqin Tu
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yi Feng
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Chuiming Wan
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hong Ai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
2
|
Papila B, Karimova A, Onaran I. Altered lactate/pyruvate ratio may be responsible for aging-associated intestinal barrier dysfunction in male rats. Biogerontology 2024; 25:679-689. [PMID: 38619668 PMCID: PMC11217102 DOI: 10.1007/s10522-024-10102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 04/16/2024]
Abstract
Some evidence points to a link between aging-related increased intestinal permeability and mitochondrial dysfunction in in-vivo models. Several studies have also demonstrated age-related accumulation of the of specific deletion 4834-bp of "common" mitochondrial DNA (mtDNA) in various rat tissues and suggest that this deletion may disrupt mitochondrial metabolism. The present study aimed to investigate possible associations among the mitochondrial DNA (mtDNA) common deletion, mitochondrial function, intestinal permeability, and aging in rats. The study was performed on the intestinal tissue from (24 months) and young (4 months) rats. mtDNA4834 deletion, mtDNA copy number, mitochondrial membrane potential, and ATP, lactate and pyruvate levels were analyzed in tissue samples. Zonulin and intestinal fatty acid-binding protein (I-FABP) levels were also evaluated in serum. Serum zonulin and I-FABP levels were significantly higher in 24-month-old rats than 4-month-old rats (p = 0.04, p = 0.026, respectively). There is not significant difference in mtDNA4834 copy levels was observed between the old and young intestinal tissues (p > 0.05). The intestinal mitochondrial DNA copy number was similar between the two age groups (p > 0.05). No significant difference was observed in ATP levels in the intestinal tissue lysates between old and young rats (p > 0.05). ATP levels in isolated mitochondria from both groups were also similar. Analysis of MMP using JC-10 in intestinal tissue mitochondria showed that mitochondrial membrane potentials (red/green ratios) were similar between the two age groups (p > 0.05). Pyruvate tended to be higher in the 24-month-old rat group and the L/P ratio was found to be approximately threefold lower in the intestinal tissue of the older rats compared to the younger rats (p < 0.002). The tissue lactate/pyruvate ratio (L/P) was three times lower in old rats than in young rats. Additionally, there were significant negative correlations between intestinal permeability parameters and L/P ratios. The intestinal tissues of aged rats are not prone to accumulate mtDNA common deletion, we suggest that this mutation does not explain the age-related increase in intestinal permeability. It seems to be more likely that altered glycolytic capacity could be a link to increased intestinal permeability with age. This observation strengthens assertions that the balance between glycolysis and mitochondrial metabolism may play a critical role in intestinal barrier functions.
Collapse
Affiliation(s)
- Berrin Papila
- Department of General Surgery, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Cerrahpasa, Fatih, 34098, Istanbul, Turkey.
| | - Ayla Karimova
- Department of Medical Biology and Genetics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ilhan Onaran
- Department of Medical Biology and Genetics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
3
|
Alsaleh G, Richter FC, Simon AK. Age-related mechanisms in the context of rheumatic disease. Nat Rev Rheumatol 2022; 18:694-710. [PMID: 36329172 DOI: 10.1038/s41584-022-00863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Ageing is characterized by a progressive loss of cellular function that leads to a decline in tissue homeostasis, increased vulnerability and adverse health outcomes. Important advances in ageing research have now identified a set of nine candidate hallmarks that are generally considered to contribute to the ageing process and that together determine the ageing phenotype, which is the clinical manifestation of age-related dysfunction in chronic diseases. Although most rheumatic diseases are not yet considered to be age related, available evidence increasingly emphasizes the prevalence of ageing hallmarks in these chronic diseases. On the basis of the current evidence relating to the molecular and cellular ageing pathways involved in rheumatic diseases, we propose that these diseases share a number of features that are observed in ageing, and that they can therefore be considered to be diseases of premature or accelerated ageing. Although more data are needed to clarify whether accelerated ageing drives the development of rheumatic diseases or whether it results from the chronic inflammatory environment, central components of age-related pathways are currently being targeted in clinical trials and may provide a new avenue of therapeutic intervention for patients with rheumatic diseases.
