1
|
Champagne AA, Zuleger TM, Warren SM, Smith DR, Lamplot JD, Xerogeanes JW, Slutsky-Ganesh AB, Jayaram P, Patel JM, Myer GD, Diekfuss JA. Automated quantitative assessment of bone contusions and overlying articular cartilage following anterior cruciate ligament injury. J Orthop Res 2024; 42:2495-2506. [PMID: 38885494 DOI: 10.1002/jor.25920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
Quantitative methods to characterize bone contusions and associated cartilage injury remain limited. We combined standardized voxelwise normalization and 3D mapping to automate bone contusion segmentation post-anterior cruciate ligament (ACL) injury and evaluate anomalies in articular cartilage overlying bone contusions. Forty-five patients (54% female, 26.4 ± 11.8 days post-injury) with an ACL tear underwent 3T magnetic resonance imaging of their involved and uninvolved knees. A novel method for voxelwise normalization and 3D anatomical mapping was used to automate segmentation, labeling, and localization of bone contusions in the involved knee. The same mapping system was used to identify the associated articular cartilage overlying bone lesions. Mean regional T1ρ was extracted from articular cartilage regions in both the involved and uninvolved knees for quantitative paired analysis against ipsilateral cartilage within the same compartment outside of the localized bone contusion. At least one bone contusion lesion was detected in the involved knee within the femur and/or tibia following ACL injury in 42 participants. Elevated T1ρ (p = 0.033) signal were documented within the articular cartilage overlying the bone contusions resulting from ACL injury. In contrast, the same cartilaginous regions deprojected onto the uninvolved knees showed no ipsilateral differences (p = 0.795). Automated bone contusion segmentation using standardized voxelwise normalization and 3D mapping deprojection identified altered cartilage overlying bone contusions in the setting of knee ACL injury.
Collapse
Affiliation(s)
- Allen A Champagne
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Taylor M Zuleger
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shayla M Warren
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel R Smith
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - John W Xerogeanes
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexis B Slutsky-Ganesh
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Prathap Jayaram
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jay M Patel
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gregory D Myer
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
- Youth Physical Development Center, Cardiff Metropolitan University, Wales, UK
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, United States
| | - Jed A Diekfuss
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Champagne AA, Zuleger TM, Smith DR, Slutsky-Ganesh AB, Warren SM, Ramirez ME, Sengkhammee LM, Mandava S, Wei H, Bardana DD, Lamplot JD, Myer GD, Diekfuss JA. Quantitative susceptibility and T1 ρ mapping of knee articular cartilage at 3T. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100509. [PMID: 39224132 PMCID: PMC11367491 DOI: 10.1016/j.ocarto.2024.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
T1 ρ and Quantitative Susceptibility Mapping (QSM) are evolving as substrates for quantifying the progressive nature of knee osteoarthritis. Objective To evaluate the effects of spin lock time combinations on depth-dependent T1 ρ estimation, in adjunct to QSM, and characterize the degree of shared variance in QSM and T1 ρ for the quantitative measurement of articular cartilage. Design Twenty healthy participants (10 M/10F, 22.2 ± 3.4 years) underwent bilateral knee MRI using T1 ρ MAPPS sequences with varying TSLs ([0-120] ms), along with a 3D spoiled gradient echo for QSM. Five total TSL combinations were used for T1 ρ computation, and direct depth-based comparison. Depth-wide variance was assessed in comparison to QSM as a basis to assess for depth-specific variation in T1 ρ computations across healthy cartilage. Results Longer T1 ρ relaxation times were observed for TSL combinations with higher spin lock times. Depth-specific differences were documented for both QSM and T1 ρ , with most change found at ∼60% depth of the cartilage, relative to the surface. Direct squared linear correlation revealed that most T1 ρ TSL combinations can explain over 30% of the variability in QSM, suggesting inherent shared sensitivity to cartilage microstructure. Conclusions T1 ρ mapping is subjective to the spin lock time combinations used for computation of relaxation times. When paired with QSM, both similarities and differences in signal sensitivity may be complementary to capture depth-wide changes in articular cartilage.
