1
|
Pongma C, Keawvilai P, Boonmee A, Wongprom B, Pattarakankul T, Sittplangkoon C, Alameh MG, Kueanjinda P, Heyes J, Lam K, Saechue B, Ruxrungtham K, Palaga T. Effect of mRNA formulated with lipid nanoparticles on the transcriptomic and epigenetic profiles of F4/80 + liver-associated macrophages. Sci Rep 2025; 15:1146. [PMID: 39774150 PMCID: PMC11706949 DOI: 10.1038/s41598-025-85234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/01/2025] [Indexed: 01/30/2025] Open
Abstract
Delivery of an mRNA formulated with lipid nanoparticles (LNPs) induces robust humoral and cell-mediated branches of the immune response. Depending on the LNP formula, mRNA encoding proteins can be detected in the liver upon intramuscular administration of mRNA/LNP in mice. This study investigated the impact of mRNA/LNP administration on liver-associated macrophages at the transcriptomic and epigenetic levels in a mouse model. An mRNA encoding ovalbumin (OVA) formulated with LNPs, was administered intramuscularly, and a robust OVA-specific antibody was detected in the serum on Day 7. F4/80+ liver-associated macrophages were isolated and subjected to RNA sequencing, which identified 554 genes whose expression levels were altered compared with those in the PBS control group. The expression of genes involved in macrophage inflammatory functions, such as Tnf, Il6 and Marco, were upregulated. Gene ontology enrichment analysis revealed that IL-6/JAK/STAT3 and TNFα/NF-κB hallmarks were significantly enriched, and mRNA/LNP-exposed liver-associated macrophages were characterized as M1-like cells based on the macrophage transcriptomic profiles. Enrichment of the active histone mark H3K4me3 showed that clusters of loci were highly increased in the mRNA/LNP group, indicating an impact of mRNA/LNPs on macrophage epigenetic profiles. The cis-regulatory regions of Tnf, Il6 and Marco showed enrichment of H3K4me3 marks, which correlated well with their increased transcription. Taken together, our data indicated that mRNA/LNP administration via the intramuscular route influences the gene expression and epigenetic profiles of liver-associated macrophages, reflecting its robust ability to induce an immune response.
Collapse
Affiliation(s)
- Chitsuda Pongma
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornlapat Keawvilai
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Benjawan Wongprom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Biointerfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chutamath Sittplangkoon
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohamad-Gabriel Alameh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Patipark Kueanjinda
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - James Heyes
- Genevant Sciences Corporation, Vancouver, BC, Canada
| | - Kieu Lam
- Genevant Sciences Corporation, Vancouver, BC, Canada
| | - Benjawan Saechue
- One Health Research Unit, Faculty of Veterinary Science, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Kiat Ruxrungtham
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Du G, Sun X, He S, Mi L. The Nrf2/HO-1 pathway participates in the antiapoptotic and anti-inflammatory effects of platelet-rich plasma in the treatment of osteoarthritis. Immun Inflamm Dis 2024; 12:e1169. [PMID: 38860757 PMCID: PMC11165680 DOI: 10.1002/iid3.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION We aimed to explore the molecular mechanisms through which platelet-rich plasma (PRP) attenuates osteoarthritis (OA)-induced pain, apoptosis, and inflammation. METHODS An in vivo model of OA was established by injuring rats using the anterior cruciate ligament transection method, whereas an in vitro model was generated by exposing chondrocytes to interleukin (IL)-1β. Both models were then treated with PRP. RESULTS In both the in vivo and in vitro models, OA led to the suppression of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, whereas treatment with PRP reactivated this molecular axis. Inhibition of the Nrf2/HO-1 pathway using the Nrf2 inhibitor brusatol or through Nrf2 gene silencing counteracted the effects of PRP in reducing the tenderness and thermal pain thresholds of OA rats. Additionally, PRP reduced the mRNA expression of IL-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and matrix metallopeptidase 13 (MMP-13) and the protein expression of B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and caspase-3. Furthermore, inflammation and apoptosis were induced by brusatol treatment or Nrf2 silencing. Additionally, in the in vitro model, PRP treatment increased the proliferation of chondrocytes and attenuated their inflammatory response and apoptosis, effects that were abrogated by Nrf2 depletion. CONCLUSIONS The Nrf2/HO-1 pathway participates in the PRP-mediated attenuation of OA development by suppressing inflammation and apoptosis.