Collapse
Affiliation(s)
- Ghada Alsaleh
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, UK.
| | - Felix C Richter
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Anna K Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Mitochondrial Genome Editing to Treat Human Osteoarthritis-A Narrative Review. Int J Mol Sci 2022; 23:ijms23031467. [PMID: 35163384 PMCID: PMC8835930 DOI: 10.3390/ijms23031467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a severe, common chronic orthopaedic disorder characterised by a degradation of the articular cartilage with an incidence that increases over years. Despite the availability of various clinical options, none can stop the irreversible progression of the disease to definitely cure OA. Various mutations have been evidenced in the mitochondrial DNA (mtDNA) of cartilage cells (chondrocytes) in OA, leading to a dysfunction of the mitochondrial oxidative phosphorylation processes that significantly contributes to OA cartilage degeneration. The mitochondrial genome, therefore, represents a central, attractive target for therapy in OA, especially using genome editing procedures. In this narrative review article, we present and discuss the current advances and breakthroughs in mitochondrial genome editing as a potential, novel treatment to overcome mtDNA-related disorders such as OA. While still in its infancy and despite a number of challenges that need to be addressed (barriers to effective and site-specific mtDNA editing and repair), such a strategy has strong value to treat human OA in the future, especially using the groundbreaking clustered regularly interspaced short palindromic repeats (CRIPSR)/CRISPR-associated 9 (CRISPR/Cas9) technology and mitochondrial transplantation approaches.
Collapse
|
5
|
Wang Y, Chen LY, Liu-Bryan R. Mitochondrial Biogenesis, Activity, and DNA Isolation in Chondrocytes. Methods Mol Biol 2021; 2245:195-213. [PMID: 33315204 DOI: 10.1007/978-1-0716-1119-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chondrocytes, the only cells in articular cartilage, are metabolically active and responsible for the turnover of extracellular matrix and maintenance of the tissue homeostasis. Changes in chondrocyte function can cause degradation of the matrix and loss of articular cartilage integrity, leading to development and progression of osteoarthritis (OA). These changes are exemplified by accumulated mitochondrial damage and dysfunction. Because mitochondria are the critical organelles to produce energy and play a key role in cellular processes, the approaches to assess mitochondrial function under both physiological and pathological conditions enable us to uncover the mechanisms on how dysfunction of mitochondria in chondrocytes mediates signaling pathways that are involved in disturbance of cartilage homeostasis. In this chapter, we describe the methods to evaluate mitochondrial biogenesis, activity and mitochondrial DNA (mtDNA) integrity in chondrocytes.
Collapse
Affiliation(s)
- Yun Wang
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Ru Liu-Bryan
- VA San Diego Healthcare System, San Diego, CA, USA. .,Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
He Y, Wu Z, Xu L, Xu K, Chen Z, Ran J, Wu L. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis. Cell Mol Life Sci 2020; 77:3729-3743. [PMID: 32468094 PMCID: PMC11105031 DOI: 10.1007/s00018-020-03497-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Osteoarthritis is the most common degenerative joint disease and causes major pain and disability in adults. It has been reported that mitochondrial dysfunction in chondrocytes is associated with osteoarthritis. Sirtuins are a family of nicotinamide adenine dinucleotide-dependent histone deacetylases that have the ability to deacetylate protein targets and play an important role in the regulation of cell physiological and pathological processes. Among sirtuin family members, sirtuin 3, which is mainly located in mitochondria, can exert its deacetylation activity to regulate mitochondrial function, regeneration, and dynamics; these processes are presently recognized to maintain redox homeostasis to prevent oxidative stress in cell metabolism. In this review, we provide present opinions on the effect of mitochondrial dysfunction in osteoarthritis. Furthermore, the potential protective mechanism of SIRT3-mediated mitochondrial homeostasis in the progression of osteoarthritis is discussed.
