1
|
Yang N, Wu T, Li M, Hu X, Ma R, Jiang W, Su Z, Yang R, Zhu C. Silver-quercetin-loaded honeycomb-like Ti-based interface combats infection-triggered excessive inflammation via specific bactericidal and macrophage reprogramming. Bioact Mater 2025; 43:48-66. [PMID: 39318638 PMCID: PMC11421951 DOI: 10.1016/j.bioactmat.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024] Open
Abstract
Excessive inflammation caused by bacterial infection is the primary cause of implant failure. Antibiotic treatment often fails to prevent peri-implant infection and may induce unexpected drug resistance. Herein, a non-antibiotic strategy based on the synergy of silver ion release and macrophage reprogramming is proposed for preventing infection and bacteria-induced inflammation suppression by the organic-inorganic hybridization of silver nanoparticle (AgNP) and quercetin (Que) into a polydopamine (PDA)-based coating on the 3D framework of porous titanium (SQPdFT). Once the planktonic bacteria (e.g., Escherichia coli, Staphylococcus aureus) reach the surface of SQPdFT, released Que disrupts the bacterial membrane. Then, AgNP can penetrate the invading bacterium and kill them, which further inhibits the biofilm formation. Simultaneously, released Que can regulate macrophage polarization homeostasis via the peroxisome proliferators-activated receptors gamma (PPARγ)-mediated nuclear factor kappa-B (NF-κB) pathway, thereby terminating excessive inflammatory responses. These advantages facilitate the adhesion and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), concomitantly suppressing osteoclast maturation, and eventually conferring superior mechanical stability to SQPdFT within the medullary cavity. In summary, owing to its excellent antibacterial effect, immune remodeling function, and pro-osteointegration ability, SQPdFT is a promising protective coating for titanium-based implants used in orthopedic replacement surgery.
Collapse
Affiliation(s)
- Ning Yang
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ting Wu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianli Hu
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Ruixiang Ma
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wei Jiang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Zheng Su
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Center of Materials Science and Optoelectronics Engineering, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen Zhu
- Department of Orthopaedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| |
Collapse
|
2
|
Jiménez R, Zúñiga-Muñoz A, Álvarez-León E, García-Niño WR, Navarrete-Anastasio G, Soria-Castro E, Pérez-Torres I, Lira-Silva E, Pavón N, Cruz-Gregorio A, López-Marure R, Zazueta C, Silva-Palacios A. Quercetin preserves mitochondria-endoplasmic reticulum contact sites improving mitochondrial dynamics in aged myocardial cells. Biogerontology 2024; 26:29. [PMID: 39704870 DOI: 10.1007/s10522-024-10174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Cardiomyocyte senescence plays a crucial role in the pathophysiology of age-related cardiovascular disease. Senescent cells with impaired contractility, mitochondrial dysfunction, and hypertrophic growth accumulate in the heart during aging, contributing to cardiac dysfunction and remodeling. Mitochondrial dynamics is altered in aging cells, leading to changes in their function and morphology. Such rearrangements can affect the spatially restricted region of the mitochondrial membrane that interacts with reticulum membrane fragments, termed mitochondria-endoplasmic reticulum (ER) contact sites (MERCs). Besides, oxidative stress associated with inefficient organelle turnover can drive cellular senescence. Therefore, in this study, we evaluated the possible association between the senolytic effect of the antioxidant quercetin (Q) and MERCs preservation in a D-galactose-induced cellular senescence model. We found that Q ameliorates the senescent phenotype of H9c2 cells in association with increased mitochondria-ER colocalization, reduced distance between both organelles, and lower ROS production. Moreover, regulation of fusion and fission processes was related with increased mitochondrial ATP production and enhanced transmembrane potential. Overall, our data provide evidence that the inhibitory effect of Q on cellular senescence is associated with preserved MERCs and improved mitochondrial function and morphology, which might contribute to the attenuation of cardiac dysfunction.
Collapse
Affiliation(s)
- Ray Jiménez
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Alejandra Zúñiga-Muñoz
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Edith Álvarez-León
- Basic and Technological Research Subdirection, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Gabriela Navarrete-Anastasio
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Elizabeth Lira-Silva
- Department of Pharmacology, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Natalia Pavón
- Department of Pharmacology, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Alfredo Cruz-Gregorio
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Rebeca López-Marure
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
| | - Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
| |
Collapse
|
3
|
Liu Y, Zhang G, Wu J, Meng Y, Hu J, Fu H, Yang D. CARMA3 Drives NF-κB Activation and Promotes Intervertebral Disc Degeneration: Involvement of CARMA3-BCL10-MALT1 Signalosome. Inflammation 2024; 47:1936-1951. [PMID: 38607566 DOI: 10.1007/s10753-024-02016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024]
Abstract
Intervertebral disc degeneration (IDD) diseases are common and frequent diseases in orthopedics. The caspase recruitment domain (CARD) and membrane-associated guanylate kinase-like protein 3 (CARMA3) is crucial in the activation of the NF-κB pathway. However, the biological function of CARMA3 in IDD remains unknown. Here, CARMA3 expression was elevated in nucleus pulposus (NP) tissues of IDD rats and nutrient deprivation (ND)-induced NP cells. The main pathological manifestations observed in IDD rats were shrinkage of the NP, reduction of NP cells, fibrosis of NP tissues, and massive reduction of proteoglycans. These changes were accompanied by a decrease in the expression of collagen II and aggrecan, an increase in the expression of the extracellular matrix (ECM) catabolic proteases MMP-3, MMP-13, and metalloprotease with ADAMTS-5, and an increase in the activity of the pro-apoptotic protease caspase-3. The expression of p-IκBαSer32/36 and p-p65Ser536 was also upregulated. However, these effects were reversed with the knockdown of CARMA3. Mechanistically, CARMA3 bound to BCL10 and MALT1 to form a signalosome. Knockdown of CARMA3 reduced the CARMA3-BCL10-MALT1 signalosome-mediated NF-κB activation. CARMA3 activated the NF-κB signaling pathway in a manner that bound to BCL10 and MALT1 to form a signalosome, which affects NP cell damage and is involved in the development of IDD. This supports CARMA3-BCL10-MALT1-NF-κB as a promising targeting axis for the treatment of IDD.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China
| | - Guiqi Zhang
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China
| | - Jiani Wu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China
| | - Yi Meng
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China
| | - Jianyu Hu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China
| | - Hao Fu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China
| | - Dongfang Yang
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China.
| |
Collapse
|
4
|
Shen J, Zhang Q, Lan Y, Peng Q, Ji Z, Wu Y, Liu H. Identification and Characterisation of Potential Targets for N6-methyladenosine (m6A) Modification during Intervertebral Disc Degeneration. FRONT BIOSCI-LANDMRK 2024; 29:405. [PMID: 39735982 DOI: 10.31083/j.fbl2912405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The mechanism for RNA methylation during disc degeneration is unclear. The aim of this study was to identify N6-methyladenosine (m6A) markers and therapeutic targets for the prevention and treatment of intervertebral disc degeneration (IDD). METHODS Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and quantitative reverse transcription PCR (RT-qPCR) were employed to analyze m6A modifications of IDD-related gene expression. Bioinformatics was used to identify enriched gene pathways in IDD. m6A-RIP-qPCR was used to validate potential targets and markers. RESULTS AND CONCLUSION Human IDD samples exhibited a distinct m6A modification pattern that allowed associated genes and pathways to be identified. These genes had functions such as "nuclear factor kappa-B (NF-κB) binding" and "extracellular matrix components", which are crucial for IDD pathogenesis. ANXA2 showed increased m6A modification in IDD, while SLC3A2 and PBX3 showed decreased m6A methylation. The results of this study offer novel insights for the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Jianlin Shen
- Department of Orthopaedics, Affiliated Hospital of Putian University, 351100 Putian, Fujian, China
- Central Laboratory, Affiliated Hospital of Putian University, 351100 Putian, Fujian, China
| | - Qiang Zhang
- Central Laboratory, Affiliated Hospital of Putian University, 351100 Putian, Fujian, China
| | - Yujian Lan
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Qingping Peng
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Ziyu Ji
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yanjiao Wu
- Department of Orthopaedics, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), 528308 Foshan, Guangdong, China
| | - Huan Liu
- Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
5
|
Wang W, Liu L, Ma W, Zhao L, Huang L, Zhou D, Fan J, Wang J, Liu H, Wu D, Zheng Z. An anti-senescence hydrogel with pH-responsive drug release for mitigating intervertebral disc degeneration and low back pain. Bioact Mater 2024; 41:355-370. [PMID: 39171275 PMCID: PMC11338064 DOI: 10.1016/j.bioactmat.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative stress and aging lead to progressive senescence of nucleus pulposus (NP) cells, resulting in intervertebral disc (IVD) degeneration (IVDD). In some cases, degenerative IVD can further cause low back pain (LBP). Several studies have confirmed that delaying and rejuvenating the senescence of NP cells can attenuate IVDD. However, the relatively closed tissue structure of IVDs presents challenges for the local application of anti-senescence drugs. Here, we prepared an anti-senescence hydrogel by conjugating phenylboronic acid-modified gelatin methacryloyl (GP) with quercetin to alleviate IVDD by removing senescent NP cells. The hydrogel exhibited injectability, biodegradability, prominent biocompatibility and responsive release of quercetin under pathological conditions. In vitro experiments demonstrated that the hydrogel could reduce the expression of senescence markers and restore the metabolic balance in senescent NP cells. In vivo studies validated that a single injection of the hydrogel in situ could maintain IVD tissue structure and alleviate sensitivity to noxious mechanical force in the rat models, indicating a potential therapeutic approach for ameliorating IVDD and LBP. This approach helps prevent potential systemic toxicity associated with systemic administration and reduces the morbidity resulting from repeated injections of free drugs into the IVD, providing a new strategy for IVDD treatment.