Collapse
Affiliation(s)
- Guangyu Du
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xuegang Sun
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Shengwei He
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Lidong Mi
- Department of Bone SurgeryThe Second Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
3
|
Benjaskulluecha S, Boonmee A, Haque M, Wongprom B, Pattarakankul T, Pongma C, Sri-ngern-ngam K, Keawvilai P, Sukdee T, Saechue B, Kueanjinda P, Palaga T. O 6-methylguanine DNA methyltransferase regulates β-glucan-induced trained immunity of macrophages via farnesoid X receptor and AMPK. iScience 2024; 27:108733. [PMID: 38235325 PMCID: PMC10792243 DOI: 10.1016/j.isci.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Trained immunity is the heightened state of innate immune memory that enhances immune response resulting in nonspecific protection. Epigenetic changes and metabolic reprogramming are critical steps that regulate trained immunity. In this study, we reported the involvement of O6-methylguanine DNA methyltransferase (MGMT), a DNA repair enzyme of lesion induced by alkylating agents, in regulation the trained immunity induced by β-glucan (BG). Pharmacological inhibition or silencing of MGMT expression altered LPS stimulated pro-inflammatory cytokine productions in BG-trained bone marrow derived macrophages (BMMs). Targeted deletion of Mgmt in BMMs resulted in reduction of the trained responses both in vitro and in vivo models. The transcriptomic analysis revealed that the dampening trained immunity in MGMT KO BMMs is partially mediated by ATM/FXR/AMPK axis affecting the MAPK/mTOR/HIF1α pathways and the reduction in glycolysis function. Taken together, a failure to resolve a DNA damage may have consequences for innate immune memory.
Collapse
Affiliation(s)
- Salisa Benjaskulluecha
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - MdFazlul Haque
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Wongprom
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chitsuda Pongma
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittitach Sri-ngern-ngam
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornlapat Keawvilai
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thadaphong Sukdee
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Saechue
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- One Health Research Unit, Faculty of Veterinary Science, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Patipark Kueanjinda
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Zheng T, Huang J, Lai J, Zhou Q, Liu T, Xu Q, Ji G, Ye Y. Long non-coding RNA HOTAIRincreased mechanical stimulation-induced apoptosis by regulating microRNA-221/BBC3 axis in C28/I2 cells. Bioengineered 2021; 12:10734-10744. [PMID: 34874225 PMCID: PMC8810135 DOI: 10.1080/21655979.2021.2003129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abnormal mechanical stimulation contributes to articular cartilage degeneration and osteoarthritis (OA) development. Many long noncoding RNAs (lncRNAs) are involved in mechanical force-induced cartilage degeneration. LncRNA HOTAIR (HOTAIR) has been demonstrated to increase osteoarthritis progression. However, the roles of HOTAIR in mechanical stimulation-treated chondrocytes are still unclear. In this study, we found that mechanical stimulation significantly induced apoptosis in C28/I2 cells. In addition, the expression of HOTAIR was up regulated and the expression of miR-221 was down regulated. Knockdown of HOTAIR effectively ameliorated cell apoptosis induced by mechanical stimulation. HOTAIR could interact with miR-221, which targeted to degrade BBC3. Overexpression of BBC3 could reverse the decreased apoptotic rates induced by HOTAIR knockdown. Collectively, HOTAIR promoted mechanical stimulation-induced apoptosis by regulating the miR-221/BBC3 axis in C28/I2 cells.