Collapse
Affiliation(s)
- Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhipeng Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Langhai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhonggai Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Li M, Luo X, Long X, Jiang P, Jiang Q, Guo H, Chen Z. Potential role of mitochondria in synoviocytes. Clin Rheumatol 2020; 40:447-457. [PMID: 32613391 DOI: 10.1007/s10067-020-05263-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Synoviocytes are located in the synovium lining layer, which is composed of macrophage-like synoviocytes (MLS) and fibroblast-like synoviocytes (FLS) with different characteristics. Mitochondria, which exist in most cells, are two membrane-covered organelles. In addition to providing the necessary ATP for synoviocytes, mitochondria are involved in the regulation of redox homeostasis and the integration of synoviocytes death signals. In recent years, mitochondrial dysfunction has been found in rheumatoid arthritis (RA) and osteoarthritis (OA). Interestingly, recent studies have started uncovering that mitochondria that were previously reported to play a role in chondrocytes or immune cells, but not known to have pronounced roles in synoviocytes, can actually play crucial roles in the regulation of the pathological properties of the synoviocytes. The purpose of this review is to summarize our current understanding of the key role of mitochondria in synoviocytes, including mitochondrial dysfunction in synoviocytes can induce and aggravate inflammatory responses and changes in mitochondrial structure and function with the involvement of multiple cytokines, signal pathway, and hypoxic state of synovial tissue alter the response of synoviocytes to apoptotic stimulation. Also, mitochondrial abnormalities in synoviocytes promote the synoviocytes invasion and proliferation.
Collapse
Affiliation(s)
- Muzhe Li
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Xuling Luo
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Xin Long
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Peishi Jiang
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Qin Jiang
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Heng Guo
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Zhiwei Chen
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
8
|
Abstract
Mitochondria and mitochondrial DNA (mtDNA) variation are now recognized as important factors in the development of osteoarthritis (OA). Mitochondria are the energy powerhouses of the cell, and also regulate different processes involved in the pathogenesis of OA including inflammation, apoptosis, calcium metabolism and the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Mitochondria contain their own genetic material, mtDNA, which evolved through the sequential accumulation of mtDNA variants to enable humans to adapt to different climates. The ROS and reactive metabolic intermediates that are by-products of mitochondrial metabolism are regulated in part by mtDNA and are among the signals that transmit information between mitochondria and the nucleus. These signals can alter nuclear gene expression and, when disrupted, affect a number of cellular processes and metabolic pathways, leading to disease. mtDNA variation influences OA-associated phenotypes, including those related to metabolism, inflammation and even ageing, as well as nuclear epigenetic regulation. This influence also enables the use of specific mtDNA haplogroups as complementary diagnostic and prognostic biomarkers of OA.
Collapse
|
9
|
Chen LY, Wang Y, Terkeltaub R, Liu-Bryan R. Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function. Osteoarthritis Cartilage 2018; 26:1539-1550. [PMID: 30031925 PMCID: PMC6202232 DOI: 10.1016/j.joca.2018.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/11/2018] [Accepted: 07/02/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In osteoarthritis (OA), articular chondrocytes manifest mitochondrial damage, including mitochondrial DNA 4977-bp (mtDNA4977) deletion that impairs mitochondrial function. OA chondrocytes have decreased activity of AMPK, an energy biosensor that promotes mitochondrial biogenesis. Here, we tested if pharmacologic AMPK activation, via downstream activation of predominately mitochondrially localized sirtuin 3 (SIRT3), reverses existing decreases in mitochondrial DNA (mtDNA) integrity and function in human OA chondrocytes and limits mouse knee OA development. DESIGN We assessed mtDNA integrity and function including the common mtDNA4977 deletion and mtDNA content, mitochondrial reactive oxygen species (mtROS) generation, oxygen consumption and intracellular ATP levels. Phosphorylation of AMPKα, expression and activity of SIRT3, acetylation and expression of the mitochondrial antioxidant enzyme SOD2 and DNA repair enzyme 8-oxoguanine glycosylase (OGG1), and expression of subunits of mitochondrial respiratory complexes were examined. We assessed effect of pharmacologic activation of AMPK on age-related spontaneous mouse knee OA. RESULTS The mtDNA4977 deletion was detected in both OA chondrocytes and menadione-treated normal chondrocytes, associated with increased mtROS, decreased SIRT3, and increased acetylation of SOD2 and OGG1. AMPKα1 deficient chondrocytes exhibited significantly reduced SIRT3 activity. AMPK pharmacologic activation attenuated existing mtDNA4977 deletion and improved mitochondrial functions in OA chondrocytes via SIRT3 by reducing acetylation and increasing expression of SOD2 and OGG1, and limited aging-associated mouse knee OA development and progression. CONCLUSIONS AMPK activation, via SIRT3, limits oxidative stress and improves mtDNA integrity and function in OA chondrocytes. These effects likely contribute to chondroprotective effects of AMPK activity.
