1
|
Kust SJ, Meadows KD, Voinier D, Hong JA, Elliott DM, White DK, Moore AC. Walking recovers cartilage compressive strain in vivo. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100526. [PMID: 39524477 PMCID: PMC11550359 DOI: 10.1016/j.ocarto.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Background Articular cartilage is a fiber reinforced hydrated solid that serves a largely mechanical role of supporting load and enabling low friction joint articulation. Daily activities that load cartilage, lead to fluid exudation and compressive axial strain. To date, the only mechanism shown to recover this cartilage strain in vivo is unloading (e.g., lying supine). Based on recent work in cartilage explants, we hypothesized that loaded joint activity (walking) would also be capable of strain recovery in cartilage. Methods Eight asymptomatic young adults performed a fixed series of tasks, each of which was followed by magnetic resonance imaging to track changes in their knee cartilage thickness. The order of tasks was as follows: 1) stand for 30 min, 2) walk for 10 min, 3) stand for 30 min, and 4) lie supine for 50 min. The change in cartilage thickness was used to compute the axial cartilage strain. Results Standing produced an average axial strain of -5.1 % (compressive) in the tibiofemoral knee cartilage, while lying supine led to strain recovery. In agreement with our hypothesis, walking also led to cartilage strain recovery. Interestingly, the recovery rate during walking (0.19 % strain/min) was nearly 3-fold faster than lying supine (0.07 % strain/min). Conclusions This study represents the first in vivo demonstration that joint activity is capable of recovering compressive strain in cartilage. These findings indicate that joint activities such as walking may play a key role in maintaining and recovering cartilage strain, with implications for maintaining cartilage health and preventing or delaying cartilage degeneration.
Collapse
Affiliation(s)
- Shu-Jin Kust
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kyle D. Meadows
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Dana Voinier
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - JiYeon A. Hong
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Daniel K. White
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - Axel C. Moore
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Benson JM, Moore AC, Schrader J, Burris DL. Adhesion-Lubrication Paradox of Articular Cartilage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13810-13818. [PMID: 38918081 DOI: 10.1021/acs.langmuir.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The friction of solids is primarily understood through the adhesive interactions between the surfaces. As a result, slick materials tend to be nonstick (e.g., Teflon), and sticky materials tend to produce high friction (e.g., tires and tape). Paradoxically, cartilage, the slippery bearing material of human joints, is also among the stickiest of known materials. This study aims to elucidate this apparent paradox. Cartilage is a biphasic material, and the most cited explanation is that both friction and adhesion increase as load transfers from the pressurized interstitial fluid to the solid matrix over time. In other words, cartilage is slippery and sticky under different times and conditions. This study challenges this explanation, demonstrating the strong adhesion of cartilage under high and low interstitial hydration conditions. Additionally, we find that cartilage clings to itself (a porous material) and Teflon (a nonstick material), as well as other surfaces. We conclude that the unusually strong interfacial tension produced by cartilage reflects suction (like a clingfish) rather than adhesion (like a gecko). This finding is surprising given its unusually large roughness, which typically allows for easy interfacial flow and defeats suction. The results provide compelling evidence that cartilage, like a clingfish, conforms to opposing surfaces and effectively seals submerged contacts. Further, we argue that interfacial sealing is itself a critical function, enabling cartilage to retain hydration, load support, and lubrication across long periods of inactivity.
