1
|
Lim N, Wen C, Vincent T. Molecular and structural imaging in surgically induced murine osteoarthritis. Osteoarthritis Cartilage 2020; 28:874-884. [PMID: 32305526 PMCID: PMC7327515 DOI: 10.1016/j.joca.2020.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/15/2020] [Accepted: 03/23/2020] [Indexed: 02/02/2023]
Abstract
Preclinical imaging in osteoarthritis is a rapidly growing area with three principal objectives: to provide rapid, sensitive tools to monitor the course of experimental OA longitudinally; to describe the temporal relationship between tissue-specific pathologies over the course of disease; and to use molecular probes to measure disease activity in vivo. Research in this area can be broadly divided into those techniques that monitor structural changes in tissues (microCT, microMRI, ultrasound) and those that detect molecular disease activity (positron emission tomography (PET), optical and optoacoustic imaging). The former techniques have largely evolved from experience in human joint imaging and have been refined for small animal use. Some of the latter tools, such as optical imaging, have been developed in preclinical models and may have translational benefit in the future for patient stratification and for monitoring disease progression and response to treatment. In this narrative review we describe these methodologies and discuss the benefits to animal research, understanding OA pathogenesis, and in the development of human biomarkers.
Collapse
Affiliation(s)
- N.H. Lim
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, UK,Address correspondence and reprint requests to: N.H. Lim, Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, UK.
| | - C. Wen
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong
| | - T.L. Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, UK
| |
Collapse
|
2
|
Sperry MM, Kartha S, Winkelstein BA, Granquist EJ. Experimental Methods to Inform Diagnostic Approaches for Painful TMJ Osteoarthritis. J Dent Res 2019; 98:388-397. [PMID: 30819041 DOI: 10.1177/0022034519828731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Temporomandibular joint (TMJ) osteoarthritis (OA) is a degenerative disease of the joint that can produce persistent orofacial pain as well as functional and structural changes to its bone, cartilage, and ligaments. Despite advances in the clinical utility and reliability of the Diagnostic Criteria for Temporomandibular Disorders, clinical tools inadequately predict which patients will develop chronic TMJ pain and degeneration, limiting clinical management. The challenges of managing and treating TMJ OA are due, in part, to a limited understanding of the mechanisms contributing to the development and maintenance of TMJ pain. OA is initiated by multiple factors, including injury, aging, abnormal joint mechanics, and atypical joint shape, which can produce microtrauma, remodeling of joint tissues, and synovial inflammation. TMJ microtrauma and remodeling can increase expression of cytokines, chemokines, and catabolic factors that damage synovial tissues and can activate free nerve endings in the joint. Although studies have separately investigated inflammation-driven orofacial pain, acute activity of the trigeminal nerve, or TMJ tissue degeneration and/or damage, the temporal mechanistic factors leading to chronic TMJ pain are undefined. Limited understanding of the interaction between degeneration, intra-articular chemical factors, and pain has further restricted the development of targeted, disease-modifying drugs to help patients avoid long-term pain and invasive procedures, like TMJ replacement. A range of animal models captures features of intra-articular inflammation, joint overloading, and tissue damage. Although those models traditionally measure peripheral sensitivity as a surrogate for pain, recent studies recognize the brain's role in integrating, modulating, and interpreting nociceptive inputs in the TMJ, particularly in light of psychosocial influences on TMJ pain. The articular and neural contributors to TMJ pain, imaging modalities with clinical potential to identify TMJ OA early, and future directions for clinical management of TMJ OA are reviewed in the context of evidence in the field.
Collapse
Affiliation(s)
- M M Sperry
- 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - S Kartha
- 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - B A Winkelstein
- 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- 2 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - E J Granquist
- 3 Oral & Maxillofacial Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
3
|
Upadhyay J, Geber C, Hargreaves R, Birklein F, Borsook D. A critical evaluation of validity and utility of translational imaging in pain and analgesia: Utilizing functional imaging to enhance the process. Neurosci Biobehav Rev 2018; 84:407-423. [PMID: 28807753 PMCID: PMC5729102 DOI: 10.1016/j.neubiorev.2017.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Assessing clinical pain and metrics related to function or quality of life predominantly relies on patient reported subjective measures. These outcome measures are generally not applicable to the preclinical setting where early signs pointing to analgesic value of a therapy are sought, thus introducing difficulties in animal to human translation in pain research. Evaluating brain function in patients and respective animal model(s) has the potential to characterize mechanisms associated with pain or pain-related phenotypes and thereby provide a means of laboratory to clinic translation. This review summarizes the progress made towards understanding of brain function in clinical and preclinical pain states elucidated using an imaging approach as well as the current level of validity of translational pain imaging. We hypothesize that neuroimaging can describe the central representation of pain or pain phenotypes and yields a basis for the development and selection of clinically relevant animal assays. This approach may increase the probability of finding meaningful new analgesics that can help satisfy the significant unmet medical needs of patients.