Collapse
Affiliation(s)
- Allen A. Champagne
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Taylor M. Zuleger
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel R. Smith
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexis B. Slutsky-Ganesh
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Shayla M. Warren
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mario E. Ramirez
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- School of Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Lexie M. Sengkhammee
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Davide D. Bardana
- Department of Orthopedic Surgery, Queen's University, Kingston, ON, Canada
| | | | - Gregory D. Myer
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
- Youth Physical Development Centre, Cardiff Metropolitan University, Wales, UK
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Jed A. Diekfuss
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Mosher TJ. Quantitative Cartilage T2 and T1rho Mapping: Is There a Clinical Role? From the AJR Special Series on Quantitative Imaging. AJR Am J Roentgenol 2024. [PMID: 39082851 DOI: 10.2214/ajr.24.31655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Despite more than 20 years of development, the MRI-based cartilage compositional biomarkers T2 and T1rho have not been routinely applied in clinical practice. This review examines these measures' historical development and frames the challenges in the application of these quantitative imaging tools to the care of patients with cartilage injury and osteoarthritis using the hierarchical model of efficacy proposed by Fryback and Thornbury. T2 and T1rho have been validated for the evaluation of early compositional and structural changes in cartilage extracellular matrix. Yet, these biomarkers lack direct correlation with pain or function loss, lack standardization of methods for acquisition and analysis, and have a limited role in guiding therapeutic management given the absence of effective disease-modifying osteoarthritis drugs. These issues present significant challenges in the path to the biomarkers' future implementation in clinical care. Nonetheless, these MRI-based cartilage compositional biomarkers provide an essential tool for musculoskeletal research and can provide important information on the biophysical properties of cartilage that will continue to contribute to our understanding of cartilage injury and osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Timothy J Mosher
- Department of Radiology MC H066, Penn State Milton S. Hershey Medical Center, 500 University DR., Hershey, PA 17033
| |
Collapse
|
4
|
Lemainque T, Pridöhl N, Zhang S, Huppertz M, Post M, Yüksel C, Yoneyama M, Prescher A, Kuhl C, Truhn D, Nebelung S. Time-efficient combined morphologic and quantitative joint MRI: an in situ study of standardized knee cartilage defects in human cadaveric specimens. Eur Radiol Exp 2024; 8:66. [PMID: 38834751 DOI: 10.1186/s41747-024-00462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Quantitative techniques such as T2 and T1ρ mapping allow evaluating the cartilage and meniscus. We evaluated multi-interleaved X-prepared turbo-spin echo with intuitive relaxometry (MIXTURE) sequences with turbo spin-echo (TSE) contrast and additional parameter maps versus reference TSE sequences in an in situ model of human cartilage defects. METHODS Standardized cartilage defects of 8, 5, and 3 mm in diameter were created in the lateral femora of ten human cadaveric knee specimens (81 ± 10 years old; nine males, one female). MIXTURE sequences providing proton density-weighted fat-saturated images and T2 maps or T1-weighted images and T1ρ maps as well as the corresponding two- and three-dimensional TSE reference sequences were acquired before and after defect creation (3-T scanner; knee coil). Defect delineability, bone texture, and cartilage relaxation times were quantified. Appropriate parametric or non-parametric tests were used. RESULTS Overall, defect delineability and texture features were not significantly different between the MIXTURE and reference sequences (p ≤ 0.47). After defect creation, relaxation times significantly increased in the central femur (T2pre = 51 ± 4 ms [mean ± standard deviation] versus T2post = 56 ± 4 ms; p = 0.002) and all regions combined (T1ρpre = 40 ± 4 ms versus T1ρpost = 43 ± 4 ms; p = 0.004). CONCLUSIONS MIXTURE permitted time-efficient simultaneous morphologic and quantitative joint assessment based on clinical image contrasts. While providing T2 or T1ρ maps in clinically feasible scan time, morphologic image features, i.e., cartilage defects and bone texture, were comparable between MIXTURE and reference sequences. RELEVANCE STATEMENT Equally time-efficient and versatile, the MIXTURE sequence platform combines morphologic imaging using familiar contrasts, excellent image correspondence versus corresponding reference sequences and quantitative mapping information, thereby increasing the diagnostic value beyond mere morphology. KEY POINTS • Combined morphologic and quantitative MIXTURE sequences are based on three-dimensional TSE contrasts. • MIXTURE sequences were studied in an in situ human cartilage defect model. • Morphologic image features, i.e., defect delineabilty and bone texture, were investigated. • Morphologic image features were similar between MIXTURE and reference sequences. • MIXTURE allowed time-efficient simultaneous morphologic and quantitative knee joint assessment.
Collapse
Affiliation(s)
- Teresa Lemainque
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany.