Collapse
Affiliation(s)
- J M Benson
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - A C Moore
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - J Schrader
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - D L Burris
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Coburn SL, Crossley KM, Kemp JL, Warden SJ, West TJ, Bruder AM, Mentiplay BF, Culvenor AG. Immediate and Delayed Effects of Joint Loading Activities on Knee and Hip Cartilage: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2023; 9:56. [PMID: 37450202 PMCID: PMC10348990 DOI: 10.1186/s40798-023-00602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The impact of activity-related joint loading on cartilage is not clear. Abnormal loading is considered to be a mechanical driver of osteoarthritis (OA), yet moderate amounts of physical activity and rehabilitation exercise can have positive effects on articular cartilage. Our aim was to investigate the immediate effects of joint loading activities on knee and hip cartilage in healthy adults, as assessed using magnetic resonance imaging. We also investigated delayed effects of activities on healthy cartilage and the effects of activities on cartilage in adults with, or at risk of, OA. We explored the association of sex, age and loading duration with cartilage changes. METHODS A systematic review of six databases identified studies assessing change in adult hip and knee cartilage using MRI within 48 h before and after application of a joint loading intervention/activity. Studies included adults with healthy cartilage or those with, or at risk of, OA. Joint loading activities included walking, hopping, cycling, weightbearing knee bends and simulated standing within the scanner. Risk of bias was assessed using the Newcastle-Ottawa Scale. Random-effects meta-analysis estimated the percentage change in compartment-specific cartilage thickness or volume and composition (T2 relaxation time) outcomes. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system evaluated certainty of evidence. RESULTS Forty studies of 653 participants were included after screening 5159 retrieved studies. Knee cartilage thickness or volume decreased immediately following all loading activities investigating healthy adults; however, GRADE assessment indicated very low certainty evidence. Patellar cartilage thickness and volume reduced 5.0% (95% CI 3.5, 6.4, I2 = 89.3%) after body weight knee bends, and tibial cartilage composition (T2 relaxation time) decreased 5.1% (95% CI 3.7, 6.5, I2 = 0.0%) after simulated standing within the scanner. Hip cartilage data were insufficient for pooling. Secondary outcomes synthesised narratively suggest knee cartilage recovers within 30 min of walking and 90 min of 100 knee bends. We found contrasting effects of simulated standing and walking in adults with, or at risk of, OA. An increase of 10 knee bend repetitions was associated with 2% greater reduction in patellar thickness or volume. CONCLUSION There is very low certainty evidence that minimal knee cartilage thickness and volume and composition (T2 relaxation time) reductions (0-5%) occur after weightbearing knee bends, simulated standing, walking, hopping/jumping and cycling, and the impact of knee bends may be dose dependent. Our findings provide a framework of cartilage responses to loading in healthy adults which may have utility for clinicians when designing and prescribing rehabilitation programs and providing exercise advice.
Collapse
Affiliation(s)
- Sally L. Coburn
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Kay M. Crossley
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Joanne L. Kemp
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Stuart J. Warden
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
- Department of Physical Therapy, School of Health & Human Sciences, Indiana University, Indianapolis, IN USA
| | - Tom J. West
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Andrea M. Bruder
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Benjamin F. Mentiplay
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| | - Adam G. Culvenor
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC Australia
| |
Collapse
|
4
|
Voinier S, Moore A, Benson J, Price C, Burris D. The modes and competing rates of cartilage fluid loss and recovery. Acta Biomater 2022; 138:390-397. [PMID: 34800716 DOI: 10.1016/j.actbio.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/27/2022]
Abstract
Cartilage loses, recovers, and maintains its thickness, hydration, and biomechanical functions based on competing rates of fluid loss and recovery under varying joint-use conditions. While the mechanics and implications of load-induced fluid loss have been studied extensively, those of fluid recovery have not. This study isolates, quantifies, and compares rates of cartilage recovery from three known modes: (1) passive swelling - fluid recovery within a static unloaded contact area; (2) free swelling - unrestricted fluid recovery by an exposed surface; (3) tribological rehydration - fluid recovery within a loaded contact area during sliding. Following static loading of adult bovine articular cartilage to between 100 and 500 μm of compression, passive swelling, free swelling, and tribological rehydration exhibited average rates of 0.11 ± 0.04, 0.71 ± 0.15, and 0.63 ± 0.22 μm/s, respectively, over the first 100 s of recovery; for comparison, the mean exudation rate just prior to sliding was 0.06 ± 0.04 μm/s. For this range of compressions, we detected no significant difference between free swelling and tribological rehydration rates. However, free swelling and tribological rehydration rates, those associated with joint articulation, were ∼7-fold faster than passive swelling rates. While previous studies show how joint articulation prevents fluid loss indefinitely, this study shows that joint articulation reverses fluid loss following static loading at >10-fold the preceding exudation rate. These competitive recovery rates suggest that joint space and function may be best maintained throughout an otherwise sedentary day using brief but regular physical activity. STATEMENT OF SIGNIFICANCE: Cartilage loses, recovers, and maintains its thickness, hydration, and biomechanical functions based on competing rates of fluid loss and recovery under varying joint-use conditions. While load-induced fluid loss is extremely well studied, this is the first to define the competing modes of fluid recovery and to quantify their rates. The results show that the fluid recovery modes associated with joint articulation are 10-fold faster than exudation during static loading and passive swelling during static unloading. The results suggest that joint space and function are best maintained throughout an otherwise sedentary day using brief but regular physical activities.