Collapse
Affiliation(s)
| | - Christian Geber
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany; DRK Schmerz-Zentrum Mainz, Mainz, Germany
| | - Richard Hargreaves
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States
| | - Frank Birklein
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany
| | - David Borsook
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
4
|
Evaluation of local bone turnover in painful hip by 18F-fluoride positron emission tomography. Nucl Med Commun 2016; 37:399-405. [PMID: 26745810 DOI: 10.1097/mnm.0000000000000456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The diagnosis of painful hip without remarkable radiographic findings is still challenging. In recent years, femoroacetabular impingement (FAI) has been recognized as an important cause of painful hip. The hypothesis of this study was that local bone turnover may be accelerated in painful hip, especially in FAI lesions. To test this, patients with unilateral symptomatic hip underwent F-fluoride PET, which directly correlates with osteoblast activity and therefore bone turnover. PATIENTS AND METHODS In total, 27 patients with unilateral symptomatic painful hip were enrolled. The diagnosis included 15 cam-type FAI cases, six labral tear cases, and six early-stage osteoarthritis cases. The region of interest for cam and pincer lesions was identified and the maximum standardized uptake value (SUVmax) in these regions and the contralateral asymptomatic regions were measured by F-fluoride PET. The SUVmax ratio was defined as symptomatic side SUVmax/asymptomatic side SUVmax. The α angle and center-edge angle were measured by plain radiograph. RESULTS The SUVmax of both cam and pincer lesions were significantly higher than the SUVmax of the contralateral regions (P<0.0001). The cam SUVmax ratio correlated positively with the α angle (r=0.5, P=0.007). Patients with an α angle of more than or equal to 60° had a significantly higher cam SUVmax ratio than the less than 60° group (P=0.017). CONCLUSION This study showed the accelerated local bone turnover in painful hip, partly in FAI cases. Accelerated bone turnover may play a significant role in FAI pathophysiology; therefore, its recognition by imaging modality may contribute toward a more sensitive diagnosis in painful hip.
Collapse
|
5
|
Paul J, Barg A, Kretzschmar M, Pagenstert G, Studler U, Hügle T, Wegner NJ, Valderrabano V, Geurts J. Increased Osseous (99m)Tc-DPD Uptake in End-Stage Ankle Osteoarthritis: Correlation Between SPECT-CT Imaging and Histologic Findings. Foot Ankle Int 2015; 36:1438-47. [PMID: 26231199 DOI: 10.1177/1071100715596745] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND We analyzed the histopathologic findings in end-stage osteoarthritic ankle joint tissue that display increased uptake of bone-seeking radiotracer in single-photon emission computed tomography-computed tomography (SPECT-CT) imaging. METHODS Six consecutive patients with end-stage osteoarthritis undergoing total ankle replacement received preoperative SPECT-CT imaging using (99m)Technetium dicarboxypropane diphosphonate ((99m)Tc-DPD). Using imaging data for stratification, osteochondral tissue sections were prepared from SPECT-positive (+) and -negative (-) areas of tibial and talar resection specimens. Histomorphometric analyses of osteoblast numbers, collagen deposition, and cartilage degeneration were performed on hematoxylin and eosin, van Gieson's and Safranin-O stained tissue sections. Osteoclast activity was visualized using tartrate-resistant acid phosphatase (TRAP) staining. RESULTS Increased (99m)Tc-DPD uptake was observed exclusively subjacent to the subchondral bone plate of tibial and talar joint compartments. SPECT(-) tissues displayed typical fatty marrow morphology containing mainly collagen-positive blood vessels and few marrow and bone-lining cells. SPECT(+) tissues were characterized by increased numbers of active bone-lining osteoblasts depositing collagen fibers. Collagen area fraction of subchondral bone marrow was significantly increased in SPECT(+) (0.52 ± 0.21) compared with SPECT(-) (0.29 ± 0.13) tissues (P = .30). Multinucleated TRAP(+) osteoclasts were absent from bone formation sites, but associated with vascular structures invading articular cartilage through the subchondral bone plate. Increased (99m)Tc-DPD uptake was specifically and strongly correlated with increased osteoblast numbers (P = .011), and with collagen area fraction (P = .030) but not with Mankin score (P = .202), or with osteoclast number (P = .576). CONCLUSION Subchondral bone tissues in SPECT(+) areas of end-stage ankle osteoarthritis were histologically characterized by increased osteoblast-mediated bone formation in the absence of functional osteoclasts, and increased cellularity and collagen deposition in marrow tissues. CLINICAL SIGNIFICANCE Our findings suggest a pathologic bone-remodeling process in end-stage ankle OA areas with increased (99m)Tc-DPD uptake.