Collapse
Affiliation(s)
- Tiansheng Zheng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingluo Zhou
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tong Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yongjun Ye
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Yang J, Guo A, Li Q, Wu J. Platelet-rich plasma attenuates interleukin-1β-induced apoptosis and inflammation in chondrocytes through targeting hypoxia-inducible factor-2α. Tissue Cell 2021; 73:101646. [PMID: 34536814 DOI: 10.1016/j.tice.2021.101646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/27/2022]
Abstract
Osteoarthritis (OA) is a prevailing chronic disease in Orthopedics that characterized with severely damaged cartilage and subchondral bone, thus leading to profound disorders of synovial joints. Platelet-rich plasma (PRP) has been applied as a popular non-operative treatment option for promoting musculoskeletal healing. Our previous work demonstrated that PRP protected chondrocytes from interleukin-1β (IL-1β)-induced apoptosis in vitro. However, the underlying mechanism behind the treatment remains unclear. The current study aimed to unveil the molecular signaling underlying its protective role in chondrocytes. Rat chondrocytes were isolated from newborn Sprague Dawley rats and treated with 5 ng/mL IL-1β for 24 h. The expression of hypoxia-inducible factor 2α (HIF-2α) was determined in both mRNA and protein levels. Next, loss- and gain-of-function assays for HIF-2α were performed using small-interfering RNA (siRNA) specific for HIF-2α and adenovirus-mediated HIF-2α overexpression, respectively. In addition, cell apoptosis markers, matrix metalloproteinase (MMP)-1, 3, -9 and -13, and extracellular matrix-related genes were evaluated. Our results demonstrated that IL-1β induced distinct inflammation in chondrocytes. In addition, HIF-2α upregulated in the IL-1β-treated chondrocytes compared to the untreated cells. Interestingly, 10% PRP protected chondrocytes against IL-1β-induced apoptosis and matrix degradation, and meanwhile suppressed the HIF-2α activation. Furthermore, HIF-2α siRNA and HIF-2α overexpression experiments indicated that PRP induced chondroprotection through targeting HIF-2α. Taken together, our findings indicated that PRP attenuates IL-1β-induced chondrocyte apoptosis and inflammation at least partially through inhibiting HIF-2α.
Collapse
Affiliation(s)
- Jinjiang Yang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, 95 Yong an Road, Xicheng District, Beijing, 100050, China
| | - Ai Guo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, 95 Yong an Road, Xicheng District, Beijing, 100050, China
| | - Qiang Li
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, 95 Yong an Road, Xicheng District, Beijing, 100050, China
| | - Jie Wu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, 95 Yong an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
6
|
Zheng T, Zhou Q, Huang J, Lai J, Ji G, Kong D. Xanthohumol Inhibited Mechanical Stimulation-Induced Articular ECM Degradation by Mediating lncRNA GAS5/miR-27a Axis. Front Pharmacol 2021; 12:737552. [PMID: 34616299 PMCID: PMC8489376 DOI: 10.3389/fphar.2021.737552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is histopathologically marked by extracellular matrix (ECM) degradation in joint cartilage. Abnormal mechanical stimulation on joint cartilage may result in ECM degeneration and OA development. Matrix metalloproteinase 13 (MMP-13) is one of the catabolic enzymes contributing to the degradation of ECM, and it has become the potential biomarker for the therapeutic management of OA. Xanthohumol (XH), a naturally occurring prenylflavonoid derived from hops and beer, shows the protective activity against OA development. However, the potential mechanisms still need great effort. In this article, mechanical stimulation could significantly increase the expression of MMP-13 and lncRNA GAS5 (GAS5) and promoting ECM degradation. These could be effectively reversed by XH administration. Suppressed expression GAS5 ameliorated mechanical stimulation-induced MMP-13 expression. MiR-27a was predicted and verified as a target of GAS5, and overexpression of miR-27a down regulated the expression of MMP-13. Collectively, XH exhibited protective effects against mechanical stimulation-induced ECM degradation by mediating the GAS5/miR-27a signaling pathway in OA chondrocytes.