| | - Nicola Pridöhl
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Shuo Zhang
- Philips GmbH Market DACH, Hamburg, Germany
| | - Marc Huppertz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Manuel Post
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Can Yüksel
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | | | - Andreas Prescher
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, 52074, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| |
Collapse
|
5
|
Su X, Zhang Y, Gao Q, Liang Z, Wan L, Zhang L, Tang G. Preliminary study on the assessment of early cartilage degeneration by quantitative ultrashort echo time magnetic resonance imaging in vivo. Quant Imaging Med Surg 2022; 12:3803-3812. [PMID: 35782245 PMCID: PMC9246734 DOI: 10.21037/qims-21-1181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/14/2022] [Indexed: 12/31/2023]
Abstract
BACKGROUND To investigate the feasibility of quantitative ultrashort echo time magnetic resonance imaging (UTE-MRI) techniques for assessing early cartilage degeneration in vivo. METHODS A total of 46 patients with knee pain due to osteoarthritis (OA) as the main complaint were recruited into the study. We performed MRI examinations with different quantitative UTE-MRI techniques, including UTE-based magnetization transfer (MT), UTE-adiabaticT1ρ, and UTE-T2* mapping on a 3.0T clinical magnetic resonance (MR) scanner (MR750; GE Healthcare, Milwaukee, WI, USA). Three regions of interest (ROIs) were manually drawn on the medial and lateral femoral condyles and the corresponding medial and lateral tibial plateaus, respectively. A total of 561 ROIs (12 ROIs for each knee) were finally included and divided into 3 groups according to the MRI Osteoarthritis Knee Score (MOAKS): normal (MOAKS 0, n=175), mild degeneration (MOAKS 1, n=283), and moderate degeneration (MOAKS 2, n=103). One-way analysis of variance (ANOVA) and Tamhane's T2 test were used to compare the differences of quantitative UTE-biomarkers among different groups. The analysis of Spearman's correlation was used to assess the correlation between the UTE-biomarkers and MOAKS grading. The diagnostic efficacy of different quantitative UTE-MRI techniques for detecting mild cartilage degeneration was evaluated using the receiver operating characteristic (ROC) curve. RESULTS The UTE-MT ratio (UTE-MTR) and the UTE-adiabatic T1ρ values had a moderate correlation with the MOAKS grading (r=-0.523, P<0.001; r=0.531, P<0.001, respectively), while the UTE-T2* was weakly correlated with the MOAKS grading (r=-0.396, P<0.001). For the normal group (MOAKS 0) and the mild group (MOAKS 1), the UTE-MTR values were 21.09%±3.03% and 17.30%±3.22%, respectively. The UTE-adiabatic T1ρ values were 30.43±6.26 ms and 35.05±8.78 ms for the normal group (MOAKS 0) and the mild group (MOAKS 1), respectively. With respect to the UTE-T2* values, the normal group (MOAKS 0) values were 21.49±3.96 ms and the mild group (MOAKS 1) values were 19.86±3.08 ms. All the differences between the 2 groups of the 3 UTE-MRI values were significant. The AUCs of the UTE-MTR, UTE-adiabatic T1ρ, and UTE-T2* mapping were 0.794, 0.732, and 0.651, respectively. CONCLUSIONS The quantitative UTE-MRI techniques (UTE-MT, UTE-adiabatic T1ρ, and UTE-T2* mapping) show great promise for assessing the early degeneration of articular cartilage in vivo, and the UTE-MT and UTE-adiabatic T1ρ values show better diagnostic efficacy than UTE-T2* mapping.
Collapse
Affiliation(s)
- Xiaolian Su
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yixuan Zhang
- Department of Radiology, Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, China
| | - Qiuming Gao
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zonghui Liang
- Department of Radiology, Shanghai Jing’an District Central Hospital, Shanghai, China
| | - Lidi Wan
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Klontzas ME, Karantanas AH. Research in Musculoskeletal Radiology: Setting Goals and Strategic Directions. Semin Musculoskelet Radiol 2022; 26:354-358. [PMID: 35654100 DOI: 10.1055/s-0042-1748319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The future of musculoskeletal (MSK) radiology is being built on research developments in the field. Over the past decade, MSK imaging research has been dominated by advancements in molecular imaging biomarkers, artificial intelligence, radiomics, and novel high-resolution equipment. Adequate preparation of trainees and specialists will ensure that current and future leaders will be prepared to embrace and critically appraise technological developments, will be up to date on clinical developments, such as the use of artificial tissues, will define research directions, and will actively participate and lead multidisciplinary research. This review presents an overview of the current MSK research landscape and proposes tangible future goals and strategic directions that will fortify the future of MSK radiology.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Greece
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Crete, Greece.,Department of Radiology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
7
|