Collapse
Affiliation(s)
- Wantao Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, 510080, People's Republic of China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Wenzheng Ma
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, 510080, People's Republic of China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Dan Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Jinghao Fan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, 510080, People's Republic of China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, 510080, People's Republic of China
- Pain Research Center, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
6
|
Lu L, Wang L, Yang M, Wang H. New perspectives on YTHDF2 O-GlcNAc modification in the pathogenesis of intervertebral disc degeneration. Mol Med 2024; 30:180. [PMID: 39425013 PMCID: PMC11488288 DOI: 10.1186/s10020-024-00876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/13/2024] [Indexed: 10/21/2024] Open
Abstract
This study investigates the potential molecular mechanisms by which O-GlcNAc modification of YTHDF2 regulates the cell cycle and participates in intervertebral disc degeneration (IDD). We employed transcriptome sequencing to identify genes involved in IDD and utilized bioinformatics analysis to predict key disease-related genes. In vitro mechanistic validation was performed using mouse nucleus pulposus (NP) cells. Changes in reactive oxygen species (ROS) and cell cycle were assessed through flow cytometry and CCK-8 assays. An IDD mouse model was also established for in vivo mechanistic validation, with changes in IDD severity measured using X-rays and immunohistochemical staining. Bioinformatics analysis revealed differential expression of YTHDF2 in NP cells of normal and IDD mice, suggesting its potential as a diagnostic gene for IDD. In vitro cell experiments demonstrated that YTHDF2 expression and O-GlcNAcylation were reduced in NP cells under H2O2 induction, leading to inhibition of the cell cycle through decreased stability of CCNE1 mRNA. Further, in vivo animal experiments confirmed a decrease in YTHDF2 expression and O-GlcNAcylation in IDD mice, while overexpression or increased O-GlcNAcylation of YTHDF2 promoted CCNE1 protein expression, thereby alleviating IDD pathology. YTHDF2 inhibits its degradation through O-GlcNAc modification, promoting the stability of CCNE1 mRNA and the cell cycle to prevent IDD formation.
Collapse
Affiliation(s)
- Liangjie Lu
- Department of Orthopedics, Ningbo Medical Center Li Huili Hospital, Li Huili Hospital, Affiliated to Ningbo University, No.57 Xingning Road, Yinzhou District, Ningbo, 315040, Zhejiang Province, China.
| | - Lijun Wang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Minjie Yang
- Department of Orthopaedics, Jiu jiang NO.1 People's Hospital, Jiu jiang, 332000, China
| | - Huihan Wang
- Department of Orthopaedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| |
Collapse
|
7
|
Gao RJ, Aikeremu N, Cao N, Chen C, Ma KT, Li L, Zhang AM, Si JQ. Quercetin regulates pulmonary vascular remodeling in pulmonary hypertension by downregulating TGF-β1-Smad2/3 pathway. BMC Cardiovasc Disord 2024; 24:535. [PMID: 39367342 PMCID: PMC11451247 DOI: 10.1186/s12872-024-04192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a worldwide challenging disease characterized by progressive elevation of pulmonary artery pressure. The proliferation, migration and phenotypic transformation of pulmonary smooth muscle cells are the key steps of pulmonary vascular remodeling. Quercetin (3,3', 4', 5, 6-pentahydroxyflavone, Que) is a natural flavonol compound that has antioxidant, anti-inflammatory, anti-tumor and other biological activities. Studies have shown that Que has therapeutic effects on PAH. However, the effect of quercetin on pulmonary vascular remodeling in PAH and its mechanism remain unclear. METHODS AND RESULTS In vivo, PAH rats were constructed by intraperitoneal injection of monocrotaline (MCT) at 60 mg/kg. Human pulmonary artery smooth muscle cells (HPASMCs) were treated with platelet-derived growth factor BB (PDGF-BB) 20 ng/mL to construct PAH cell model in vitro. The results showed that in vivo studies, MCT could induce right ventricular wall hyperplasia, narrow the small and medium pulmonary artery cavity, up-regulate the expression of proliferating and migration-related proteins proliferating cell nuclear antigen (PCNA) and osteopontin (OPN), and down-regulate the expression of alpha-smooth muscle actin (α-SMA). Que reversed the MCT-induced results. This process works by down-regulating the transforming growth factor-β1 (TGF-β1)/ Smad2/3 signaling pathway. In vitro studies, Que had the same effect on PDGF-BB-induced proliferation and migration cell models. CONCLUSIONS Que inhibits the proliferation, migration and phenotypic transformation of HPASMCs by down-regulating TGF-β1/Smad2/Smad3 pathway, thereby reducing right ventricular hyperplasia (RVH) and pulmonary vascular remodeling, providing potential pharmacological and molecular explanations for the treatment of PAH.
Collapse
MESH Headings
- Animals
- Vascular Remodeling/drug effects
- Transforming Growth Factor beta1/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Pulmonary Artery/pathology
- Smad2 Protein/metabolism
- Signal Transduction/drug effects
- Smad3 Protein/metabolism
- Quercetin/pharmacology
- Disease Models, Animal
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Humans
- Cell Movement/drug effects
- Cells, Cultured
- Down-Regulation
- Male
- Rats, Sprague-Dawley
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Monocrotaline
- Pulmonary Arterial Hypertension/drug therapy
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/chemically induced
- Becaplermin/pharmacology
- Osteopontin/metabolism
Collapse
Affiliation(s)
- Rui-Juan Gao
- Department of Medical Imaging Center, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832002, China
- Department of Physiology, Shihezi University School of Medicine, Xinjiang, North Second Road, Shihezi, Xinjiang, 832000, China
| | - Nigala Aikeremu
- Department of Physiology, Shihezi University School of Medicine, Xinjiang, North Second Road, Shihezi, Xinjiang, 832000, China
| | - Nan Cao
- Department of Physiology, Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, 222061, China
| | - Chong Chen
- Department of Intensive Care Medicine, the Third People's Hospital of Xinjiang Autonomous Region, Urumqi, Xinjiang, 830000, China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University School of Medicine, Xinjiang, North Second Road, Shihezi, Xinjiang, 832000, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
- NHC Key Laboratory of Prevention, and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, 314001, China
| | - Ai-Mei Zhang
- The 3Rd Department of Cardiology, First Affiliated Hospital of Shihezi University, Xinjiang, 832002, China.
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University School of Medicine, Xinjiang, North Second Road, Shihezi, Xinjiang, 832000, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China.
- NHC Key Laboratory of Prevention, and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China.
- Department of Physiology, Huazhong University of Science and Technology of Basic Medical Sciences, Wuhan, 430070, China.
| |
Collapse
|
8
|
Zhou H, Xi Y, Gao S, Zhou Y. Association between dietary intake of flavonoids and chronic low back pain: a cross-sectional study. Front Nutr 2024; 11:1436461. [PMID: 39421624 PMCID: PMC11484401 DOI: 10.3389/fnut.2024.1436461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Aim The purpose of this study was to explore the association between flavonoids intake and chronic low back pain (CLBP). Methods This cross-sectional study analyzed data from the National Health and Nutrition Examination Survey. Dietary flavonoids intake was assessed using a two-day recall questionnaire on dietary intake. CLBP was defined based of self-reported question. Weighted univariate and multivariate logistic regression models were performed to evaluate the relationship between flavonoids intake and CLBP. Additionally, subgroup analyses were conducted based on age, sedentary behavior time, arthritis, depression, and sleep disorder. Results A total of 3,136 adults were included, and 460 participants developed CLBP. After adjusting confounders, compared with the lowest total flavonoids intake tertile (reference group), flavonoids intake with highest tertile (>170 mg) was associated with reduced odds of CLBP [odds ratio (OR) =0.74, 95% confidence interval (CI): 0.57-0.95]. This relationship of flavonoids intake with CLBP remained statistically significant among participants aged ≥45 years (OR = 0.52, 95%CI: 0.35-0.76), with sedentary behavior time of >3 h (OR = 0.60, 95%CI: 0.41-0.86), with arthritis (OR = 0.51, 95%CI: 0.29-0.90), depression (OR = 0.48, 95%CI: 0.24-0.98), and sleep disorder (OR = 0.27, 95%CI: 0.12-0.60). Conclusion Higher flavonoids intake was found to be negatively associated with the likelihood of CLBP. For the general adult population, consuming foods rich in flavonoids may be linked to a reduced risk of CLBP.
Collapse
Affiliation(s)
| | | | | | - Yan Zhou
- Department of Pain Management, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Zeng Y, Yu S, Lu L, Zhang J, Xu C. Ginger-derived nanovesicles attenuate osteoarthritis progression by inhibiting oxidative stress via the Nrf2 pathway. Nanomedicine (Lond) 2024; 19:2357-2373. [PMID: 39360651 PMCID: PMC11492688 DOI: 10.1080/17435889.2024.2403324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Aim: Osteoarthritis (OA) is a common degenerative joint disease. Previous studies demonstrated ginger-derived exosome-like nanovesicles (GDN) showed therapeutic effects in degenerative diseases. However, it remains unknown whether GDN could alleviate OA progression.Materials & methods: In this study, GDN were obtained and characterized. Then we evaluated the effects of GDN in tert-butyl hydroperoxide (TBHP)-induced chondrocytes, posttraumatic OA rat model and ex vivo cultured human OA cartilage explants.Results: We demonstrated GDN promoted cartilage anabolism and alleviated oxidative stress in TBHP-induced chondrocytes and OA rat. Our results also showed GDN exhibited protective effects in cultured cartilage explants. Furthermore, we verified the Nrf2 pathway was associated with protective effects of GDN.Conclusion: Altogether, our findings demonstrated GDN hold great potential for OA treatment.