Collapse
Affiliation(s)
- Tiansheng Zheng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingluo Zhou
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dechao Kong
- Department of Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Kaempferol attenuates the effects of XIST/miR-130a/STAT3 on inflammation and extracellular matrix degradation in osteoarthritis. Future Med Chem 2021; 13:1451-1464. [PMID: 34120462 DOI: 10.4155/fmc-2021-0127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: To investigate whether kaempferol exhibited protective effects on osteoarthritis chondrocytes by modulating the XIST/miR-130a/STAT3 axis. Methods: qRT-PCR and western blot assays were used for gene and protein determination. Dual luciferase reporter and RNA immunoprecipitation assays were employed to study the interaction between miRNA and lncRNA or genes. Results: Kaempferol decreased proinflammatory cytokine production and extracellular matrix degradation in C28/I2 cells. Additionally, kaempferol ameliorated XIST expression and enhanced miR-130a expression. XIST interacted with miR-130a, and STAT3 was identified as a target of miR-130a. Knockdown of XIST expression suppressed proinflammatory cytokine production and extracellular matrix degradation in C28/I2 cells. Overexpression of STAT3 rescued the effects of XIST knockdown. Conclusion: Kaempferol inhibited inflammation and extracellular matrix degradation by modulating the XIST/miR-130a/STAT3 axis in chondrocytes.
Collapse
|
8
|
Casticin Attenuates Osteoarthritis-Related Cartilage Degeneration by Inhibiting the ROS-Mediated NF-κB Signaling Pathway in vitro and in vivo. Inflammation 2021; 43:810-820. [PMID: 31897918 DOI: 10.1007/s10753-019-01167-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Casticin, a flavonoid isolated from Vitex trifolia, has been shown to have anti-inflammatory and antitumor effects in previous studies. Osteoarthritis (OA) is a disease based on degenerative pathological changes. The disease process is often accompanied by inflammatory pathological changes. However, there is no safe and effective drug for prevention and treatment. In the present study, we aimed to clarify the role of casticin in the murine model of destabilization of the medial meniscus (DMM). Male BALB/c mice were randomly divided into three groups: Sham, DMM-induced OA treated with vehicle, and DMM-induced OA treated with casticin. Our results indicated that the casticin treatments markedly reduced the destruction of cartilage and OARSI grades compared with those of the vehicle-treated mice. The levels of matrix metalloproteinase-13 (MMP13) in cartilage were also significantly reduced in the casticin-treated mice. Casticin also significantly regulated oxidative stress and reduced inflammation in the cartilage of mice with OA. These results suggest that casticin prevents the development of posttraumatic OA in mice. Consequently, decreased reactive oxygen species levels and suppressed proinflammatory cytokine production were confirmed in casticin-treated IL-1β-stimulated ADTC5 cells. After casticin treatment, the NF-κB signaling pathway was significantly inhibited in the cells. It can be concluded that casticin can alleviate arthritis-related cartilage degeneration by inhibiting ROS-mediated NF-κB signaling pathway in vitro and in vivo.
Collapse
|
9
|
Abstract
Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article: Bone Joint Res 2021;10(2):122-133.