Collapse
Affiliation(s)
- Jochen Paul
- Praxisklinik Rennbahn AG, Basel, Switzerland
| | | | | | | | - Ueli Studler
- University Hospital of Basel, Basel, Switzerland
| | - Thomas Hügle
- University Hospital of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
6
|
Arbabi V, Pouran B, Weinans H, Zadpoor AA. Transport of Neutral Solute Across Articular Cartilage: The Role of Zonal Diffusivities. J Biomech Eng 2015; 137:2210662. [DOI: 10.1115/1.4030070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 02/02/2023]
Abstract
Transport of solutes through diffusion is an important metabolic mechanism for the avascular cartilage tissue. Three types of interconnected physical phenomena, namely mechanical, electrical, and chemical, are all involved in the physics of transport in cartilage. In this study, we use a carefully designed experimental-computational setup to separate the effects of mechanical and chemical factors from those of electrical charges. Axial diffusion of a neutral solute (Iodixanol) into cartilage was monitored using calibrated microcomputed tomography (micro-CT) images for up to 48 hr. A biphasic-solute computational model was fitted to the experimental data to determine the diffusion coefficients of cartilage. Cartilage was modeled either using one single diffusion coefficient (single-zone model) or using three diffusion coefficients corresponding to superficial, middle, and deep cartilage zones (multizone model). It was observed that the single-zone model cannot capture the entire concentration-time curve and under-predicts the near-equilibrium concentration values, whereas the multizone model could very well match the experimental data. The diffusion coefficient of the superficial zone was found to be at least one order of magnitude larger than that of the middle zone. Since neutral solutes were used, glycosaminoglycan (GAG) content cannot be the primary reason behind such large differences between the diffusion coefficients of the different cartilage zones. It is therefore concluded that other features of the different cartilage zones such as water content and the organization (orientation) of collagen fibers may be enough to cause large differences in diffusion coefficients through the cartilage thickness.
Collapse
Affiliation(s)
- V. Arbabi
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628CD, The Netherlands e-mail:
| | - B. Pouran
- Department of Orthopedics, UMC Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628CD, The Netherlands
| | - H. Weinans
- Department of Orthopedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628CD, Delft, The Netherlands
| | - A. A. Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628CD, The Netherlands
| |
Collapse
|
7
|
Siebelt M, Waarsing JH, Groen HC, Müller C, Koelewijn SJ, de Blois E, Verhaar JAN, de Jong M, Weinans H. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression. Bone 2014; 66:163-70. [PMID: 24933343 DOI: 10.1016/j.bone.2014.06.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity exercised a positive effect in healthy control joints, which increased cartilage sGAG content. More research on this topic might lead to novel insights as to improve cartilage quality.
Collapse
Affiliation(s)
- M Siebelt
- Department of Orthopaedics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - J H Waarsing
- Department of Orthopaedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H C Groen
- Department of Nuclear Medicine, Erasmus University Medical Center, The Netherlands
| | - C Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - S J Koelewijn
- Department of Nuclear Medicine, Erasmus University Medical Center, The Netherlands
| | - E de Blois
- Department of Nuclear Medicine, Erasmus University Medical Center, The Netherlands
| | - J A N Verhaar
- Department of Orthopaedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M de Jong
- Department of Nuclear Medicine, Erasmus University Medical Center, The Netherlands; Department of Radiology, Erasmus University Medical Center, The Netherlands
| | - H Weinans
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands; Dept. Orthopaedics & Dept. Rheumatology, UMC Utrecht, The Netherlands
| |
Collapse
|
8
|
Lee DW, Ha JK, Kim JG. Medial meniscus posterior root tear: a comprehensive review. Knee Surg Relat Res 2014; 26:125-34. [PMID: 25229041 PMCID: PMC4163569 DOI: 10.5792/ksrr.2014.26.3.125] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/01/2014] [Accepted: 02/24/2014] [Indexed: 02/02/2023] Open
Abstract
Damage to the medial meniscus root, for example by a complete radial tear, destroys the ability of the knee to withstand hoop strain, resulting in contact pressure increases and kinematic alterations. For these reasons, several techniques have been developed to repair the medial meniscus posterior root tear (MMPRT), many of which have shown complete healing of the repaired MMPRT. However, efforts to standardize or optimize the treatment for MMPRT are much needed. When planning a surgical intervention for an MMPRT, strict surgical indications regarding the effect of pullout strength on the refixed root, bony degenerative changes, mechanical alignment, and the Kellgren-Lawrence grade should be considered. Although there are several treatment options and controversies, the current trend is to repair the MMPRT using various techniques including suture anchors and pullout sutures if the patient meets the indications. However, there are still debates on the restoration of hoop tension and prevention of arthritis after repair and further biomechanical and clinical studies should be conducted in the future. The aim of this article was to review and summarize the recent literature regarding various diagnosis and treatment strategies of MMPRT, especially focusing on conflict issues including whether repair techniques can restore the main function of normal meniscus and which is the best suture technique to repair the MMPRT. The authors attempted to provide a comprehensive review of previous studies ranging from basic science to current surgical techniques.
Collapse
Affiliation(s)
- Dhong Won Lee
- Department of Orthopedic Surgery, Daejeon Military Hospital, Daejeon, Korea
| | - Jeong Ku Ha
- Department of Orthopedic Surgery, Inje University Seoul Paik Hospital, Seoul, Korea
| | - Jin Goo Kim
- Department of Orthopedic Surgery, Inje University Seoul Paik Hospital, Seoul, Korea
| |
Collapse
|