Collapse
Affiliation(s)
| | | | - Robert Terkeltaub
- VA San Diego Healthcare System, San Diego, CA,Dept. of Medicine, UC San Diego
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, San Diego, CA,Dept. of Medicine, UC San Diego,To Whom Correspondence should be addressed: Ru Liu-Bryan PhD, VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA 92161. Telephone: 858 552 8585. Fax: 858 552 7425,
| |
Collapse
|
10
|
Notoginseng Radix and Rehmanniae Radix Preparata Extract Combination (YH23537) Reduces Pain and Cartilage Degeneration in Rats with Monosodium Iodoacetate-Induced Osteoarthritis. J Med Food 2018; 21:745-754. [DOI: 10.1089/jmf.2017.4041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
11
|
Delco ML, Bonnevie ED, Szeto HS, Bonassar LJ, Fortier LA. Mitoprotective therapy preserves chondrocyte viability and prevents cartilage degeneration in an ex vivo model of posttraumatic osteoarthritis. J Orthop Res 2018; 36:10.1002/jor.23882. [PMID: 29469223 PMCID: PMC6105558 DOI: 10.1002/jor.23882] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/07/2018] [Indexed: 02/04/2023]
Abstract
No disease-modifying osteoarthritis (OA) drugs are available to prevent posttraumatic osteoarthritis (PTOA). Mitochondria (MT) mediate the pathogenesis of many degenerative diseases, and recent evidence indicates that MT dysfunction is a peracute (within minutes to hours) response of cartilage to mechanical injury. The goal of this study was to investigate cardiolipin-targeted mitoprotection as a new strategy to prevent chondrocyte death and cartilage degeneration after injury. Cartilage was harvested from bovine knee joints and subjected to a single, rapid impact injury (24.0 ±1.4 MPa, 53.8 ± 5.3 GPa/s). Explants were then treated with a mitoprotective peptide, SS-31 (1µM), immediately post-impact, or at 1, 6, or 12 h after injury, and then cultured for up to 7 days. Chondrocyte viability and apoptosis were quantified in situ using confocal microscopy. Cell membrane damage (lactate dehydrogenase activity) and cartilage matrix degradation (glycosaminoglycan loss) were quantified in cartilage-conditioned media. SS-31 treatment at all time points after impact resulted in chondrocyte viability similar to that of un-injured controls. This effect was sustained for up to a week in culture. Further, SS-31 prevented impact-induced chondrocyte apoptosis, cell membrane damage, and cartilage matrix degeneration. CLINICAL SIGNIFICANCE This study is the first investigation of cardiolipin-targeted mitoprotective therapy in cartilage. These results suggest that even when treatment is delayed by up to 12 h after injury, mitoprotection may be a useful strategy in the prevention of PTOA. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-10, 2018.