Collapse
Affiliation(s)
- Yiming Zeng
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shun Yu
- Department of Burns & Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Lin Lu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jun Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chen Xu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
10
|
Fang X, Zhao H, Xu T, Wu H, Sheng G. Anti-Inflammatory and Antioxidant Effects of Irigenen Alleviate Osteoarthritis Progression through Nrf2/HO-1 Pathway. Pharmaceuticals (Basel) 2024; 17:1268. [PMID: 39458910 PMCID: PMC11510601 DOI: 10.3390/ph17101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Osteoarthritis (OA) is a prevalent degenerative disease globally, characterized by cartilage degradation and joint dysfunction. Current treatments are insufficient for halting OA progression. Irigenin (IRI), a flavonoid extracted from natural plants with anti-inflammatory and antioxidant properties, has demonstrated potential in mitigating inflammation and oxidative stress in various diseases; however, its effects on OA remain unexplored. This study aims to evaluate the therapeutic effects of IRI on OA through in vivo and in vitro experiments and to elucidate the underlying molecular mechanisms. METHODS In vitro, chondrocytes were exposed to hydrogen peroxide (H2O2) to induce an oxidative stress environment and were then treated with IRI. Western blotting, RT-qPCR, immunofluorescence staining assays, flow cytometry, and apoptosis assays were employed to assess the effects of IRI on chondrocyte matrix homeostasis, inflammatory response, and apoptosis. In vivo, an OA rat model was treated with regular IRI injections, and therapeutic effects were evaluated using micro-CT, histological staining, and immunohistochemistry assays. RESULTS IRI treatment restored matrix homeostasis in chondrocytes and effectively suppressed H2O2-induced inflammation and apoptosis. Subsequent studies further revealed that IRI exerts its therapeutic effects by activating the Nrf2/HO-1 pathway. Inhibition of Nrf2 expression in chondrocytes partially blocked the anti-inflammatory and antioxidant effects of IRI. In the OA rat model, regular IRI injections effectively ameliorated cartilage degeneration. CONCLUSIONS This study identifies IRI as a promising strategy for OA treatment by modulating inflammation and apoptosis through the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
| | | | | | | | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (X.F.); (H.Z.); (T.X.); (H.W.)
| |
Collapse
|
11
|
Yu XJ, Zhao YT, Abudouaini H, Zou P, Li TQ, Bai XF, Wang SX, Guan JB, Li MW, Wang XD, Wang YG, Hao DJ. A novel spherical GelMA-HAMA hydrogel encapsulating APET×2 polypeptide and CFIm25-targeting sgRNA for immune microenvironment modulation and nucleus pulposus regeneration in intervertebral discs. J Nanobiotechnology 2024; 22:556. [PMID: 39267105 PMCID: PMC11391743 DOI: 10.1186/s12951-024-02783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
METHODS Single-cell transcriptomics and high-throughput transcriptomics were used to screen factors significantly correlated with intervertebral disc degeneration (IDD). Expression changes of CFIm25 were determined via RT-qPCR and Western blot. NP cells were isolated from mouse intervertebral discs and induced to degrade with TNF-α and IL-1β. CFIm25 was knocked out using CRISPR-Cas9, and CFIm25 knockout and overexpressing nucleus pulposus (NP) cell lines were generated through lentiviral transfection. Proteoglycan expression, protein expression, inflammatory factor expression, cell viability, proliferation, migration, gene expression, and protein expression were analyzed using various assays (alcian blue staining, immunofluorescence, ELISA, CCK-8, EDU labeling, transwell migration, scratch assay, RT-qPCR, Western blot). The GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA was designed, and its effects on NP regeneration were assessed through in vitro and mouse model experiments. The progression of IDD in mice was evaluated using X-ray, H&E staining, and Safranin O-Fast Green staining. Immunohistochemistry was performed to determine protein expression in NP tissue. Proteomic analysis combined with in vitro and in vivo experiments was conducted to elucidate the mechanisms of hydrogel action. RESULTS CFIm25 was upregulated in IDD NP tissue and significantly correlated with disease progression. Inhibition of CFIm25 improved NP cell degeneration, enhanced cell proliferation, and migration. The hydrogel effectively knocked down CFIm25 expression, improved NP cell degeneration, promoted cell proliferation and migration, and mitigated IDD progression in a mouse model. The hydrogel inhibited inflammatory factor expression (IL-6, iNOS, IL-1β, TNF-α) by targeting the p38/NF-κB signaling pathway, increased collagen COLII and proteoglycan Aggrecan expression, and suppressed NP degeneration-related factors (COX-2, MMP-3). CONCLUSION The study highlighted the crucial role of CFIm25 in IDD and introduced a promising therapeutic strategy using a porous spherical GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA. This innovative approach offers new possibilities for treating degenerated intervertebral discs.
Collapse
Grants
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Xiao-Jun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Yuan-Ting Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Haimiti Abudouaini
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Peng Zou
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Tian-Qi Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Xiao-Fan Bai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Shan-Xi Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Jian-Bin Guan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Meng-Wei Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Dong Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Ying-Guang Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China.
| | - Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
Hong Y, Duan Y, Zhu Z, Yu Q, Mo Z, Wang H, Zhou T, Liu Z, Bai J, Zhang X, Yang H, Zhu C, Li B. IL-1ra loaded chondroitin sulfate-functionalized microspheres for minimally invasive treatment of intervertebral disc degeneration. Acta Biomater 2024; 185:336-349. [PMID: 38969077 DOI: 10.1016/j.actbio.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Presently, the clinical treatment of intervertebral disc degeneration (IVDD) remains challenging, but the strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in the nucleus pulposus (NP) has become an effective way to alleviate IVDD. IL-1ra, a natural antagonist against IL-1β, can mitigate inflammation and promote regeneration in IVDD. Chondroitin sulfate (CS), an important component of the NP, can promote ECM synthesis and delay IVDD. Thus, these were chosen and integrated into functionalized microspheres to achieve their synergistic effects. First, CS-functionalized microspheres (GelMA-CS) with porous microstructure, good monodispersion, and about 200 µm diameter were efficiently and productively fabricated using microfluidic technology. After lyophilization, the microspheres with good local injection and tissue retention served as the loading platform for IL-1ra and achieved sustained release. In in vitro experiments, the IL-1ra-loaded microspheres exhibited good cytocompatibility and efficacy in inhibiting the inflammatory response of NP cells induced by lipopolysaccharide (LPS) and promoting the secretion of ECM. In in vivo experiments, the microspheres showed good histocompatibility, and local, minimally invasive injection of the IL-1ra-loaded microspheres could reduce inflammation, maintain the height of the intervertebral disc (IVD) and the water content of NP close to about 70 % in the sham group, and retain the integrated IVD structure. In summary, the GelMA-CS microspheres served as an effective loading platform for IL-1ra, eliminated inflammation through the controlled release of IL-1ra, and promoted ECM synthesis via CS to delay IVDD, thereby providing a promising intervention strategy for IVDD. STATEMENT OF SIGNIFICANCE: The strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in nucleus pulposus (NP) has shown great potential prospects for alleviating intervertebral disc degeneration (IVDD). From the perspective of clinical translation, this study developed chondroitin sulfate functionalized microspheres to act as the effective delivery platform of IL-1ra, a natural antagonist of interleukin-1β. The IL-1ra loading microspheres (GelMA-CS-IL-1ra) showed good biocompatibility, good injection with tissue retention, and synergistic effects of inhibiting the inflammatory response induced by lipopolysaccharide and promoting the secretion of ECM in NPCs. In vivo, they also showed the beneficial effect of reducing the inflammatory response, maintaining the height of the intervertebral disc and the water content of the NP, and preserving the integrity of the intervertebral disc structure after only one injection. All demonstrated that the GelMA-CS-IL-1ra microspheres would have great promise for the minimally invasive treatment of IVDD.