Collapse
Affiliation(s)
- Chao Peng He
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Xin Chen Jiang
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Cheng Chen
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Hai Bin Zhang
- Department of Orthopedics, The Xiangya Hospital of Central South University Changsha, Hunan, China
| | - Wen Dong Cao
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Qi Wu
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Chi Ma
- Department of Orthopedics, The First Affiliated Hospital (People’s Hospital of Xiangxi Autonomous Prefecture), Jishou University, Jishou, China
| |
Collapse
|
10
|
El Jamal A, Bougault C, Mebarek S, Magne D, Cuvillier O, Brizuela L. The role of sphingosine 1-phosphate metabolism in bone and joint pathologies and ectopic calcification. Bone 2020; 130:115087. [PMID: 31648078 DOI: 10.1016/j.bone.2019.115087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023]
Abstract
Sphingolipids display important functions in various pathologies such as cancer, obesity, diabetes, cardiovascular or neurodegenerative diseases. Sphingosine, sphingosine 1-phosphate (S1P), and ceramide are the central molecules of sphingolipid metabolism. Sphingosine kinases 1 and 2 (SK1 and SK2) catalyze the conversion of the sphingolipid metabolite sphingosine into S1P. The balance between the levels of S1P and its metabolic precursors ceramide and sphingosine has been considered as a switch that could determine whether a cell proliferates or dies. This balance, also called « sphingolipid rheostat », is mainly under the control of SKs. Several studies have recently pointed out the contribution of SK/S1P metabolic pathway in skeletal development, mineralization and bone homeostasis. Indeed, SK/S1P metabolism participates in different diseases including rheumatoid arthritis, spondyloarthritis, osteoarthritis, osteoporosis, cancer-derived bone metastasis or calcification disorders as vascular calcification. In this review, we will summarize the most important data regarding the implication of SK/S1P axis in bone and joint diseases and ectopic calcification, and discuss the therapeutic potential of targeting SK/S1P metabolism for the treatment of these pathologies.
Collapse
Affiliation(s)
- Alaeddine El Jamal
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Carole Bougault
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Saida Mebarek
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - David Magne
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS UMR 5089, F-31077, Toulouse, France
| | - Leyre Brizuela
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France.
| |
Collapse
|
11
|
Li F, Yao J, Hao Q, Duan Z. miRNA-103 promotes chondrocyte apoptosis by down-regulation of Sphingosine kinase-1 and ameliorates PI3K/AKT pathway in osteoarthritis. Biosci Rep 2019; 39:BSR20191255. [PMID: 31652455 PMCID: PMC6822578 DOI: 10.1042/bsr20191255] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/31/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The aim of the present study was to determine the effects of miRNA-103 on chondrocyte apoptosis and molecular mechanisms in osteoarthritis (OA) progression. METHODS The cell proliferation, apoptosis, and recovery ability were measured by cell counting kit-8 (CCK-8), flow cytometry, and wound healing assays. The interaction of miRNA-103 and Sphingosine kinase-1 (SPHK1) were determined by using luciferase reporter assay. The expression of mRNA and proteins were measured by qRT-PCR and Western blot. OA rat model was established by surgery stimulation. RESULTS miRNA-103 expression was significantly increased in the cartilage of OA patients and surgery-induced OA rat models. miRNA-103 transfection into primary rat chondrocytes reduced SPHK1 expression, induced apoptosis, inhibited cell proliferation, and impeded scratch assay wound closure. Moreover, expression of total AKT, and p-AKT were significantly reduced in miRNA-103-overexpressing chondrocytes while SPHK1 up-regulation increased the expression of phosphatidylinsitol-3-kinase (PI3K) and p-AKT, and reversed the proliferation suppression induced by the miRNA-103 mimic. CONCLUSIONS Our studies suggest that miRNA-103 contributes to chondrocyte apoptosis, promoting OA progression by down-regulation of PI3K/AKT pathway through the reduction in SPHK1 activity.
