1
|
Golshan-Tafti M, Dastgheib SA, Alijanpour K, Bahrami R, Mazaheri M, Neamatzadeh H. A thorough analysis of data on the correlation between COL9A1 polymorphisms and the susceptibility to congenital talipes equinovarus: a meta-analysis. J Orthop Surg Res 2024; 19:345. [PMID: 38858754 PMCID: PMC11163731 DOI: 10.1186/s13018-024-04834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Congenital talipes equinovarus (CTEV) is a prevalent pediatric deformity with a multifactorial etiology. The objective of this meta-analysis was to explore the association between genetic variations in COL9A1 and the susceptibility to CTEV. METHODS A comprehensive analysis of pertinent literature released before November 15, 2023, in electronic bibliographic databases was carried out. The importance of the connection was clarified through odds ratios (ORs) with 95% confidence intervals (CIs), utilizing random or fixed-effects models depending on study heterogeneity. Statistical analysis was executed using Comprehensive Meta-Analysis software (Version 4.0). RESULTS A total of eight case-control studies involving 833 CTEV patients and 1280 healthy individuals were included in the analysis. Among these, four studies investigated the rs1135056 variant, encompassing 432 CTEV cases and 603 controls; two studies examined the rs35470562 variant, with 189 CTEV cases and 378 controls; and two studies explored the rs592121 variant, including 212 CTEV cases and 299 controls. The results revealed a significant association between the rs1135056 and rs35470562 polymorphisms in the COL9A1 gene, suggesting an increased risk of CTEV in the overall population. Conversely, no such association was found for the rs592121 variant. CONCLUSION Our findings reveal a substantial association between the genetic variants COL9A1 rs1135056 and rs35470562 and susceptibility to CTEV. Conversely, the variant rs592121 did not exhibit any corresponding link. However, the limitations imposed by the small study population have compromised the statistical reliability and generalizability of the results.
Collapse
Affiliation(s)
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Alijanpour
- General Practitioner, Babol University of Medical Sciences, Babol, Iran.
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahta Mazaheri
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Luján-Amoraga L, Delgado-Martín B, Lourenço-Marques C, Gavaia PJ, Bravo J, Bandarra NM, Dominguez D, Izquierdo MS, Pousão-Ferreira P, Ribeiro L. Exploring Omega-3's Impact on the Expression of Bone-Related Genes in Meagre ( Argyrosomus regius). Biomolecules 2023; 14:56. [PMID: 38254657 PMCID: PMC10813611 DOI: 10.3390/biom14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Dietary supplementation with Omega-3 fatty acids seems to promote skeletal health. Therefore, their consumption at imbalanced or excessive levels has offered less beneficial or even prejudicial effects. Fish produced in aquaculture regimes are prone to develop abnormal skeletons. Although larval cultures are usually fed with diets supplemented with Omega-3 Long Chain Polyunsaturated fatty acids (LC-PUFAs), the lack of knowledge about the optimal requirements for fatty acids or about their impact on mechanisms that regulate skeletal development has impeded the design of diets that could improve bone formation during larval stages when the majority of skeletal anomalies appear. In this study, Argyrosomus regius larvae were fed different levels of Omega-3s (2.6% and 3.6% DW on diet) compared to a commercial diet. At 28 days after hatching (DAH), their transcriptomes were analyzed to study the modulation exerted in gene expression dynamics during larval development and identify impacted genes that can contribute to skeletal formation. Mainly, both levels of supplementation modulated bone-cell proliferation, the synthesis of bone components such as the extracellular matrix, and molecules involved in the interaction and signaling between bone components or in important cellular processes. The 2.6% level impacted several genes related to cartilage development, denoting a special impact on endochondral ossification, delaying this process. However, the 3.6% level seemed to accelerate this process by enhancing skeletal development. These results offered important insights into the impact of dietary Omega-3 LC-PUFAs on genes involved in the main molecular mechanism and cellular processes involved in skeletal development.
Collapse
Affiliation(s)
- Leticia Luján-Amoraga
- Aquaculture Research Station (EPPO), Portuguese Institute for the Ocean and Atmosphere (IPMA), 8700-194 Olhão, Portugal; (L.L.-A.); (C.L.-M.); (P.P.-F.)
| | - Belén Delgado-Martín
- Department of Microbiology and Crop Protection, Institute of Subtropical and Mediterranean Horticulture (IHSM-UMA-CSIC), 29010 Malaga, Spain;
| | - Cátia Lourenço-Marques
- Aquaculture Research Station (EPPO), Portuguese Institute for the Ocean and Atmosphere (IPMA), 8700-194 Olhão, Portugal; (L.L.-A.); (C.L.-M.); (P.P.-F.)
- Collaborative Laboratory on Sustainable and Smart Aquaculture (S2AQUACOLAB) Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve (UALG), 8005-139 Faro, Portugal;
| | - Jimena Bravo
- Aquaculture Research Group (GIA), University of Las Palmas de Gran Canaria (ULPGC) Crta. Taliarte s/n, 35214 Telde, Spain; (J.B.); (D.D.); (M.S.I.)