Collapse
Affiliation(s)
- Youzhi Hong
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Yudong Duan
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhuang Zhu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Qifan Yu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhanfeng Mo
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Huan Wang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Tao Zhou
- Department of Spinal Surgery, Ma'anshan People's Hospital, Ma'anshan, Anhui, 243000, China
| | - Zhao Liu
- National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, 215000, China
| | - Jianzhong Bai
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiaoyu Zhang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Huilin Yang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Caihong Zhu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
13
|
Chen M, Li F, Qu M, Jin X, He T, He S, Chen S, Yao Q, Wang L, Chen D, Wu X, Xiao G. Pip5k1γ promotes anabolism of nucleus pulposus cells and intervertebral disc homeostasis by activating CaMKII-Ampk pathway in aged mice. Aging Cell 2024; 23:e14237. [PMID: 38840443 PMCID: PMC11488325 DOI: 10.1111/acel.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Degenerative disc disease (DDD) represents a significant global health challenge, yet its underlying molecular mechanisms remain elusive. This study aimed to investigate the role of type 1 phosphatidylinositol 4-phosphate 5-kinase (Pip5k1) in intervertebral disc (IVD) homeostasis and disease. All three Pip5k1 isoforms, namely Pip5k1α, Pip5k1β, and Pip5k1γ, were detectable in mouse and human IVD tissues, with Pip5k1γ displaying a highest expression in nucleus pulposus (NP) cells. The expression of Pip5k1γ was significantly down-regulated in the NP cells of aged mice and patients with severe DDD. To determine whether Pip5k1γ expression is required for disc homeostasis, we generated a Pip5k1γfl/fl; AggrecanCreERT2 mouse model for the conditional knockout of the Pip5k1γ gene in aggrecan-expressing IVD cells. Our findings revealed that the conditional deletion of Pip5k1γ did not affect the disc structure or cellular composition in 5-month-old adult mice. However, in aged (15-month-old) mice, this deletion led to several severe degenerative disc defects, including decreased NP cellularity, spontaneous fibrosis and cleft formation, and a loss of the boundary between NP and annulus fibrosus. At the molecular level, the absence of Pip5k1γ reduced the anabolism of NP cells without markedly affecting their catabolic or anti-catabolic activities. Moreover, the loss of Pip5k1γ significantly dampened the activation of the protective Ampk pathway in NP cells, thereby accelerating NP cell senescence. Notably, Pip5k1γ deficiency blunted the effectiveness of metformin, a potent Ampk activator, in activating the Ampk pathway and mitigating lumbar spine instability (LSI)-induced disc lesions in mice. Overall, our study unveils a novel role for Pip5k1γ in promoting anabolism and maintaining disc homeostasis, suggesting it as a potential therapeutic target for DDD.
Collapse
Affiliation(s)
- Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Feiyun Li
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Minghao Qu
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Xiaowan Jin
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Shuangshuang He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Lin Wang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xiaohao Wu
- Division of Immunology and RheumatologyStanford UniversityStanfordCaliforniaUSA
- VA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
14
|
Mantadaki AE, Baliou S, Linardakis M, Vakonaki E, Tzatzarakis MN, Tsatsakis A, Symvoulakis EK. Quercetin Intake and Absolute Telomere Length in Patients with Type 2 Diabetes Mellitus: Novel Findings from a Randomized Controlled Before-and-After Study. Pharmaceuticals (Basel) 2024; 17:1136. [PMID: 39338301 PMCID: PMC11434860 DOI: 10.3390/ph17091136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Telomeres, the protective chromosomal ends, progressively shorten and potentially are implicated in the pathogenesis of age-related diseases. In type 2 diabetes (T2DM), telomere shortening may play an important role, but the whole 'picture' remains limited. From a therapeutic perspective, the phytonutrient quercetin appears to be clinically effective and safe for patients with T2DM. Considering the above, we aimed to examine whether quercetin could interfere with telomere length (TL) dynamics. One hundred patients with T2DM on non-insulin medications registered within a primary healthcare facility were stratified by age and sex and randomly assigned to either standard care or standard care plus quercetin (500 mg/day) for 12 weeks, succeeded by an 8-week washout period and another 12 weeks of supplementation. Of the 88 patients completing the trial, 82 consented to blood sampling for TL measurements. Health assessments and whole blood absolute TL measurements using quantitative polymerase chain reaction (qPCR) were conducted at baseline and study end, and the findings of this subcohort are presented. Quercetin supplementation was associated with a significant increase in mean TL (odds ratio ≥ 2.44; p < 0.05) with a strengthened association after full adjustment for potential confounders through multiple logistic regression analysis (odds ratio = 3.48; p = 0.026), suggesting it as a potentially promising supplementation option. Further studies are needed to confirm this finding, elucidating the underlying molecular mechanisms of quercetin.
Collapse
Affiliation(s)
- Aikaterini E Mantadaki
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Stella Baliou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Manolis Linardakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Manolis N Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil K Symvoulakis
- Clinic of Social and Family Medicine, Department of Social Medicine, School of Medicine, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
15
|
Xu T, Zhao H, Fang X, Wang S, Li J, Wu H, Hu W, Lu R. Mulberroside A mitigates intervertebral disc degeneration by inhibiting MAPK and modulating Ppar-γ/NF-κB pathways. J Inflamm (Lond) 2024; 21:32. [PMID: 39198816 PMCID: PMC11360712 DOI: 10.1186/s12950-024-00398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/12/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a common spine disease with inflammation as its main pathogenesis. Mulberroside A (MA), isolated from herbal medicine, possesses anti-inflammatory characteristics in many diseases. Whereas, there is little exploration of the therapeutic potential of MA on IVDD. This study aimed at the therapeutic potential of MA on IVDD in vivo and in vitro and the mechanism involved. METHODS In vitro, western blotting, RT-qPCR, and immunofluorescence analysis were implemented to explore the bioactivity of MA on interleukin-1 beta (IL-1β)-induced inflammation nucleus pulposus cells (NPCs) isolated from Sprague-Dawley male rats. In vivo, X-ray and MRI were applied to measure the morphological changes, and histological staining and immunohistochemistry were employed to investigate the histological changes of intervertebral disc sections on puncture-induced IVDD rat models. RESULTS In vitro, MA up-regulated the expression level of anabolic-related proteins (Aggrecan and Collagen II) and decreased catabolic-related proteins (Mmp2, Mmp3, Mmp9, and Mmp13) in IL-1β-induced NPCs. Furthermore, MA inhibits the production of pro-inflammatory factors (Inos, Cox-2, and Il-6) stimulated by IL-1β. Mechanistically, MA inhibited the signal transduction of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) pathways in IL-1β-induced NPCs. Moreover, MA might bind to Ppar-γ and then suppress the NF-kB pathway. In vivo experiment illustrated that MA mitigates the IVDD progression in puncture-induced IVDD model. X-ray and MRI images showed MA restore the disc height and T2-weighted signal intensity after puncturing. H&E and Safranin O/Fast Green also showed MA also alleviated morphological changes caused by acupuncture. In addition, MA reversed the expression level of Mmp13, Aggrecan, Collagen II, and Ppar-γ induced in IVDD models. CONCLUSIONS MA inhibited degenerative phenotypes in NPCs and alleviated IVDD progression via inhibiting the MAPK and NF-κB pathways; besides, MA suppressed the NF-κB pathway was attributed to activating Ppar-γ, those supported that MA or Ppar-γ might be a potential drug or target for IVDD.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Li
- Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
16
|
Riaz A, Ali S, Summer M, Noor S, Nazakat L, Aqsa, Sharjeel M. Exploring the underlying pharmacological, immunomodulatory, and anti-inflammatory mechanisms of phytochemicals against wounds: a molecular insight. Inflammopharmacology 2024:10.1007/s10787-024-01545-5. [PMID: 39138746 DOI: 10.1007/s10787-024-01545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Numerous cellular, humoral, and molecular processes are involved in the intricate process of wound healing. PHARMACOLOGICAL RELEVANCE Numerous bioactive substances, such as ß-sitosterol, tannic acid, gallic acid, protocatechuic acid, quercetin, ellagic acid, and pyrogallol, along with their pharmacokinetics and bioavailability, have been reviewed. These phytochemicals work together to promote angiogenesis, granulation, collagen synthesis, oxidative balance, extracellular matrix (ECM) formation, cell migration, proliferation, differentiation, and re-epithelialization during wound healing. FINDINGS AND NOVELTY To improve wound contraction, this review delves into how the application of each bioactive molecule mediates with the inflammatory, proliferative, and remodeling phases of wound healing to speed up the process. This review also reveals the underlying mechanisms of the phytochemicals against different stages of wound healing along with the differentiation of the in vitro evidence from the in vivo evidence There is growing interest in phytochemicals, or plant-derived compounds, due their potential health benefits. This calls for more scientific analysis and mechanistic research. The various pathways that these phytochemicals control/modulate to improve skin regeneration and wound healing are also briefly reviewed. The current review also elaborates the immunomodulatory modes of action of different phytochemicals during wound repair.
Collapse
Affiliation(s)
- Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Sharjeel
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
17
|
Xue Q, Li J, Qin R, Li M, Li Y, Zhang J, Wang R, Goltzman D, Miao D, Yang R. Nrf2 activation by pyrroloquinoline quinone inhibits natural aging-related intervertebral disk degeneration in mice. Aging Cell 2024; 23:e14202. [PMID: 38780001 PMCID: PMC11320358 DOI: 10.1111/acel.14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Age-related intervertebral disk degeneration (IVDD) involves increased oxidative damage, cellular senescence, and matrix degradation. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound with strong anti-oxidant capacity. The goal of this study was to determine whether PQQ can prevent aging-related IVDD, and the underlying mechanism. Here, we found that dietary PQQ supplementation for 12 months alleviated IVDD phenotypes in aged mice, including increased disk height index and reduced histological scores and cell loss, without toxicity. Mechanistically, PQQ inhibited oxidative stress, cellular senescence, and senescence-associated secretory phenotype (SASP) in the nucleus pulposus and annulus fibrosus of aged mice. Similarly, PQQ protected against interleukin-1β-induced matrix degradation, reactive oxygen species accumulation, and senescence in human nucleus pulposus cells (NPCs) in vitro. Molecular docking predicted and biochemical assays validated that PQQ interacts with specific residues to dissociate the Keap1-Nrf2 complex, thereby increasing nuclear Nrf2 translocation and activation of Nrf2-ARE signaling. RNA sequencing and luciferase assays revealed Nrf2 can transcriptionally upregulate Wnt5a by binding to its promoter, while Wnt5a knockdown prevented PQQ inhibition of matrix metalloproteinase-13 in NPCs. Notably, PQQ supplementation failed to alleviate aging-associated IVDD phenotypes and oxidative stress in aged Nrf2 knockout mice, indicating Nrf2 is indispensable for PQQ bioactivities. Collectively, this study demonstrates Nrf2 activation by PQQ inhibits aging-induced IVDD by attenuating cellular senescence and matrix degradation. This study clarifies Keap1-Nrf2-Wnt5a axis as the novel signaling underlying the protective effects of PQQ against aging-related IVDD, and provides evidence for PQQ as a potential agent for clinical prevention and treatment of natural aging-induced IVDD.