Collapse
|
5
|
Kupratis ME, Gure AE, Benson JM, Ortved KF, Burris DL, Price C. Comparative tribology II-Measurable biphasic tissue properties have predictable impacts on cartilage rehydration and lubricity. Acta Biomater 2022; 138:375-389. [PMID: 34728427 DOI: 10.1016/j.actbio.2021.10.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Healthy articular cartilage supports load bearing and frictional properties unmatched among biological tissues and man-made bearing materials. Balancing fluid exudation and recovery under loaded and articulated conditions is essential to the tissue's biological and mechanical longevity. Our prior tribological investigations, which leveraged the convergent stationary contact area (cSCA) configuration, revealed that sliding alone can modulate cartilage interstitial fluid pressurization and the recovery and maintenance of lubrication under load through a mechanism termed 'tribological rehydration.' Our recent comparative assessment of tribological rehydration revealed remarkably consistent sliding speed-dependent fluid recovery and lubrication behaviors across femoral condyle cartilage from five mammalian species (equine/horse, bovine/cow, porcine/pig, ovine/sheep, and caprine/goat). In the present study, we identified and characterized key predictive relationships among tissue properties, sliding-induced tribological rehydration, and the modulation/recovery of lubrication within healthy articular cartilage. Using correlational analysis, we linked observed speed-dependent tribological rehydration behaviors to cartilage's geometry and biphasic properties (tensile and compressive moduli, and permeability). Together, these findings demonstrate that easily measurable biphasic tissue characteristics (e.g., bulk tissue material properties, compressive strain magnitude, and strain rates) can be used to predict cartilage's rehydration and lubricating abilities, and ultimately its function in vivo. STATEMENT OF SIGNIFICANCE: In healthy cartilage, articulation recovers fluid lost to static loading thereby sustaining tissue lubricity. Osteoarthritis causes changes to cartilage composition, stiffness, and permeability associated with faster fluid exudation and presumably poorer frictional outcomes. Yet, the relationship between mechanical properties and fluid recovery during articulation/sliding remains unclear. Through innovative, high-speed benchtop sliding and indentation experiments, we found that cartilage's tissue properties regulate its exudation/hydration under slow sliding speeds but have minimal effect at high sliding speeds. In fact, cartilage rehydration appears insensitive to permeability and stiffness under high fluid load support conditions. This new understanding of the balance of cartilage exudation and rehydration during activity, based upon comparative tribology studies, may improve prevention and rehabilitation strategies for joint injuries and osteoarthritis.
Collapse
Affiliation(s)
- Meghan E Kupratis
- Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Ahmed E Gure
- Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Jamie M Benson
- Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Kyla F Ortved
- Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - David L Burris
- Biomedical Engineering, University of Delaware, Newark, Delaware, USA; Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Christopher Price
- Biomedical Engineering, University of Delaware, Newark, Delaware, USA; Mechanical Engineering, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|