Collapse
Affiliation(s)
- Michelle L. Delco
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Edward D. Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Hazel S. Szeto
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Lawrence J. Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
12
|
Finsterer J, Zarrouk-Mahjoub S. Mitochondrial multiorgan disorder syndrome score generated from definite mitochondrial disorders. Neuropsychiatr Dis Treat 2017; 13:2569-2579. [PMID: 29062232 PMCID: PMC5638572 DOI: 10.2147/ndt.s149067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Mitochondrial disorders (MIDs) frequently present as mitochondrial multiorgan disorder syndrome (MIMODS) at onset or evolve into MIMODS during the course. This study aimed to find which organs and/or tissues are most frequently affected by MIMODS, which are the most frequent abnormalities within an affected organ, whether there are typical MIMODS patterns, and to generate an MIMODS score to assess the diagnostic probability for an MID. METHODS This is a retrospective evaluation of clinical, biochemical, and genetic investigations of adult patients with definite MIDs. A total of 36 definite MID patients, 19 men and 17 women, aged 29-82 years were included in this study. The diagnosis was based on genetic testing (n=21), on biochemical investigations (n=17), or on both (n=2). RESULTS The number of organs most frequently affected was 4 ranging from 1 to 9. MIMODS was diagnosed in 97% of patients. The organs most frequently affected were the muscle (97%), central nervous system (CNS; 72%), endocrine glands (69%), heart (58%), intestines (55%), and peripheral nerves (50%). The most frequent CNS abnormalities were leukoencephalopathy, prolonged visually evoked potentials, and atrophy. The most frequent endocrine abnormalities included thyroid dysfunction, short stature, and diabetes. The most frequent cardiac abnormalities included arrhythmias, systolic dysfunction, and hypertrophic cardiomyopathy. The most frequent MIMODS patterns were encephalomyopathy, encephalo-myo-endocrinopathy, and encepalo-myo-endocrino-cardiopathy. The mean ± 2SD MIMODS score was 35.97±27.6 (range =11-71). An MIMODS score >10 was regarded as indicative of an MID. CONCLUSION Adult MIDs manifest as MIMODS in the vast majority of the cases. The organs most frequently affected in MIMODS are muscles, CNS, endocrine glands, and heart. An MIMODS score >10 suggests an MID.
Collapse
|
13
|
Eupatilin Exerts Antinociceptive and Chondroprotective Properties in a Rat Model of Osteoarthritis by Downregulating Oxidative Damage and Catabolic Activity in Chondrocytes. PLoS One 2015; 10:e0130882. [PMID: 26083352 PMCID: PMC4471346 DOI: 10.1371/journal.pone.0130882] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/26/2015] [Indexed: 01/08/2023] Open
Abstract
Increases in oxidative stress are thought to be associated with the development of osteoarthritis (OA). Eupatilin, one of the major compounds present in artemisia species, was shown to have both anti-oxidative and anti-inflammatory properties. Here, we investigated the in vivo effects of eupatilin on pain severity and cartilage degradation in an experimental rat model of OA, along with the mechanisms of action underlying these effects. Experimental OA was induced via an intra-articular injection of monosodium iodoacetate (MIA), with oral administration of eupatilin initiated on the day of MIA injection. Pain was assessed by measuring the paw withdrawal latency and threshold. Cartilage destruction was analyzed macroscopically and histomorphologically. The effects of eupatilin on mRNA expression were investigated in interleukin-1β (IL-1β)-stimulated human OA chondrocytes. Eupatilin treatment exhibited clear antinociceptive effects, along with an attenuation of cartilage degradation in OA rats. Additionally, the number of osteoclasts present in the subchondral bone region was significantly decreased following eupatilin treatment. Eupatilin reduced the expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), nitrotyrosine and inducible nitric oxide synthase (iNOS) in cartilage. mRNA levels of matrix metalloproteinase-3 (MMP-3), MMP13, and a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5) were reduced in IL-1β-stimulated human OA chondrocytes, while tissue inhibitor of metalloproteinases-1 (TIMP-1) was induced. Phosphorylated protein levels of the c-jun N-terminal kinase (JNK) was reduced by eupatilin. Taken together, these results suggest that eupatilin suppresses oxidative damage and reciprocally enhances extracellular matrix production in articular chondrocytes, making eupatilin a promising therapeutic option for the treatment of OA.