Collapse
Affiliation(s)
- Qi Xue
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Jie Li
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Ran Qin
- Department of OrthopaedicsNanjing First HospitalNanjingChina
| | - Mingying Li
- Shenzhen Key Laboratory for Systemic Aging and InterventionShenzhen UniversityShenzhenChina
| | - Yiping Li
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Jing Zhang
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Rong Wang
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of MedicineMcGill UniversityMontrealQuebecCanada
| | - Dengshun Miao
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and EmbryologyNanjing Medical UniversityNanjingChina
| | - Renlei Yang
- Department of Plastic SurgeryAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| |
Collapse
|
18
|
Wang Z, Ma J, Sun Y, Jin Z, Zheng R, Li Y, Yu H, Ye H, Wu Y, Ge X, Chen Z. Isorhapontigenin delays senescence and matrix degradation of nucleus pulposus cells via PI3K/AKT/mTOR-mediated autophagy pathway in vitro and alleviates intervertebral disc degeneration in vivo. Int Immunopharmacol 2024; 139:112717. [PMID: 39067404 DOI: 10.1016/j.intimp.2024.112717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Intervertebral disc degeneration (IVDD), a common degenerative disc disease, is a major etiological factor for back pain, affecting a significant number of middle-aged and elderly individuals worldwide. Thus, IVDD is a major socio-economic burden. The factors contributing to the complex IVDD etiology, which has not been elucidated, include inflammation, oxidative stress, and natural aging. In particular, inflammation and aging of nucleus pulposus cells are considered primary pathogenic factors. Isorhapontigenin (ISO) is a polyphenolic compound commonly found in traditional Chinese herbs and grapes. We have demonstrated that ISO exerts anti-inflammatory and anti-aging effects and mitigates extracellular matrix (ECM) degradation. In this study, in vitro experiments revealed that, ISO delays aging and ECM degradation by promoting PI3K/AKT/mTOR-mediated autophagy. Meanwhile, in vivo experiments affirmed that ISO delays the progression of IVDD.
Collapse
Affiliation(s)
- Ze Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiawei Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zebin Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Rukang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuanyuan Li
- Aksu District People's Hospital, Aksu, Xinjiang, China
| | - Heng Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haobo Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xinjiang Ge
- Aksu District People's Hospital, Aksu, Xinjiang, China.
| | - Zexin Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
19
|
Sun R, Wang F, Zhong C, Shi H, Peng X, Gao JW, Wu XT. The regulatory mechanism of cyclic GMP-AMP synthase on inflammatory senescence of nucleus pulposus cell. J Orthop Surg Res 2024; 19:421. [PMID: 39034400 PMCID: PMC11265083 DOI: 10.1186/s13018-024-04919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Cellular senescence features irreversible growth arrest and secretion of multiple proinflammatory cytokines. Cyclic GMP-AMP synthase (cGAS) detects DNA damage and activates the DNA-sensing pathway, resulting in the upregulation of inflammatory genes and induction of cellular senescence. This study aimed to investigate the effect of cGAS in regulating senescence of nucleus pulposus (NP) cells under inflammatory microenvironment. METHODS The expression of cGAS was evaluated by immunohistochemical staining in rat intervertebral disc (IVD) degeneration model induced by annulus stabbing. NP cells were harvested from rat lumbar IVD and cultured with 10ng/ml IL-1β for 48 h to induce premature senescence. cGAS was silenced by cGAS specific siRNA in NP cells and cultured with IL-1β. Cellular senescence was evaluated by senescence-associated beta-galactosidase (SA-β-gal) staining and flow cytometry. The expression of senescence-associated secretory phenotype including IL-6, IL-8, and TNF-a was evaluated by ELISA and western blotting. RESULTS cGAS was detected in rat NP cells in cytoplasm and the expression was significantly increased in degenerated IVD. Culturing in 10ng/ml IL-1β for 48 h induced cellular senescence in NP cells with attenuation of G1-S phase transition. In senescent NP cells the expression of cGAS, p53, p16, NF-kB, IL-6, IL-8, TNF-α was significantly increased while aggrecan and collagen type II was reduced than in normal NP cells. In NP cells with silenced cGAS, the expression of p53, p16, NF-kB, IL-6, IL-8, and TNF-α was reduced in inflammatory culturing with IL-1β. CONCLUSION cGAS was increased by NP cells in degenerated IVD promoting cellular senescence and senescent inflammatory phenotypes. Targeting cGAS may alleviate IVD degeneration by reducing NP cell senescence.
Collapse
Affiliation(s)
- Rui Sun
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Feng Wang
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Cong Zhong
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Hang Shi
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
| | - Xin Peng
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Jia-Wei Gao
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China
| | - Xiao-Tao Wu
- Department of Orthopedics, School of Medicine, Zhongda Hospital, Southeast University, NO. 87 Ding Jia Qiao, Nanjing, Jiangsu Province, 210003, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210003, China.
| |
Collapse
|
20
|
Su NY, Ng MY, Liao HY, Liao YW, Wu M, Chao SC, Yu CC, Chang YC. Ganoderma Microsporum Immunomodulatory Protein Alleviates Inflammaging and Oxidative Stress in Diabetes-Associated Periodontitis via Nrf2 Signaling Activation: An In Vitro Study. Antioxidants (Basel) 2024; 13:817. [PMID: 39061886 PMCID: PMC11273761 DOI: 10.3390/antiox13070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Periodontitis, characterized by inflammation and loss of periodontal tissue, is a significant health complication for individuals with diabetes mellitus (DM). Buildup of advanced glycation end-products (AGEs) in DM poses an increased risk of periodontitis via inflammaging. Ganoderma immunomodulatory protein (GMI) shows promise in suppressing inflammaging by mitigating oxidative stress and inflammation via Nrf2 modulation. However, its specific protective effects are not fully understood. Thus, this study aimed to investigate GMI's anti-inflammaging properties and its underlying mechanism in diabetic-associated periodontitis (DP). We first simulated DP by culturing human gingival fibroblasts (HGFs) with AGEs and lipopolysaccharides from P. gingivalis (LPS). We then evaluated the impact of GMI on cell proliferation, migration and wound healing. Additionally, we assessed GMI's effects on the components of inflammaging such as reactive oxygen species (ROS) formation, cellular senescence expression, IL-6 and IL-8 secretions, and NF-κB phosphorylation. Next, we explored whether GMI's anti-inflammaging effects are mediated through the Nrf2 pathway by evaluating Nrf2 and HO-1, followed by the assessment of IL-6 and IL-8 post-Nrf2 knockdown. Our findings revealed that GMI treatment suppressed ROS production, cell senescence, IL-6 and IL-8 and NF-κB phosphorylation. Furthermore, GMI upregulated Nrf2/HO-1 expression and its protective effects were reversed when Nrf2 was knocked down. In conclusion, GMI exerts its anti-inflammaging effect via the modulation of the Nrf2/NF-κB signaling axis in DP in vitro, highlighting its potential as an effective adjunct treatment for diabetes-related periodontitis.
Collapse
Affiliation(s)
- Ni-Yu Su
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
| | - Heng-Yi Liao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Movina Wu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.L.)