Collapse
Affiliation(s)
- Fang Li
- Department of Rheumatism and Immunology, Hebei General Hospital, Shijiazhuang City 050051, Heibei Province, P.R. China
| | - Jianhua Yao
- Department of Geratology, The Second Hospital of Hebei Medical University, Shijiazhuang City 050051, Heibei Province, P.R. China
| | - Qingqing Hao
- Department of Rheumatism and Immunology, Hebei General Hospital, Shijiazhuang City 050051, Heibei Province, P.R. China
| | - Zheping Duan
- Department of Rheumatism and Immunology, Hebei General Hospital, Shijiazhuang City 050051, Heibei Province, P.R. China
| |
Collapse
|
12
|
Kanaujiya J, Bastow E, Luxmi R, Hao Z, Zattas D, Hochstrasser M, Reichenberger EJ, Chen IP. Rapid degradation of progressive ankylosis protein (ANKH) in craniometaphyseal dysplasia. Sci Rep 2018; 8:15710. [PMID: 30356088 PMCID: PMC6200807 DOI: 10.1038/s41598-018-34157-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022] Open
Abstract
Mutations in the progressive ankylosis protein (NP_473368, human ANKH) cause craniometaphyseal dysplasia (CMD), characterized by progressive thickening of craniofacial bones and widened metaphyses in long bones. The pathogenesis of CMD remains largely unknown, and treatment for CMD is limited to surgical intervention. We have reported that knock-in mice (AnkKI/KI) carrying a F377del mutation in ANK (NM_020332, mouse ANK) replicate many features of CMD. Interestingly, ablation of the Ank gene in AnkKO/KO mice also leads to several CMD-like phenotypes. Mutations causing CMD led to decreased steady-state levels of ANK/ANKH protein due to rapid degradation. While wild type (wt) ANK was mostly associated with plasma membranes, endoplasmic reticulum (ER), Golgi apparatus and lysosomes, CMD-linked mutant ANK was aberrantly localized in cytoplasm. Inhibitors of proteasomal degradation significantly restored levels of overexpressed mutant ANK, whereas endogenous CMD-mutant ANK/ANKH levels were more strongly increased by inhibitors of lysosomal degradation. However, these inhibitors do not correct the mislocalization of mutant ANK. Co-expressing wt and CMD-mutant ANK in cells showed that CMD-mutant ANK does not negatively affect wt ANK expression and localization, and vice versa. In conclusion, our finding that CMD mutant ANK/ANKH protein is short-lived and mislocalized in cells may be part of the CMD pathogenesis.
Collapse
Affiliation(s)
- Jitendra Kanaujiya
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, United States
| | - Edward Bastow
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT, 06030, United States
| | - Raj Luxmi
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, United States
| | - Zhifang Hao
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, United States
| | - Dimitrios Zattas
- Program in Structural Biology, Sloan Kettering Institute, New York, NY, 10065, United States
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Department of Molecular, Cellular and Development Biology, Yale University, New Haven, CT, 06520, United States
| | - Ernst J Reichenberger
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT, 06030, United States
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, United States.
| |
Collapse
|
13
|
Qu R, Chen X, Wang W, Qiu C, Ban M, Guo L, Vasilev K, Chen J, Li W, Zhao Y. Ghrelin protects against osteoarthritis through interplay with Akt and NF‐κB signaling pathways. FASEB J 2018; 32:1044-1058. [DOI: 10.1096/fj.201700265r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ruize Qu
- Department of PathologyShandong UniversityJinanChina
- Medical School of Shandong UniversityShandong UniversityJinanChina
| | - Xiaomin Chen
- Department of PathologyShandong UniversityJinanChina
- Medical School of Shandong UniversityShandong UniversityJinanChina
| | - Wenhan Wang
- Department of OrthopedicsQilu HospitalShandong UniversityJinanChina
- Medical School of Shandong UniversityShandong UniversityJinanChina
| | - Cheng Qiu
- Medical School of Shandong UniversityShandong UniversityJinanChina
| | - Miaomiao Ban
- Medical School of Shandong UniversityShandong UniversityJinanChina
| | - Linlin Guo
- Medical School of Shandong UniversityShandong UniversityJinanChina
| | - Krasimir Vasilev
- School of EngineeringUniversity of South AustraliaMawson LakesSouth AustraliaAustralia
| | - Jianying Chen
- Institute of Biopharmaceuticals of Shandong ProvinceJinanChina
| | - Weiwei Li
- Department of PathologyShandong UniversityJinanChina
| | - Yunpeng Zhao
- Department of OrthopedicsQilu HospitalShandong UniversityJinanChina
| |
Collapse
|
14
|