Giesler P, Baumann FA, Weidlich D, Karampinos DC, Jung M, Holwein C, Schneider J, Gersing AS, Imhoff AB, Bamberg F, Jungmann PM. Patellar instability MRI measurements are associated with knee joint degeneration after reconstruction of the medial patellofemoral ligament. Skeletal Radiol 2022; 51:535-547. [PMID: 34218322 PMCID: PMC8763754 DOI: 10.1007/s00256-021-03832-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To qualitatively and quantitatively evaluate the 2-year magnetic resonance imaging (MRI) outcome after MPFL reconstruction at the knee and to assess MRI-based risk factors that predispose for inferior clinical and imaging outcomes. MATERIALS AND METHODS A total of 31 patients with MPFL reconstruction were included (22 ± 6 years, 10 female). MRI was performed preoperatively in 21/31 patients. Two-year follow-up MRI included quantitative cartilage T2 and T1rho relaxation time measurements at the ipsilateral and contralateral knee. T2relative was calculated as T2patellofemoral/T2femorotibial. Morphological evaluation was conducted via WORMS scores. Patellar instability parameters and clinical scores were obtained. Statistical analyses included descriptive statistics, t-tests, multivariate regression models, and correlation analyses. RESULTS Two years after MPFL reconstruction, all patellae were clinically stable. Mean total WORMS scores improved significantly from baseline to follow-up (mean difference ± SEM, - 4.0 ± 1.3; P = 0.005). As compared to patients with no worsening of WORMS subscores over time (n = 5), patients with worsening of any WORMS subscore (n = 16) had lower trochlear depth, lower facetal ratio, higher tibial-tuberosity to trochlear groove (TTTG) distance, and higher postoperative lateral patellar tilt (P < 0.05). T2relative was higher at the ipsilateral knee (P = 0.010). T2relative was associated with preoperatively higher patellar tilt (P = 0.021) and higher TTTG distance (P = 0.034). TTTG distance, global T2 values, and WORMS progression correlated with clinical outcomes (P < 0.05). CONCLUSION MPFL reconstruction is an optimal treatment strategy to restore patellar stability. Still, progressive knee joint degeneration and patellofemoral cartilage matrix degeneration may be observed, with patellar instability MRI parameters representing particular risk factors.
Collapse
Affiliation(s)
- Paula Giesler
- Department of Diagnostic and Interventional Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Frederic A. Baumann
- Clinical and Interventional Angiology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Matthias Jung
- Department of Diagnostic and Interventional Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Christian Holwein
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Julia Schneider
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Alexandra S. Gersing
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
- Department of Neuroradiology, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Andreas B. Imhoff
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Pia M. Jungmann
- Department of Diagnostic and Interventional Radiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| |
Collapse
|
8
|
Sveinsson B, Chaudhari AS, Zhu B, Koonjoo N, Torriani M, Gold GE, Rosen MS. Synthesizing Quantitative T2 Maps in Right Lateral Knee Femoral Condyles from Multicontrast Anatomic Data with a Conditional Generative Adversarial Network. Radiol Artif Intell 2021; 3:e200122. [PMID: 34617020 PMCID: PMC8489449 DOI: 10.1148/ryai.2021200122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 04/11/2021] [Accepted: 05/03/2021] [Indexed: 04/09/2023]
Abstract
PURPOSE To develop a proof-of-concept convolutional neural network (CNN) to synthesize T2 maps in right lateral femoral condyle articular cartilage from anatomic MR images by using a conditional generative adversarial network (cGAN). MATERIALS AND METHODS In this retrospective study, anatomic images (from turbo spin-echo and double-echo in steady-state scans) of the right knee of 4621 patients included in the 2004-2006 Osteoarthritis Initiative were used as input to a cGAN-based CNN, and a predicted CNN T2 was generated as output. These patients included men and women of all ethnicities, aged 45-79 years, with or at high risk for knee osteoarthritis incidence or progression who were recruited at four separate centers in the United States. These data were split into 3703 (80%) for training, 462 (10%) for validation, and 456 (10%) for testing. Linear regression analysis was performed between the multiecho spin-echo (MESE) and CNN T2 in the test dataset. A more detailed analysis was performed in 30 randomly selected patients by means of evaluation by two musculoskeletal radiologists and quantification of cartilage subregions. Radiologist assessments were compared by using two-sided t tests. RESULTS The readers were moderately accurate in distinguishing CNN T2 from MESE T2, with one reader having random-chance categorization. CNN T2 values were correlated to the MESE values in the subregions of 30 patients and in the bulk analysis of all patients, with best-fit line slopes between 0.55 and 0.83. CONCLUSION With use of a neural network-based cGAN approach, it is feasible to synthesize T2 maps in femoral cartilage from anatomic MRI sequences, giving good agreement with MESE scans.See also commentary by Yi and Fritz in this issue.Keywords: Cartilage Imaging, Knee, Experimental Investigations, Quantification, Vision, Application Domain, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021.