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
21
|
Tian Z, Gao H, Xia W, Lou Z. S1PR3 suppresses the inflammatory response and extracellular matrix degradation in human nucleus pulposus cells. Exp Ther Med 2024; 27:265. [PMID: 38756905 PMCID: PMC11097297 DOI: 10.3892/etm.2024.12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 05/18/2024] Open
Abstract
Sphingosine 1-phosphate receptor 3 (S1PR3) participates in the inflammatory response in multiple types of diseases. However, the biological role of S1PR3 in intervertebral disc degeneration and the underlying mechanism are unclear. The aim of the present study was to investigate the functional role and the mechanism of S1PR3 in lipopolysaccharide (LPS)-induced human nucleus pulposus cells. The expression of S1PR3 and Toll-like receptor (TLR) 2 in LPS-induced nucleus pulposus (NP) cells was investigated using western blotting. The Cell Counting Kit-8 assay was used to detect cell proliferation, and the levels of inflammatory factors were detected using ELISA. Flow cytometry and western blotting were used for the assessment of apoptosis. The deposition of extracellular matrix (ECM) proteins was investigated using reverse transcription-quantitative PCR and western blotting. In addition, western blotting was used to investigate the protein expression levels of phosphorylated (p)-STAT3, STAT3, p-JNK, JNK, p-ERK, ERK, p-p38 and p38associated with STAT3 and MAPK signaling. S1PR3 expression was reduced, while TLR2 expression was elevated in LPS-induced human nucleus pulposus cells (HNPC). S1PR3 overexpression increased HNPC viability, inhibited the inflammatory response and suppressed apoptosis. Meanwhile, S1PR3 overexpression regulated the expression of ECM-related proteins. Additionally, overexpression of S1PR3 inhibited the expression of the TLR2-regulated STAT3 and MAPK pathways in LPS-induced HNPCs. Furthermore, TLR2 overexpression partially offset the impacts of S1PR3 overexpression on HNPC viability, apoptosis level, inflammation and as ECM degradation. In conclusion, STAT3 overexpression suppressed viability injury, the inflammatory response and the level of apoptosis and alleviated ECM protein deposition in HNPCs through the TLR2/STAT3 and TLR2/MAPK pathways, which may offer a promising candidate for the amelioration of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Haoran Gao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenjun Xia
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaohui Lou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
22
|
Zhang L, Xu LY, Tang F, Liu D, Zhao XL, Zhang JN, Xia J, Wu JJ, Yang Y, Peng C, Ao H. New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation. J Pharm Anal 2024; 14:100930. [PMID: 39005843 PMCID: PMC11245930 DOI: 10.1016/j.jpha.2023.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 07/16/2024] Open
Abstract
Non-communicable diseases (NCDs), including cardiovascular diseases, cancer, metabolic diseases, and skeletal diseases, pose significant challenges to public health worldwide. The complex pathogenesis of these diseases is closely linked to oxidative stress and inflammatory damage. Nuclear factor erythroid 2-related factor 2 (Nrf2), a critical transcription factor, plays an important role in regulating antioxidant and anti-inflammatory responses to protect the cells from oxidative damage and inflammation-mediated injury. Therefore, Nrf2-targeting therapies hold promise for preventing and treating NCDs. Quercetin (Que) is a widely available flavonoid that has significant antioxidant and anti-inflammatory properties. It modulates the Nrf2 signaling pathway to ameliorate oxidative stress and inflammation. Que modulates mitochondrial function, apoptosis, autophagy, and cell damage biomarkers to regulate oxidative stress and inflammation, highlighting its efficacy as a therapeutic agent against NCDs. Here, we discussed, for the first time, the close association between NCD pathogenesis and the Nrf2 signaling pathway, involved in neurodegenerative diseases (NDDs), cardiovascular disease, cancers, organ damage, and bone damage. Furthermore, we reviewed the availability, pharmacokinetics, pharmaceutics, and therapeutic applications of Que in treating NCDs. In addition, we focused on the challenges and prospects for its clinical use. Que represents a promising candidate for the treatment of NCDs due to its Nrf2-targeting properties.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
23
|
Xu T, Zhao H, Li J, Fang X, Wu H, Hu W. Apigetrin alleviates intervertebral disk degeneration by regulating nucleus pulposus cell autophagy. JOR Spine 2024; 7:e1325. [PMID: 38633661 PMCID: PMC11022626 DOI: 10.1002/jsp2.1325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Accepted: 02/25/2024] [Indexed: 04/19/2024] Open
Abstract
Background Intervertebral disk degeneration (IVDD) is a common spine disease, and inflammation is considered to be one of its main pathogenesis. Apigetrin (API) is a natural bioactive flavonoid isolated from various herbal medicines and shows attractive anti-inflammatory and antioxidative properties; whereas, there is no exploration of the therapeutic potential of API on IVDD. Here, we aim to explore the potential role of API on IVDD in vivo and in vitro. Methods In vitro, western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence analysis were implemented to explore the bioactivity of API on interleukin-1 beta (IL-1β)-induced inflammatory changes in nucleus pulposus cells (NPCs). In vivo, histological staining and immunohistochemistry were employed to investigate the histological changes of intervertebral disk sections on puncture-induced IVDD rat models. Results In vitro, API played a crucial role in anti-inflammation and autophagy enhancement in IL-1β-induced NPCs. API improved inflammation by inhibiting the nuclear factor-kappaB and mitogen-activated protein kinas pathways, whereas it promoted autophagy via the phosphatidylinositol 3-kinase/AKT/mammalian target of the rapamycin pathway. Furthermore, in vivo experiment illustrated that API mitigates the IVDD progression in puncture-induced IVDD model. Conclusions API inhibited degenerative phenotypes and promoted autophagy in vivo and in vitro IVDD models. Those suggested that API might be a potential drug or target for IVDD.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jian Li
- Department of OrthopaedicsThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalTaiyuanChina
| | - Xuan Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Weihua Hu
- Department of Orthopedics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
24
|
Geng H, Huang C, Xu L, Zhou Y, Dong Z, Zhong Y, Li Q, Yang C, Huang S, Liao W, Lin Y, Liu Z, Li Q, Zhang Z, Zhu C. Targeting cellular senescence as a therapeutic vulnerability in gastric cancer. Life Sci 2024; 346:122631. [PMID: 38621585 DOI: 10.1016/j.lfs.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
AIMS Cellular senescence (CS) represents an intracellular defense mechanism responding to stress signals and can be leveraged as a "vulnerability" in cancer treatment. This study aims to construct a CS atlas for gastric cancer (GC) and uncover potential therapeutics for GC patients. MATERIALS AND METHODS 38 senescence-associated regulators with prognostic significance in GC were obtained from the CellAge database to construct Gastric cancer-specific Senescence Score (GSS). Using eXtreme Sum algorism, GSS-based drug repositioning was conducted to identify drugs that could antagonize GSS in CMap database. In vitro experiments were conducted to test the effect of combination of palbociclib and exisulind in eliminating GC cells. KEY FINDINGS Patients with high GSS exhibited CS-related features, such as CS markers upregulation, adverse clinical outcomes and hypomethylation status. scRNA-seq data showed malignant cells with high GSS exhibited enhanced senescence state and more immunosuppressive signals such as PVR-CD96 compared with malignant cells with low GSS. In addition, the GSS-High cancer associated fibroblasts might secrete cytokines and chemokines such as IL-6, CXCL1, CXCL12, and CCL2 to from an immunosuppressive microenvironment, and GSS could serve as an indicator for immunotherapy resistance. Exisulind exhibited the greatest potential to reverse GSS. In vitro experiments demonstrated that exisulind could induce apoptosis and suppress the proliferation of palbociclib-induced senescent GC cells. SIGNIFICANCE Overall, GSS offers a framework for better understanding of correlation between senescence and GC, which might provide new insights into the development of novel therapeutics in GC.
Collapse
Affiliation(s)
- Haigang Geng
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Yangyang Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhongyi Dong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqing Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Li
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Shaozhuo Huang
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Weixin Liao
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Yuxuan Lin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Qing Li
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
25
|
Li T, Li S, Ma K, Kong J. Application potential of senolytics in clinical treatment. Biogerontology 2024; 25:379-398. [PMID: 38109001 DOI: 10.1007/s10522-023-10084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Of the factors studied in individual ageing, the accumulation of senescent cells has been considered as an essential cause of organ degeneration to eventually initiate age-related diseases. Cellular senescence is attributed to the accumulation of damage for an inducement in the activation of cell cycle inhibitory pathways, resulting the cell permanently withdraw from the cell proliferation cycle. Further, senescent cells will activate the inflammatory factor secretion pathway to promote the development of various age-related diseases. Senolytics, a small molecule compound, can delay disease development and extend mammalian lifespan. The evidence from multiple trials shows that the targeted killing of senescent cells has a significant clinical application for the treatment of age-related diseases. In addition, senolytics are also significant for the development of ageing research in solid organ transplantation, which can fully develop the potential of elderly organs and reduce the age gap between demand and supply. We conclude that the main characteristics of cellular senescence, the anti-ageing drug senolytics in the treatment of chronic diseases and organ transplantation, and the latest clinical progress of related researches in order to provide a theoretical basis for the prevention and treatment of ageing and related diseases.
Collapse
Affiliation(s)
- Tiantian Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China
| | - Shiyuan Li
- West China School of Pharmacy, Sichuan University, Chengdu, 610207, Sichuan, People's Republic of China
| | - Kefeng Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China.
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Li M, Yu X, Chen X, Jiang Y, Zeng Y, Ren R, Nie M, Zhang Z, Bao Y, Kang H. Genkwanin alleviates intervertebral disc degeneration via regulating ITGA2/PI3K/AKT pathway and inhibiting apoptosis and senescence. Int Immunopharmacol 2024; 133:112101. [PMID: 38640717 DOI: 10.1016/j.intimp.2024.112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1β-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1β. Furthermore, genkwanin alleviated Interleukin-1β-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.
Collapse
Affiliation(s)
- Mengwei Li
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Xin Chen
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongqiao Jiang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunqian Zeng
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ranyue Ren
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mingbo Nie
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziyang Zhang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuan Bao
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hao Kang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
27
|
Williams ZJ, Chow L, Dow S, Pezzanite LM. The potential for senotherapy as a novel approach to extend life quality in veterinary medicine. Front Vet Sci 2024; 11:1369153. [PMID: 38812556 PMCID: PMC11133588 DOI: 10.3389/fvets.2024.1369153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Cellular senescence, a condition where cells undergo arrest and can assume an inflammatory phenotype, has been associated with initiation and perpetuation of inflammation driving multiple disease processes in rodent models and humans. Senescent cells secrete inflammatory cytokines, proteins, and matrix metalloproteinases, termed the senescence associated secretory phenotype (SASP), which accelerates the aging processes. In preclinical models, drug interventions termed "senotherapeutics" selectively clear senescent cells and represent a promising strategy to prevent or treat multiple age-related conditions in humans and veterinary species. In this review, we summarize the current available literature describing in vitro evidence for senotheraputic activity, preclinical models of disease, ongoing human clinical trials, and potential clinical applications in veterinary medicine. These promising data to date provide further justification for future studies identifying the most active senotherapeutic combinations, dosages, and routes of administration for use in veterinary medicine.