Bougault C, El Jamal A, Briolay A, Mebarek S, Boutet MA, Garraud T, Le Goff B, Blanchard F, Magne D, Brizuela L. Involvement of sphingosine kinase/sphingosine 1-phosphate metabolic pathway in spondyloarthritis. Bone 2017; 103:150-158. [PMID: 28684192 DOI: 10.1016/j.bone.2017.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/23/2017] [Accepted: 07/01/2017] [Indexed: 12/13/2022]
Abstract
Spondyloarthritis (SpA) is a relatively common chronic inflammatory joint disorder, with a prevalence of about 0.2-0.5% worldwide. The primary target of the pathological process is the enthesis, where tendons and ligaments attach to underlying bone. These insertion sites are hotspots of bone formation (enthesophytes), which can lead to ankylosis. Unfortunately, the mechanisms causing the onset and progression of entheseal ossification remain largely unknown. Sphingosine 1-phosphate (S1P), a lipid generated after sphingosine phosphorylation by sphingosine kinases 1 and 2 (SK1/2), plays important roles in cell proliferation, differentiation and survival. S1P regulates fundamental biological processes such as cell cycle, inflammatory response or bone homeostasis. Indeed, S1P has been involved in some of most-spread skeletal diseases such as rheumatoid arthritis or osteoarthritis. On the other hand, the implication of S1P in SpA has not been explored yet. In the present work, we observed by ELISA that S1P content was significantly increased in the serum of SpA patients (6.1±4.2μM, n=21) compared to healthy donors (1.6±0.9μM, n=12). In vitro, gene expression of SK1 and SK2 as well as their activity were increased during differentiation of primary murine chondrocytes and osteoblasts into mineralizing cells. In addition, mRNA of the S1P-specific transporter Spns2 and S1P secretion were augmented. Using the pharmacological drugs SKi (SK pan-inhibitor), PF-543 (SK1 specific inhibitor) or K-145 (SK2 specific inhibitor), we showed that the inhibition of SK1 and/or SK2 decreased matrix mineralization, alkaline phosphatase activity and the mRNA expression of Runx2 and Bglap in chondrocytes and osteoblasts. To our knowledge, this is the first study indicating that S1P levels are significantly increased in serum from SpA patients. Moreover, we showed in vitro that SK activity was involved in the mineralization capacity of osteoblasts and chondrocytes. S1P metabolic pathway may represent an ingenious therapeutic target for SpA in the future.
Collapse
Affiliation(s)
- Carole Bougault
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Alaeddine El Jamal
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Anne Briolay
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Saida Mebarek
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | | | | | | | | | - David Magne
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Leyre Brizuela
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France.
| |
Collapse
|
15
|
Minashima T, Quirno M, Lee YJ, Kirsch T. The role of the progressive ankylosis protein (ANK) in adipogenic/osteogenic fate decision of precursor cells. Bone 2017; 98:38-46. [PMID: 28286238 PMCID: PMC5396059 DOI: 10.1016/j.bone.2017.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/14/2023]
Abstract
The progressive ankylosis protein (ANK) is a transmembrane protein that transports intracellular pyrophosphate (PPi) to the extracellular milieu. In this study we show increased fatty degeneration of the bone marrow of adult ank/ank mice, which lack a functional ANK protein. In addition, isolated bone marrow stromal cells (BMSCs) isolated from ank/ank mice showed a decreased proliferation rate and osteogenic differentiation potential, and an increased adipogenic differentiation potential compared to BMSCs isolated from wild type (WT) littermates. Wnt signaling pathway PCR array analysis revealed that Wnt ligands, Wnt receptors and Wnt signaling proteins that stimulate osteoblast differentiation were expressed at markedly lower levels in ank/ank BMSCs than in WT BMSCs. Lack of ANK function also resulted in impaired bone fracture healing, as indicated by a smaller callus formed and delayed bone formation in the callus site. Whereas 5weeks after fracture, the fractured bone in WT mice was further remodeled and restored to original shape, the fractured bone in ank/ank mice was not fully restored and remodeled to original shape. In conclusion, our study provides evidence that ANK plays a critical role in the adipogenic/osteogenic fate decision of adult mesenchymal precursor cells. ANK functions in precursor cells are required for osteogenic differentiation of these cells during adult bone homeostasis and repair, whereas lack of ANK functions favors adipogenic differentiation.