Collapse
Affiliation(s)
- Bragi Sveinsson
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Akshay S. Chaudhari
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Bo Zhu
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Neha Koonjoo
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Martin Torriani
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Garry E. Gold
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Matthew S. Rosen
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology, Massachusetts General Hospital, Harvard Medical School,
149 13th St, Suite 2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.);
Division of Musculoskeletal Imaging and Intervention, Department of Radiology,
Massachusetts General Hospital, Harvard Medical School, Boston, Mass (M.T.);
Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.);
and Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| |
Collapse
|
9
|
Lee C, Choi YJ, Jeon KJ, Han SS. Synthetic magnetic resonance imaging for quantitative parameter evaluation of temporomandibular joint disorders. Dentomaxillofac Radiol 2021; 50:20200584. [PMID: 33544630 DOI: 10.1259/dmfr.20200584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE This study investigated the usefulness of quantitative parameters [longitudinal relaxation (T1), transverse relaxation (T2), and proton density (PD)] obtained with synthetic magnetic resonance imaging (MRI) in assessing the progression of temporomandibular joint (TMJ) disorders. METHODS For individual TMJ disorder diagnoses, the presence of disc displacement in MRI and the osseous change in cone-beam CT were investigated. Joints were classified into three stages: (1) silent stage, no disc displacement or osseous change; (2) incipient stage, presence of disc displacement and absence of osseous change; and (3) progressed stage, both disc displacement and osseous change. In synthetic MRI, the T1, T2, and PD values of the condyle bone marrow were measured simultaneously. The median T1, T2, and PD values were analyzed according to disc displacement, osseous changes, and joint stage. RESULTS Significant differences were observed in the T1 and PD values of joints with disc displacement or condylar osseous change compared to normal joints. The T1 and PD values also differed between the silent and progressed stages. The PD value differed between the silent and incipient groups, while the T2 value did not differ significantly among the three groups. CONCLUSION The PD and T1 values of condylar bone marrow obtained from synthetic MRI can be used as sensitive indicators of TMJ disorder progression. The PD value of the bone marrow showed potential as a useful biomarker for recognizing the initial stages of TMJ disorders. Synthetic MRI is useful for the simultaneous acquisition of effective MRI parameters for evaluating TMJ disorders.
Collapse
Affiliation(s)
- Chena Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yoon Joo Choi
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kug Jin Jeon
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sang-Sun Han
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
10
|
Pang Y. Characterization of anisotropic T2W signals from human knee femoral cartilage: The magic angle effect on a spherical surface. NMR IN BIOMEDICINE 2021; 34:e4535. [PMID: 33963785 DOI: 10.1002/nbm.4535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/23/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The aim of the current study was to propose a generalized magic angle effect (gMAE) function for characterizing anisotropic T2W signals of human knee femoral cartilage with a spherical surface in clinical studies. A gMAE model function f(α, ε) was formulated for an orientation-dependent (ε) transverse T2 (i.e., 1/R2 ) relaxation in cartilage assuming an axially symmetric distribution (α) of collagen fibers. T2W sagittal images were acquired on an adult volunteer's healthy knee at 3 T, and ROI-based average signals S(ε) were extracted from angularly and radially segmented femoral cartilage. Compared with the standard MAE (sMAE) functions in the deep (DZ, α = 0°) and in the superficial (SZ, α = 90°) zones, a general form of R2 orientation-dependent function f(α, ε) was fitted to S(ε), including an isotropic R2 contribution (internal reference [REF]). Goodness of fit was evaluated by root-mean-square deviations (RMSDs). An F-test and a paired t-test were respectively used to assess significant differences between the observed variances and means, with statistical significance set to p less than .05. As a symmetric orientation-dependence function with a varying dynamic range, the proposed gMAE model outperformed the previous sMAE functions manifested by significantly reduced RMSDs in the DZ (0.239 ± 0.122 vs. 0.267 ± 0.097, p = .014) and in the SZ (0.183 ± 0.081 vs. 0.254 ± 0.085, p < .001). The fitted average angle α (38.5 ± 34.6° vs. 45.1 ± 30.1°, p < .43) and REF (5.092 ± 0.369 vs. 5.305 ± 0.440, p < .001) were smaller in the DZ than those in SZ, in good agreement with the reported collagen fibril microstructural configurations and the nonbound water contribution to R2 in articular cartilage. In conclusion, a general form of the magic angle effect function was proposed and demonstrated for better characterizing anisotropic T2W signals from human knee femoral cartilage at 3 T in clinical studies.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Pang Y, Palmieri-Smith RM, Maerz T. An efficient R 1ρ dispersion imaging method for human knee cartilage using constant magnetization prepared turbo-FLASH. NMR IN BIOMEDICINE 2021; 34:e4500. [PMID: 33675138 PMCID: PMC8122047 DOI: 10.1002/nbm.4500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 05/10/2023]