Collapse
Affiliation(s)
- Zoë J. Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
28
|
Joma N, Bielawski P, Saini A, Kakkar A, Maysinger D. Nanocarriers for natural polyphenol senotherapeutics. Aging Cell 2024; 23:e14178. [PMID: 38685568 PMCID: PMC11113259 DOI: 10.1111/acel.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
Senescence is a heterogenous and dynamic process in which various cell types undergo cell-cycle arrest due to cellular stressors. While senescence has been implicated in aging and many human pathologies, therapeutic interventions remain inadequate due to the absence of a comprehensive set of biomarkers in a context-dependent manner. Polyphenols have been investigated as senotherapeutics in both preclinical and clinical settings. However, their use is hindered by limited stability, toxicity, modest bioavailability, and often inadequate concentration at target sites. To address these limitations, nanocarriers such as polymer nanoparticles and lipid vesicles can be utilized to enhance the efficacy of senolytic polyphenols. Focusing on widely studied senolytic agents-specifically fisetin, quercetin, and resveratrol-we provide concise summaries of their physical and chemical properties, along with an overview of preclinical and clinical findings. We also highlight common signaling pathways and potential toxicities associated with these agents. Addressing challenges linked to nanocarriers, we present examples of senotherapeutic delivery to various cell types, both with and without nanocarriers. Finally, continued research and development of senolytic agents and nanocarriers are encouraged to reduce the undesirable effects of senescence on different cell types and organs. This review underscores the need for establishing reliable sets of senescence biomarkers that could assist in evaluating the effectiveness of current and future senotherapeutic candidates and nanocarriers.
Collapse
Affiliation(s)
- Natali Joma
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealQuebecCanada
| | | | - Anjali Saini
- Department of ChemistryMcGill UniversityMontrealQuebecCanada
| | - Ashok Kakkar
- Department of ChemistryMcGill UniversityMontrealQuebecCanada
| | - Dusica Maysinger
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
29
|
Tanaka T, Urata Y, Harada M, Kunitomi C, Kusamoto A, Koike H, Xu Z, Sakaguchi N, Tsuchida C, Komura A, Teshima A, Takahashi N, Wada-Hiraike O, Hirota Y, Osuga Y. Cellular senescence of granulosa cells in the pathogenesis of polycystic ovary syndrome. Mol Hum Reprod 2024; 30:gaae015. [PMID: 38603629 PMCID: PMC11060870 DOI: 10.1093/molehr/gaae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, but its pathology has not been fully characterized and the optimal treatment strategy remains unclear. Cellular senescence is a permanent state of cell-cycle arrest that can be induced by multiple stresses. Senescent cells contribute to the pathogenesis of various diseases, owing to an alteration in secretory profile, termed 'senescence-associated secretory phenotype' (SASP), including with respect to pro-inflammatory cytokines. Senolytics, a class of drugs that selectively eliminate senescent cells, are now being used clinically, and a combination of dasatinib and quercetin (DQ) has been extensively used as a senolytic. We aimed to investigate whether cellular senescence is involved in the pathology of PCOS and whether DQ treatment has beneficial effects in patients with PCOS. We obtained ovaries from patients with or without PCOS, and established a mouse model of PCOS by injecting dehydroepiandrosterone. The expression of the senescence markers p16INK4a, p21, p53, γH2AX, and senescence-associated β-galactosidase and the SASP-related factor interleukin-6 was significantly higher in the ovaries of patients with PCOS and PCOS mice than in controls. To evaluate the effects of hyperandrogenism and DQ on cellular senescence in vitro, we stimulated cultured human granulosa cells (GCs) with testosterone and treated them with DQ. The expression of markers of senescence and a SASP-related factor was increased by testosterone, and DQ reduced this increase. DQ reduced the expression of markers of senescence and a SASP-related factor in the ovaries of PCOS mice and improved their morphology. These results indicate that cellular senescence occurs in PCOS. Hyperandrogenism causes cellular senescence in GCs in PCOS, and senolytic treatment reduces the accumulation of senescent GCs and improves ovarian morphology under hyperandrogenism. Thus, DQ might represent a novel therapy for PCOS.
Collapse
Affiliation(s)
- Tsurugi Tanaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Urata
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chisato Kunitomi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akari Kusamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Koike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Zixin Xu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nanoka Sakaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihiro Tsuchida
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Airi Komura
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayaka Teshima
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Culletta G, Buttari B, Arese M, Brogi S, Almerico AM, Saso L, Tutone M. Natural products as non-covalent and covalent modulators of the KEAP1/NRF2 pathway exerting antioxidant effects. Eur J Med Chem 2024; 270:116355. [PMID: 38555855 DOI: 10.1016/j.ejmech.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
By controlling several antioxidant and detoxifying genes at the transcriptional level, including NAD(P)H quinone oxidoreductase 1 (NQO1), multidrug resistance-associated proteins (MRPs), UDP-glucuronosyltransferase (UGT), glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, glutathione S-transferase (GST), sulfiredoxin1 (SRXN1), and heme-oxygenase-1 (HMOX1), the KEAP1/NRF2 pathway plays a crucial role in the oxidative stress response. Accordingly, the discovery of modulators of this pathway, activating cellular signaling through NRF2, and targeting the antioxidant response element (ARE) genes is pivotal for the development of effective antioxidant agents. In this context, natural products could represent promising drug candidates for supplementation to provide antioxidant capacity to human cells. In recent decades, by coupling in silico and experimental methods, several natural products have been characterized to exert antioxidant effects by targeting the KEAP1/NRF2 pathway. In this review article, we analyze several natural products that were investigated experimentally and in silico for their ability to modulate KEAP1/NRF2 by non-covalent and covalent mechanisms. These latter represent the two main sections of this article. For each class of inhibitors, we reviewed their antioxidant effects and potential therapeutic applications, and where possible, we analyzed the structure-activity relationship (SAR). Moreover, the main computational techniques used for the most promising identified compounds are detailed in this survey, providing an updated view on the development of natural products as antioxidant agents.
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
31
|
Pretto L, Nabinger E, Filippi-Chiela EC, Fraga LR. Cellular senescence in reproduction: a two-edged sword†. Biol Reprod 2024; 110:660-671. [PMID: 38480995 DOI: 10.1093/biolre/ioae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/16/2024] Open
Abstract
Cellular senescence (CS) is the state when cells are no longer capable to divide even after stimulation with grown factors. Cells that begin to undergo CS stop in the cell cycle and enter a suspended state without committing to programmed cell death. These cells assume a specific phenotype and influence their microenvironment by secreting molecules and extracellular vesicles that are part of the so-called senescent cell-associated secretory phenotype (SASP). Cellular senescence is intertwined with physiological and pathological conditions in the human organism. In terms of reproduction, senescent cells are present from reproductive tissues and germ cells to gestational tissues, and participate from fertilization to delivery, going through adverse reproductive outcomes such as pregnancy losses. Furthermore, various SASP molecules are enriched in gestational tissues throughout pregnancy. Thus, the aim of this review is to provide a basis about the features and potential roles played by CS throughout the reproductive process, encompassing its implication in each step of it and proposing a way to manage it in adverse reproductive contexts.
Collapse
Affiliation(s)
- Luiza Pretto
- Post-Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduarda Nabinger
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduardo Cremonesi Filippi-Chiela
- Department of Morphological Science, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Post-Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Morphological Science, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Teratology Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
32
|
Chen M, Liu M, Chen J, Liu X, Tang L, Wang C, Yu Z, Zhang Y, Tian J. Potential Function of 3,5-Dihydroxy-4-Methoxybenzyl Alcohol from Pacific Oyster (Crassostrea gigas) in Brain of Old Mice. Mol Nutr Food Res 2024; 68:e2300469. [PMID: 38522025 DOI: 10.1002/mnfr.202300469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/25/2023] [Indexed: 03/25/2024]
Abstract
SCOPE 3,5-Dihydroxy-4-methoxybenzyl alcohol (DHMBA) is found in oyster extracts in recent years and is reported to have antioxidant activity. Although it has been reported to be protective in various models of oxidative stress, the therapeutic effect of DHMBA on neurological damage caused by aging remains to be demonstrated. METHODS AND RESULTS The present study investigates the potential functions of DHMBA in brain of old C57BL/6J mice and aging cell model. Administration of DHMBA improves working memory, reduces anxiety behavior, decreases the expression levels of cell cycle proteins, cycin-dependent kinase inhibitor 1(P21) and peptidase inhibitor 16(P16) and inhibits neuronal loss in old mice. The data obtained from the aging cell model are consistent with those from the old mice. The interaction between DHMBA and Kelch-like ECH-associated protein 1 (Keap1) is predicted by molecular docking assay, and then it is verified by co-immunopricipitation (CoIP) that factor red lineage 2-related factor 2 (Nrf2)-Keap1 protein-protein interaction is inhibited by DHMBA. Protein levels of Nrf2 and its target genes, such as glutathione peroxidase 4(GPX4) and heme oxygenase 1 (HO-1), are detected in old mice and aging cell model. CONCLUSION This study provides new evidence that explores the antioxidant mechanism of DHMBA and implies a potential role of DHMBA on antiaging in brain.