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading, and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, IP), Rua Alfredo Magalhães Ramalho, 7, 1495-006 Lisbon, Portugal;
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - David Dominguez
- Aquaculture Research Group (GIA), University of Las Palmas de Gran Canaria (ULPGC) Crta. Taliarte s/n, 35214 Telde, Spain; (J.B.); (D.D.); (M.S.I.)
| | - Marisol S. Izquierdo
- Aquaculture Research Group (GIA), University of Las Palmas de Gran Canaria (ULPGC) Crta. Taliarte s/n, 35214 Telde, Spain; (J.B.); (D.D.); (M.S.I.)
| | - Pedro Pousão-Ferreira
- Aquaculture Research Station (EPPO), Portuguese Institute for the Ocean and Atmosphere (IPMA), 8700-194 Olhão, Portugal; (L.L.-A.); (C.L.-M.); (P.P.-F.)
- Collaborative Laboratory on Sustainable and Smart Aquaculture (S2AQUACOLAB) Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Laura Ribeiro
- Aquaculture Research Station (EPPO), Portuguese Institute for the Ocean and Atmosphere (IPMA), 8700-194 Olhão, Portugal; (L.L.-A.); (C.L.-M.); (P.P.-F.)
| |
Collapse
|
3
|
Georgieva VS, Bluhm B, Probst K, Zhu M, Heilig J, Niehoff A, Brachvogel B. Ablation of the miRNA cluster 24 in cartilage and osteoblasts impairs bone remodeling. Sci Rep 2022; 12:9116. [PMID: 35650319 PMCID: PMC9160244 DOI: 10.1038/s41598-022-13231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate cartilage and bone development and function, however, only few miRNAs have been described to play a role for cartilage to bone transition in vivo. Previously, we showed that cartilage-specific deletion of the Mirc24 cluster in newborn male mice leads to impaired growth plate cartilage development due to increased RAF/MEK/ERK signaling and affects the stability of the cartilage extracellular matrix on account of decreased SOX6 and SOX9 and increased MMP13 levels. Here, we studied how Mirc24 cluster inactivation in cartilage and osteoblasts leads to an increased bone density associated with defects in collagen remodeling in trabecular bone. No changes in osteoblast distribution were observed, whereas the number of osteoclasts was reduced and TRAP activity in osteoclasts decreased. Surprisingly, an increased level of cluster-encoded miR-322 or miR-503 raises Rankl gene expression and inactivation of the cluster in chondrocytes reduces Rankl expression. These results suggest that the Mirc24 cluster regulates Rankl expression in chondrocytes at the chondro-osseous border, where the cluster is mainly expressed to modulate osteoclast formation, bone remodeling and bone integrity.
Collapse
Affiliation(s)
- Veronika S Georgieva
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Björn Bluhm
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Kristina Probst
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Mengjie Zhu
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, 50931, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, 50931, Cologne, Germany
| | - Bent Brachvogel
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany. .,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
4
|
Bubb K, Holzer T, Nolte JL, Krüger M, Wilson R, Schlötzer-Schrehardt U, Brinckmann J, Altmüller J, Aszodi A, Fleischhauer L, Clausen-Schaumann H, Probst K, Brachvogel B. Mitochondrial respiratory chain function promotes extracellular matrix integrity in cartilage. J Biol Chem 2021; 297:101224. [PMID: 34560099 PMCID: PMC8503590 DOI: 10.1016/j.jbc.2021.101224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Energy metabolism and extracellular matrix (ECM) function together orchestrate and maintain tissue organization, but crosstalk between these processes is poorly understood. Here, we used single-cell RNA-Seq (scRNA-Seq) analysis to uncover the importance of the mitochondrial respiratory chain for ECM homeostasis in mature cartilage. This tissue produces large amounts of a specialized ECM to promote skeletal growth during development and maintain mobility throughout life. A combined approach of high-resolution scRNA-Seq, mass spectrometry/matrisome analysis, and atomic force microscopy was applied to mutant mice with cartilage-specific inactivation of respiratory chain function. This genetic inhibition in cartilage results in the expansion of a central area of 1-month-old mouse femur head cartilage, showing disorganized chondrocytes and increased deposition of ECM material. scRNA-Seq analysis identified a cell cluster-specific decrease in mitochondrial DNA-encoded respiratory chain genes and a unique regulation of ECM-related genes in nonarticular chondrocytes. These changes were associated with alterations in ECM composition, a shift in collagen/noncollagen protein content, and an increase of collagen crosslinking and ECM stiffness. These results demonstrate that mitochondrial respiratory chain dysfunction is a key factor that can promote ECM integrity and mechanostability in cartilage and presumably also in many other tissues.