Abstract
This work aimed to develop an efficient R1ρ dispersion imaging method for clinical studies of human knee cartilage at 3 T. Eight constant magnetizations (Mprep ) were prepared by tailoring both the duration and amplitude (ω1 ) of a fully refocused spin-lock preparation pulse. The limited Mprep dynamic range was expanded by the measure, equivalent to that with ω1 = ∞, from the magic angle location in the deep femoral cartilage. The developed protocol with Mprep = 60% was demonstrated on one subject's bilateral and two subjects' unilateral asymptomatic knees. The repeatability of the proposed protocol was estimated by two repeated scans with a three-month gap for the last two subjects. The synthetic R1ρ and R2 derived from R1ρ dispersions were compared with the published references using state-of-the-art R1ρ and R2 mapping (MAPSS). The proposed protocol demonstrated good (<5%) repeatability quantified by the intra- and intersubject coefficients of variation in the femoral and tibial cartilage. The synthetic R1ρ (1/s) and the references were comparable in the femoral (23.0 ± 5.3 versus 24.1 ± 3.8, P = 0.67) and the tibial (29.1 ± 8.8 versus 27.1 ± 5.1, P = 0.62), but not the patellar (16.5 ± 4.9 versus 22.7 ± 1.6, P < 0.01) cartilage. The same trends were also observed for the current and the previous R2 . In conclusion, the developed R1ρ dispersion imaging scheme has been revealed to be not only efficient but also robust for clinical studies of human knee cartilage at 3 T.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Riann M. Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Zelenski N, Falk DP, D'Aquilla K, Borthakur A, Bannister E, Kneeland B, Reddy R, Zgonis M. Zone- and layer-specific differences in proteoglycan content in patellofemoral pain syndrome are detectable on T1ρ MRI. Skeletal Radiol 2020; 49:1397-1402. [PMID: 32253471 DOI: 10.1007/s00256-020-03418-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Determine if differences in T1ρ would be detected in specific regions or layers of patellofemoral cartilage between patients with symptomatic patellofemoral pain syndrome and asymptomatic control subjects. MATERIALS AND METHODS Ten subjects diagnosed with patellofemoral pain syndrome were compared with ten age-, gender-, and BMI-matched control subjects with no knee pain or prior trauma. Conventional turbo (fast) spin echo sequences and T1ρ-weighted imaging were performed on the symptomatic knee in each of the ten subjects. At the patella and distal femur, cartilage regions of interest were divided into medial and lateral sub-regions, each then further sub-divided by layer (superficial, middle, or deep). Two-tailed t test and chi-squared tests were used to analyze demographic data. A mixed effect model was run for each sub-region of T1ρ imaging. Statistical significance was determined using the likelihood ratio test against reduced models without patellofemoral pain syndrome symptomatic status as a fixed effect. RESULTS There was no difference in age, sex, or BMI between symptomatic and control patients. T1ρ values were significantly higher among patellofemoral pain syndrome patients when compared with controls in the superficial zone of the lateral patella (58.43 vs. 50.83, p = 0.03) and the middle zone of the lateral patella (52.67 vs. 43.60, p = 0.03). T1ρ was also higher in the superficial zone of the medial femur (50.94 vs. 46.70, p = 0.09) with a value approaching statistical significance. CONCLUSION We report statistically significant differences in the T1ρ value in the superficial and middle zones of the lateral patella in patients with patellofemoral pain syndrome who had no abnormalities seen on conventional MRI sequences, suggesting an alteration the macromolecular structure of the cartilage in this population.
Collapse
Affiliation(s)
- Nicole Zelenski
- Department of Orthopaedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David P Falk
- Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market Street, 6th Floor, Philadelphia, PA, 19104, USA
| | - Kevin D'Aquilla
- Center for Magnetic Resonance & Optical Imaging, 422 Curie Boulevard, B1 Stellar Chance Labs, Philadelphia, PA, 19104, USA
| | - Arijitt Borthakur
- Center for Practice Transformation, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Donner Basement, 34000 Spruce Street, Philadelphia, PA, 19104, USA
| | - Evan Bannister
- Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market Street, 6th Floor, Philadelphia, PA, 19104, USA
| | - Bruce Kneeland
- Department of Radiology, University of Pennsylvania, 3400 Civic Center Boulevard Atrium, Ground Floor, Philadelphia, PA, 19104, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance & Optical Imaging, 422 Curie Boulevard, B1 Stellar Chance Labs, Philadelphia, PA, 19104, USA
| | - Miltiadis Zgonis
- Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market Street, 6th Floor, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Atkinson HF, Birmingham TB, Moyer RF, Yacoub D, Kanko LE, Bryant DM, Thiessen JD, Thompson RT. MRI T2 and T1ρ relaxation in patients at risk for knee osteoarthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord 2019; 20:182. [PMID: 31039785 PMCID: PMC6492327 DOI: 10.1186/s12891-019-2547-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Background Magnetic resonance imaging (MRI) T2 and T1ρ relaxation are increasingly being proposed as imaging biomarkers potentially capable of detecting biochemical changes in articular cartilage before structural changes are evident. We aimed to: 1) summarize MRI methods of published studies investigating T2 and T1ρ relaxation time in participants at risk for but without radiographic knee OA; and 2) compare T2 and T1ρ relaxation between participants at-risk for knee OA and healthy controls. Methods We conducted a systematic review of studies reporting T2 and T1ρ relaxation data that included both participants at risk for knee OA and healthy controls. Participant characteristics, MRI methodology, and T1ρ and T2 relaxation data were extracted. Standardized mean differences (SMDs) were calculated within each study. Pooled effect sizes were then calculated for six commonly segmented knee compartments. Results 55 articles met eligibility criteria. There was considerable variability between scanners, coils, software, scanning protocols, pulse sequences, and post-processing. Moderate risk of bias due to lack of blinding was common. Pooled effect sizes indicated participants at risk for knee OA had lengthened T2 relaxation time in all compartments (SMDs from 0.33 to 0.74; p < 0.01) and lengthened T1ρ relaxation time in the femoral compartments (SMD from 0.35 to 0.40; p < 0.001). Conclusions T2 and T1ρ relaxation distinguish participants at risk for knee OA from healthy controls. Greater standardization of MRI methods is both warranted and required for progress towards biomarker validation. Electronic supplementary material The online version of this article (10.1186/s12891-019-2547-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hayden F Atkinson
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada.,Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada.,Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Trevor B Birmingham
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada. .,Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada. .,Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada. .,Musculoskeletal Rehabilitation, Elborn College, University of Western Ontario, London, Ontario, N6G 1H1, Canada.
| | - Rebecca F Moyer
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada.,School of Physiotherapy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Yacoub
- Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Lauren E Kanko
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada.,Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada.,Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Dianne M Bryant
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada.,Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic, University of Western Ontario, London, Ontario, Canada.,Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Jonathan D Thiessen
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | - R Terry Thompson
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
14
|
Pang Y, Palmieri-Smith RM, Malyarenko DI, Swanson SD, Chenevert TL. A unique anisotropic R 2 of collagen degeneration (ARCADE) mapping as an efficient alternative to composite relaxation metric (R 2 -R 1 ρ ) in human knee cartilage study. Magn Reson Med 2019; 81:3763-3774. [PMID: 30793790 DOI: 10.1002/mrm.27621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/11/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Anisotropic transverse R2 (1/T2 ) relaxation of water proton is sensitive to cartilage degenerative changes. The purpose is to develop an efficient method to extract this relaxation metric in clinical studies. METHODS Anisotropic R2 can be measured inefficiently by standard R2 mapping after removing an isotropic contribution obtained from R1 ρ mapping. In the proposed method, named as a unique anisotropic R2 of collagen degeneration (ARCADE) mapping, an assumed uniform isotropic R2 was estimated at magic angle locations in the deep cartilage, and an anisotropic R2 was thus isolated in a single T2W sagittal image. Five human knees from 4 volunteers were studied with standard R2 and R1 ρ mappings at 3T, and anisotropic R2 derived from ARCADE on the T2W (TE = 48.8 ms) image from R2 mapping was compared with the composite relaxation (R2 - R1 ρ ) using statistical analysis including Student's t-test and Pearson's correlation coefficient. RESULTS Anisotropic R2 (1/s) from ARCADE was highly positively correlated with but not significantly different from standard R2 - R1 ρ (1/s) in the segmented deep (r = 0.83 ± 0.06; 8.3 ± 2.9 vs. 7.3 ± 1.9, P = .50) and the superficial (r = 0.82 ± 0.05; 3.5 ± 2.4 vs. 4.5 ± 1.6, P = .39) zones. However, after eliminating systematic errors by the normalization in terms of zonal contrast, anisotropic R2 was significantly higher (60.2 ± 18.5% vs. 38.4 ± 16.6%, P < .01) than R2 - R1 ρ as predicted. CONCLUSION The proposed anisotropic R2 mapping could be an efficient alternative to the conventional approach, holding great promise in providing both high-resolution morphological and more sensitive transverse relaxation imaging from a single T2W scan in a clinical setting.