Collapse
Affiliation(s)
- Takeshi Minashima
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, NY, New York, United States
| | - Martin Quirno
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, NY, New York, United States
| | - You Jin Lee
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, NY, New York, United States
| | - Thorsten Kirsch
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, NY, New York, United States.
| |
Collapse
|
16
|
Mitton-Fitzgerald E, Gohr CM, Bettendorf B, Rosenthal AK. The Role of ANK in Calcium Pyrophosphate Deposition Disease. Curr Rheumatol Rep 2016; 18:25. [PMID: 27032788 DOI: 10.1007/s11926-016-0574-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The protein product of the progressive ankylosis gene, known as ANK, is a 492-amino acid multi-pass transmembrane protein. This protein is critical for the regulation of pyrophosphate, and gain of function ANK mutations is associated with calcium pyrophosphate deposition disease. Much about the structure, function, and regulation of ANK remain unstudied. This review of the current literature examines recent contributions to our understanding of ANK. We focus on new work on the function, binding partners, and regulators of ANK. A more complete understanding of this important protein may help to identify future therapeutic targets for the treatment of calcium pyrophosphate deposition disease.
Collapse
Affiliation(s)
- Elizabeth Mitton-Fitzgerald
- The Division of Rheumatology, Department of Medicine, Medical College of Wisconsin and the Zablocki VA Medical Center, Milwaukee, WI, 53295-1000, USA
| | - Claudia M Gohr
- The Division of Rheumatology, Department of Medicine, Medical College of Wisconsin and the Zablocki VA Medical Center, Milwaukee, WI, 53295-1000, USA.
| | - Brittany Bettendorf
- The Division of Rheumatology, Department of Medicine, Medical College of Wisconsin and the Zablocki VA Medical Center, Milwaukee, WI, 53295-1000, USA
| | - Ann K Rosenthal
- The Division of Rheumatology, Department of Medicine, Medical College of Wisconsin and the Zablocki VA Medical Center, Milwaukee, WI, 53295-1000, USA
| |
Collapse
|
17
|
Yang J, Lu Y, Guo A. Platelet-rich plasma protects rat chondrocytes from interleukin-1β-induced apoptosis. Mol Med Rep 2016; 14:4075-4082. [PMID: 27665780 PMCID: PMC5101884 DOI: 10.3892/mmr.2016.5767] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/26/2016] [Indexed: 01/21/2023] Open
Abstract
Interleukin (IL)-1β-induced chondrocyte apoptosis is associated with the pathogenesis of arthritis. Platelet‑rich plasma (PRP), which is derived from the patient's own blood and contains numerous growth factors, has the potential for arthritis treatment. Therefore, the present study aimed to determine the effects of PRP on chondrocyte apoptosis, under IL‑1β‑induced pathological conditions. Chondrocytes isolated from the knee joint of Sprague Dawley rats were used in the present study. Cell viability was determined using the Cell Counting kit‑8 assay, cell apoptosis was evaluated by flow cytometry, and the expression of apoptosis‑, anabolism‑ and catabolism-associated genes were detected by quantitative polymerase chain reaction; protein expression was detected by western blot analysis. The results demonstrated that 10% PRP in the culture medium increased chondrocyte proliferation, whereas IL‑1β induced cell apoptosis. Treatment with PRP significantly attenuated cell apoptosis in IL‑1β‑treated chondrocytes, and altered apoptosis‑associated expression at the gene and protein level. Furthermore, treatment with PRP significantly reduced matrix metalloproteinase production and promoted anabolism of cartilage extracellular matrix under IL‑1β treatment. The present study demonstrated the protective effects of PRP on chondrocyte apoptosis and extracellular matrix anabolism, and provided scientific evidence to support the potential use of PRP as a promising therapeutic strategy for the treatment of arthritis.
Collapse
Affiliation(s)
- Jinjiang Yang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ying Lu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ai Guo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
18
|
|