Collapse
|
14
|
Levin L, Mishmar D. A Genetic View of the Mitochondrial Role in Ageing: Killing Us Softly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 847:89-106. [DOI: 10.1007/978-1-4939-2404-2_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Seo HH, Jeong JM. Inhibitory Effects of Complex of Mulberry Extract on Degenerative Arthritis. ACTA ACUST UNITED AC 2014. [DOI: 10.7783/kjmcs.2014.22.4.262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Gavriilidis C, Miwa S, von Zglinicki T, Taylor RW, Young DA. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. ACTA ACUST UNITED AC 2013; 65:378-87. [DOI: 10.1002/art.37782] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/25/2012] [Indexed: 01/15/2023]
|
17
|
Tranah GJ, Lam ET, Katzman SM, Nalls MA, Zhao Y, Evans DS, Yokoyama JS, Pawlikowska L, Kwok PY, Mooney S, Kritchevsky S, Goodpaster BH, Newman AB, Harris TB, Manini TM, Cummings SR. Mitochondrial DNA sequence variation is associated with free-living activity energy expenditure in the elderly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1691-700. [PMID: 22659402 DOI: 10.1016/j.bbabio.2012.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/19/2012] [Accepted: 05/24/2012] [Indexed: 01/11/2023]
Abstract
The decline in activity energy expenditure underlies a range of age-associated pathological conditions, neuromuscular and neurological impairments, disability, and mortality. The majority (90%) of the energy needs of the human body are met by mitochondrial oxidative phosphorylation (OXPHOS). OXPHOS is dependent on the coordinated expression and interaction of genes encoded in the nuclear and mitochondrial genomes. We examined the role of mitochondrial genomic variation in free-living activity energy expenditure (AEE) and physical activity levels (PAL) by sequencing the entire (~16.5 kilobases) mtDNA from 138 Health, Aging, and Body Composition Study participants. Among the common mtDNA variants, the hypervariable region 2 m.185G>A variant was significantly associated with AEE (p=0.001) and PAL (p=0.0005) after adjustment for multiple comparisons. Several unique nonsynonymous variants were identified in the extremes of AEE with some occurring at highly conserved sites predicted to affect protein structure and function. Of interest is the p.T194M, CytB substitution in the lower extreme of AEE occurring at a residue in the Qi site of complex III. Among participants with low activity levels, the burden of singleton variants was 30% higher across the entire mtDNA and OXPHOS complex I when compared to those having moderate to high activity levels. A significant pooled variant association across the hypervariable 2 region was observed for AEE and PAL. These results suggest that mtDNA variation is associated with free-living AEE in older persons and may generate new hypotheses by which specific mtDNA complexes, genes, and variants may contribute to the maintenance of activity levels in late life.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, San Francisco, CA 94107, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tranah GJ. Mitochondrial-nuclear epistasis: implications for human aging and longevity. Ageing Res Rev 2011; 10:238-52. [PMID: 20601194 DOI: 10.1016/j.arr.2010.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 12/22/2022]
Abstract
There is substantial evidence that mitochondria are involved in the aging process. Mitochondrial function requires the coordinated expression of hundreds of nuclear genes and a few dozen mitochondrial genes, many of which have been associated with either extended or shortened life span. Impaired mitochondrial function resulting from mtDNA and nuclear DNA variation is likely to contribute to an imbalance in cellular energy homeostasis, increased vulnerability to oxidative stress, and an increased rate of cellular senescence and aging. The complex genetic architecture of mitochondria suggests that there may be an equally complex set of gene interactions (epistases) involving genetic variation in the nuclear and mitochondrial genomes. Results from Drosophila suggest that the effects of mtDNA haplotypes on longevity vary among different nuclear allelic backgrounds, which could account for the inconsistent associations that have been observed between mitochondrial DNA (mtDNA) haplogroups and survival in humans. A diversity of pathways may influence the way mitochondria and nuclear-mitochondrial interactions modulate longevity, including: oxidative phosphorylation; mitochondrial uncoupling; antioxidant defenses; mitochondrial fission and fusion; and sirtuin regulation of mitochondrial genes. We hypothesize that aging and longevity, as complex traits having a significant genetic component, are likely to be controlled by nuclear gene variants interacting with both inherited and somatic mtDNA variability.