Collapse
Affiliation(s)
- Yuxi Pang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Riann M Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Scott D Swanson
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
15
|
Zhang N, Lv Y, Liu Y, Yin G, Hu D, Wu R, Peng Y. T2 mapping in the quantitative evaluation of articular cartilage changes in children with hemophilia: A pilot study. Pediatr Investig 2018; 2:242-247. [PMID: 32851273 PMCID: PMC7331352 DOI: 10.1002/ped4.12099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022] Open
Abstract
IMPORTANCE Joint disease affects more than 90% of severe hemophiliacs. Early diagnosis is critical in preventing hemophilic arthritis. Magnetic resonance imaging (MRI) enables visualization of early arthropathic changes and plays an important role in treatment. OBJECTIVE To evaluate the role of T2 mapping in detecting early cartilage lesions in the knee and ankle joints of children with hemophilic arthropathy. METHODS Target joints of 15 male patients with clinically confirmed moderate or severe hemophilia were evaluated with MRI. In addition to routine MRI protocols (T1WI, T2_FFE, T2_SPAIR, PDW_TSE), T2 mapping was used to evaluate the articular cartilage of target joints. RESULTS The mean T2 value of the distal femoral cartilage was 46.72 ± 10.94 ms, which is higher than the reported age-matched normal value (40.27 ± 3.50 ms). The mean T2 value of the proximal tibial cartilage was 45.60 ± 8.82 ms, which is higher than the reported normal value (31.15 ± 1.86 ms). Four examined joints (two ankles, two knees) showed normal morphology with no abnormal signal on routine MR sequences. However, T2 mapping showed locally increased T2 values in the cartilage, along with uneven color scales. INTERPRETATION The quantitative assessment method of T2 mapping might be helpful to early diagnosis for articular cartilage lesions. It might be a potential tool for early assessment of cartilage changes and quantification of lesion's severity for hemophilia joint.
Collapse
Affiliation(s)
- Ningning Zhang
- Department of RadiologyBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Yanqiu Lv
- Department of RadiologyBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Yue Liu
- Department of RadiologyBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Guangheng Yin
- Department of RadiologyBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Di Hu
- Department of RadiologyBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Runhui Wu
- Department of HemotologyBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Yun Peng
- Department of RadiologyBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| |
Collapse
|
16
|
Mahar R, Batool S, Badar F, Xia Y. Quantitative measurement of T2, T1ρ and T1 relaxation times in articular cartilage and cartilage-bone interface by SE and UTE imaging at microscopic resolution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:76-85. [PMID: 30366222 PMCID: PMC6289866 DOI: 10.1016/j.jmr.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 05/25/2023]
Abstract
Both spin-echo (SE) and ultra-short echo (UTE) based MRI sequences were used on a 7 T µMRI system to quantify T2, T1ρ and T1 relaxation times from articular cartilage to the cartilage-bone interface on canine humeral specimens at 19.5 µm pixel resolution. A series of five relaxation-weighted images were acquired to calculate one relaxation map (T2, T1ρ or T1), from which the depth-dependent profiles were examined between the SE method and the UTE method, over the entire non-calcified cartilage and within the cartilage-bone interface. SE-based methods enabled the quantification of relaxation profiles over the noncalcified cartilage, from 0 µm (articular surface) to approximately 460 µm in depth (near the end of radial zone). Most of the cartilage-bone interface was imaged by the UTE-based methods, to a tissue depth of about 810 µm. Pixel-by-pixel calculation of the relaxation times between the independent SE and UTE methods correlated well with each other. A better understanding of the tissue properties reliably over the cartilage-bone interface region by a non-invasive MRI approach could contribute to the clinical diagnostics of trauma-induced osteoarthritis.
Collapse
Affiliation(s)
- Rohit Mahar
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - Syeda Batool
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - Farid Badar
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
17
|
Zibetti MVW, Baboli R, Chang G, Otazo R, Regatte RR. Rapid compositional mapping of knee cartilage with compressed sensing MRI. J Magn Reson Imaging 2018; 48:1185-1198. [PMID: 30295344 PMCID: PMC6231228 DOI: 10.1002/jmri.26274] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
More than a decade after the introduction of compressed sensing (CS) in MRI, researchers are still working on ways to translate it into different research and clinical applications. The greatest advantage of CS in MRI is the reduced amount of k-space data needed to reconstruct images, which can be exploited to reduce scan time or to improve spatial resolution and volumetric coverage. Efficient data acquisition using CS is extremely important for compositional mapping of the musculoskeletal system in general and knee cartilage mapping techniques in particular. High-resolution quantitative information about tissue biochemical composition could be obtained in just a few minutes using CS MRI. However, in order to make this goal a reality, some issues still need to be addressed. In this article we review the current state of the art of CS methods for rapid compositional mapping of knee cartilage. Specifically, data acquisition strategies, image reconstruction algorithms, and data fitting models are discussed. Different CS studies for T2 and T1ρ mapping of knee cartilage are reviewed, with illustrative results. Future directions, opportunities, and challenges of rapid compositional mapping techniques are also discussed. Level of Evidence: 4 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:1185-1198.
Collapse
Affiliation(s)
- Marcelo V W Zibetti
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Rahman Baboli
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Gregory Chang
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Ricardo Otazo
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ravinder R Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|