Collapse
Affiliation(s)
- Kristina Bubb
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tatjana Holzer
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Janica L Nolte
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Brinckmann
- Department of Dermatology, Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany; Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Attila Aszodi
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Lutz Fleischhauer
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany; Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Kristina Probst
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Durand AL, Dufour A, Aubert-Foucher E, Oger-Desfeux C, Pasdeloup M, Lustig S, Servien E, Vaz G, Perrier-Groult E, Mallein-Gerin F, Lafont JE. The Lysine Specific Demethylase-1 Negatively Regulates the COL9A1 Gene in Human Articular Chondrocytes. Int J Mol Sci 2020; 21:ijms21176322. [PMID: 32878268 PMCID: PMC7504057 DOI: 10.3390/ijms21176322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints which is associated with an impaired production of the cartilage matrix by the chondrocytes. Here, we investigated the role of Lysine-Specific Demethylase-1 (LSD1), a chromatin remodeling enzyme whose role in articular chondrocytes was previously associated with a catabolic activity and which is potentially involved during OA. Following a loss of function strategy and RNA sequencing analysis, we detail the genes which are targeted by LSD1 in human articular chondrocytes and identify COL9A1, a gene encoding the α1 chain of the cartilage-specific type IX collagen, as negatively regulated by LSD1. We show that LSD1 interacts with the transcription factor SOX9 and is recruited to the promoter of COL9A1. Interestingly, we observe that OA cartilage displays stronger LSD1 immunostaining compared with normal, and we demonstrate that the depletion of LSD1 in OA chondrocytes prevents the decrease in COL9A1 following Il-1β treatment. These results suggest LSD1 is a new regulator of the anabolic activity of articular chondrocytes potentially destabilizing the cartilage matrix, since it negatively regulates COL9A1, a gene encoding a crucial anchoring collagen molecule. This newly identified role played by LSD1 may thus participate in the alteration of the cartilage matrix during OA.
Collapse
Affiliation(s)
- Anne-Laure Durand
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
| | - Alexandre Dufour
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
| | - Elisabeth Aubert-Foucher
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
| | - Christine Oger-Desfeux
- PRABI-AMSB, Batiment Mendel, Campus de la Doua, Université Claude Bernard Lyon1, University Lyon, 69622 Villeurbanne CEDEX, France;
| | - Marielle Pasdeloup
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
| | - Sebastien Lustig
- FIFA Medical Center of Excellence Orthopaedic Surgery and Sports Medicine Department, Croix-Rousse Hospital, Hospices Civils de Lyon, 103 grande rue de la Croix-Rousse 69317 Lyon CEDEX 04, France and IFSTTAR, LBMC UMR_T9406 Univ Lyon, Claude Bernard Lyon 1 University, 69317 Lyon, France;
| | - Elvire Servien
- FIFA Medical Center of Excellence, Orthopaedic Surgery and Sports Medicine Department, Croix-Rousse Hospital, Hospices Civils de Lyon, 103 grande rue de la Croix-Rousse 69317 Lyon CEDEX 04, France; LIBM-EA 7424, Interuniversity Laboratory of Biology of Mobility, Claude Bernard Lyon 1 University, 69317 Lyon, France;
| | - Gualter Vaz
- Orthopaedic Surgery Department, CMCR les Massues, Croix rouge française, 92 rue Edmond Locard, 69005 Lyon, France;
| | - Emeline Perrier-Groult
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
| | - Frederic Mallein-Gerin
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
| | - Jerome E. Lafont
- CNRS UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon1, Univ Lyon, 69367 Lyon, France; (A.-L.D.); (A.D.); (E.A.-F.); (M.P.); (E.P.-G.); (F.M-G.)
- Correspondence:
| |
Collapse
|
6
|
Ablation of the miRNA Cluster 24 Has Profound Effects on Extracellular Matrix Protein Abundance in Cartilage. Int J Mol Sci 2020; 21:ijms21114112. [PMID: 32526967 PMCID: PMC7312048 DOI: 10.3390/ijms21114112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) regulate cartilage differentiation and contribute to the onset and progression of joint degeneration. These small RNA molecules may affect extracellular matrix organization (ECM) in cartilage, but for only a few miRNAs has this role been defined in vivo. Previously, we showed that cartilage-specific genetic ablation of the Mirc24 cluster in mice leads to impaired cartilage development due to increased RAF/MEK/ERK pathway activation. Here, we studied the expression of the cluster in cartilage by LacZ reporter gene assays and determined its role for extracellular matrix homeostasis by proteome and immunoblot analysis. The cluster is expressed in prehypertrophic/hypertrophic chondrocytes of the growth plate and we now show that the cluster is also highly expressed in articular cartilage. Cartilage-specific loss of the cluster leads to increased proteoglycan 4 and matrix metallopeptidase 13 levels and decreased aggrecan and collagen X levels in epiphyseal cartilage. Interestingly, these changes are linked to a decrease in SRY-related HMG box-containing (SOX) transcription factors 6 and 9, which regulate ECM production in chondrocytes. Our data suggests that the Mirc24 cluster is important for ECM homoeostasis and the expression of transcriptional regulators of matrix production in cartilage.
Collapse
|