Collapse
|
19
|
Abstract
Mitochondria are important regulators of cellular function and survival that may have a key role in aging-related diseases. Mitochondrial DNA (mtDNA) mutations and oxidative stresses are known to contribute to aging-related changes. Osteoarthritis (OA) is an aging-associated rheumatic disease characterized by articular cartilage degradation and elevated chondrocyte mortality. Articular cartilage chondrocytes survive and maintain tissue integrity in an avascular, low-oxygen environment. Recent ex vivo studies have reported mitochondrial dysfunction in human OA chondrocytes, and analyses of mitochondrial electron transport chain activity in these cells show decreased activity of Complexes I, II and III compared to normal chondrocytes. This mitochondrial dysfunction may affect several pathways that have been implicated in cartilage degradation, including oxidative stress, defective chondrocyte biosynthesis and growth responses, increased cytokine-induced chondrocyte inflammation and matrix catabolism, cartilage matrix calcification, and increased chondrocyte apoptosis. Mitochondrial dysfunction in OA chondrocytes may derive from somatic mutations in the mtDNA or from the direct effects of proinflammatory mediators such as cytokines, prostaglandins, reactive oxygen species and nitric oxide. Polymorphisms in mtDNA may become useful as biomarkers for the diagnosis and prognosis of OA, and modulation of serum biomarkers by mtDNA haplogroups supports the concept that mtDNA haplogroups may define specific OA phenotypes in the complex OA process.
Collapse
|
20
|
Valdes AM. Molecular pathogenesis and genetics of osteoarthritis: implications for personalized medicine. Per Med 2010; 7:49-63. [DOI: 10.2217/pme.09.68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Grishko VI, Ho R, Wilson GL, Pearsall AW. Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes. Osteoarthritis Cartilage 2009; 17:107-13. [PMID: 18562218 PMCID: PMC3640312 DOI: 10.1016/j.joca.2008.05.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 05/10/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Osteoarthritis (OA) is characterized by the failure of chondrocytes to respond to injury and perform the cartilage remodeling process. Human articular chondrocytes actively produce reactive oxygen and nitrogen species (ROS and RNS) capable of causing cellular dysfunction and death. A growing body of evidence indicates that mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage play a causal role in disorders linked to excessive generation of oxygen free radicals. The aim of this study was to determine whether mtDNA damage was present in OA chondrocytes, and whether mtDNA repair capacity is compromised in OA chondrocytes following oxidative stress, leading to chondrocyte death. METHODS Human articular cartilage was isolated from knee joints of cadavers available through the Anatomical Gifts Program at the University of South Alabama (normal donors) or OA patients undergoing total knee replacement surgeries (OA patients). Total DNA was isolated from either chondrocytes released following collagenase digestion, or from first passage chondrocytes grown in culture and exposed to ROS or RNS. mtDNA integrity and repair capacity were analyzed by quantitative Southern blot analysis, using a mtDNA-specific radioactive probe. Cell viability was determined by the trypan blue exclusion method. RESULTS mtDNA damage was found in chondrocytes from OA patients compared to normal donors. It was accompanied with reduced mtDNA repair capacity, cell viability, and increased apoptosis in OA chondrocytes following exposure to ROS and RNS. CONCLUSIONS These results indicate that mtDNA damage and poor mtDNA repair capacity for removing damage caused by oxidative stress may contribute to the pathogenesis of OA.
Collapse
Affiliation(s)
- Valentina I. Grishko
- Departments of Cell Biology & Neuroscience, University of South Alabama,Department of Orthopaedic Surgery, University of South Alabama, Mobile, AL 36688, USA,Corresponding author. 307 University Blvd. N., MSB 1201, Mobile, AL 36688-0002. Tel.: 251-460-7100; Fax: 251-460-6771,
| | - Renee Ho
- Department of Orthopaedic Surgery, University of South Alabama, Mobile, AL 36688, USA
| | - Glenn L. Wilson
- Departments of Cell Biology & Neuroscience, University of South Alabama
| | - Albert W. Pearsall
- Department of Orthopaedic Surgery, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
22
|
Rego-Pérez I, Fernández-Moreno M, Fernández-López C, Arenas J, Blanco FJ. Mitochondrial DNA haplogroups: Role in the prevalence and severity of knee osteoarthritis. ACTA ACUST UNITED AC 2008; 58:2387-96. [DOI: 10.1002/art.23659] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|