Collapse
Affiliation(s)
- MinYu Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life, Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Min Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life, Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - JingHong Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life, Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xinwei Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life, Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - LiWei Tang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life, Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Ziniu Yu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yang Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life, Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
33
|
Liu L, Wang W, Huang L, Xian Y, Ma W, Fan J, Li Y, Liu H, Zheng Z, Wu D. Injectable pathological microenvironment-responsive anti-inflammatory hydrogels for ameliorating intervertebral disc degeneration. Biomaterials 2024; 306:122509. [PMID: 38377847 DOI: 10.1016/j.biomaterials.2024.122509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Chronic local inflammation and resulting cellular dysfunction of nucleus pulposus (NP) cells are important pathogenic factors of intervertebral disc degeneration (IDD). Injectable pathological microenvironment-responsive hydrogels hold significant potential for treating IDD by adapting to dynamic microenvironment of IDD. Herein, we proposed an injectable gelatin-based hydrogel drug delivery system that could respond to the pathological microenvironment of IDD for controlled release of anti-inflammatory drug to promote degenerative NP repair. The hydrogel system was prepared by conjugating phenylboronic acid-modified gelatin methacryloyl (GP) with the naturally extracted anti-inflammatory drug epigallocatechin-3-gallate (EGCG) through dynamic boronic esters. The hydrogel exhibited excellent degradability, injectability, antioxidant properties, anti-inflammatory effects, and biocompatibility. It also displayed responsive-release of EGCG under high reactive oxygen species (ROS) levels and acidic conditions. The hydrogel demonstrated remarkable cytoprotective effects on NP cells in both hyperactive ROS environments and inflammatory cytokine-overexpressed environments in vitro. In vivo studies revealed that the hydrogel injected in situ could effectively ameliorate the intervertebral disc degeneration by maintaining the disc height and NP tissue structure in a rat IDD model. The hydrogel system exhibited excellent biocompatibility and responsive-release of diol-containing drugs in pathological microenvironments, indicating its potential application as a drug delivery platform.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wantao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China; Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenzheng Ma
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China; Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jinghao Fan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yixi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China; Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
34
|
Mao T, Fan J. Myricetin Protects Against Rat Intervertebral Disc Degeneration Partly Through the Nrf2/HO-1/NF-κB Signaling Pathway. Biochem Genet 2024; 62:950-967. [PMID: 37507641 DOI: 10.1007/s10528-023-10456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a prevalent musculoskeletal disorder. Nucleus pulposus cells (NPCs) play a significant role in the normal functioning of the IVD. Myricetin is an agent that exerts anti-inflammatory and antioxidant effects in various pathological conditions. Here, we investigated the ameliorative effects of myricetin on the IVD degeneration. NPCs were obtained from the IVD of rats, and were treated with myricetin (0, 5, 10, 15, 20 μM) for 24 h before 20 ng/mL IL-1β stimulation. RT-qPCR, western blotting, and ELISA were applied to evaluate the levels of inflammatory factors (iNOS, COX-2, TNF-α, IL-6, PGE2, and Nitrite) and extracellular matrix (ECM)-associated components (MMP13, ADAMTS-5, aggrecan, and collagen II) in NPCs. Activation status of related signaling pathways (NF-κB and Nrf2) was determined using western blotting and immunofluorescence staining. Experimental rat models of IDD were established using a needle puncture method. Myricetin (20 mg/kg) was administrated intraperitoneally, and the degeneration was evaluated using histopathological analysis. Myricetin treatment attenuated the IL-1β-induced production of inflammatory factors in NPCs. Downregulation of aggrecan and collagen II as well as upregulation of MMP-13 and ADAMTS-5 in NPCs caused by IL-1β was reversed by myricetin treatment. Mechanistically, myricetin blocked NF-κB signaling by activation of Nrf2 in IL-1β-stimulated NPCs. Moreover, inhibition of Nrf2 reversed the protective effects of myricetin in NPCs. The in vivo experiments showed that myricetin ameliorated the IDD progression in rats. The present work suggests that Nrf2 is involved in the pathogenesis of IDD and shows the protective effects as well as the underlying mechanism of myricetin on Nrf2 activation in NPCs.
Collapse
Affiliation(s)
- Tian Mao
- Department of Orthopedic Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China
| | - Junchi Fan
- Department of Orthopedics Ward 1, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, No. 11, Lingjiaohu Road, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
35
|
Ansari MM, Ghosh M, Lee DS, Son YO. Senolytic therapeutics: An emerging treatment modality for osteoarthritis. Ageing Res Rev 2024; 96:102275. [PMID: 38494091 DOI: 10.1016/j.arr.2024.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Osteoarthritis (OA), a chronic joint disease affecting millions of people aged over 65 years, is the main musculoskeletal cause of diminished joint mobility in the elderly. It is characterized by lingering pain and increasing deterioration of articular cartilage. Aging and accumulation of senescent cells (SCs) in the joints are frequently associated with OA. Apoptosis resistance; irreversible cell cycle arrest; increased p16INK4a expression, secretion of senescence-associated secretory phenotype factors, senescence-associated β-galactosidase levels, secretion of extracellular vesicles, and levels of reactive oxygen and reactive nitrogen species; and mitochondrial dysregulation are some common changes in cellular senescence in joint tissues. Development of OA correlates with an increase in the density of SCs in joint tissues. Senescence-associated secretory phenotype has been linked to OA and cartilage breakdown. Senolytics and therapeutic pharmaceuticals are being focused upon for OA management. SCs can be selectively eliminated or killed by senolytics to halt the pathogenesis and progression of OA. Comprehensive understanding of how aging affects joint dysfunction will benefit OA patients. Here, we discuss age-related mechanisms associated with OA pathogenesis and senolytics as an emerging modality in the management of age-related SCs and pathogenesis of OA in preclinical and clinical studies.
Collapse
Affiliation(s)
- Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju 63243, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
36
|
Wang T, Yan X, Song D, Li Y, Li Z, Feng D. CircEYA3 aggravates intervertebral disc degeneration through the miR-196a-5p/EBF1 axis and NF-κB signaling. Commun Biol 2024; 7:390. [PMID: 38555395 PMCID: PMC10981674 DOI: 10.1038/s42003-024-06055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a well-established cause of disability, and extensive evidence has identified the important role played by regulatory noncoding RNAs, specifically circular RNAs (circRNAs) and microRNAs (miRNAs), in the progression of IDD. To elucidate the molecular mechanism underlying IDD, we established a circRNA/miRNA/mRNA network in IDD through standardized analyses of all expression matrices. Our studies confirmed the differential expression of the transcription factors early B-cell factor 1 (EBF1), circEYA3, and miR-196a-5p in the nucleus pulposus (NP) tissues of controls and IDD patients. Cell proliferation, apoptosis, and extracellular mechanisms of degradation in NP cells (NPC) are mediated by circEYA3. MiR-196a-5p is a direct target of circEYA3 and EBF1. Functional analysis showed that miR-196a-5p reversed the effects of circEYA3 and EBF1 on ECM degradation, apoptosis, and proliferation in NPCs. EBF1 regulates the nuclear factor kappa beta (NF-кB) signalling pathway by activating the IKKβ promoter region. This study demonstrates that circEYA3 plays an important role in exacerbating the progression of IDD by modulating the NF-κB signalling pathway through regulation of the miR196a-5p/EBF1 axis. Consequently, a novel molecular mechanism underlying IDD development was elucidated, thereby identifying a potential therapeutic target for future exploration.
Collapse
Affiliation(s)
- Tianfu Wang
- Department of Spinal Surgery, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xiaobing Yan
- Department of Spinal Surgery, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China
| | - Dehui Song
- Department of Spinal Surgery, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China
- Department of Orthopaedics, Dandong Central Hospital, 338 Jinshan Street, Zhenxing District, Dandong, 118000, Liaoning, China
| | - Yingxia Li
- Department of Spinal Surgery, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China
| | - Zhengwei Li
- Department of Spinal Surgery, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China
| | - Dapeng Feng
- Department of Spinal Surgery, The Second Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China.
| |
Collapse
|
37
|
Li L, Fan Q, Zhao Y, Zhang Q, Qin G, Li C, Li W. Gentiopicroside ameliorates the lipopolysaccharide-induced inflammatory response and hypertrophy in chondrocytes. J Orthop Surg Res 2024; 19:198. [PMID: 38528538 DOI: 10.1186/s13018-024-04676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
PURPOSE This study aimed to evaluate the protective effects of gentiopicroside against lipopolysaccharide-induced chondrocyte inflammation. METHODS SW 1353 chondrosarcoma cells were stimulated with LPS (5 μg/ml) for 24 h and treated with different concentrations of gentiopicroside (GPS) for 24 h. The toxic effects of GPS on chondrocytes were determined using a CCK-8 assay and EdU staining. Western blotting, qPCR, and immunofluorescence analysis were used to examine the protective effect of GPS against the inflammatory response in chondrocytes induced by lipopolysaccharide (LPS). One-way ANOVA was used to compare the differences between the groups (significance level of 0.05). RESULTS The CCK-8 results showed that 10, 20 and 40 μM GPS had no significant toxic effects on chondrocytes; GPS effectively reduced the production of IL-1β and PGE2, reversed LPS-induced extracellular matrix degradation in cartilage by inhibiting the Stat3/Runx2 signaling pathway, and suppressed the hypertrophic transformation of SW 1353 chondrosarcoma cells. CONCLUSION Our study demonstrated that GPS significantly inhibited the LPS-induced inflammatory response and hypertrophic cellular degeneration in SW 1353 chondrosarcoma cells and is a valuable traditional Chinese medicine for the treatment of knee osteoarthritis.
Collapse
Affiliation(s)
- Longfei Li
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, China
| | - Qianqian Fan
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yixuan Zhao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, China
| | - Qian Zhang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, China
| | - Gaofeng Qin
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Wei Li
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
38
|
Mao H, Feng Y, Feng J, Yusufu Y, Sun M, Yang L, Jiang Q. Quercetin-3-O-β-D-glucuronide attenuates osteoarthritis by inhibiting cartilage extracellular matrix degradation and inflammation. J Orthop Translat 2024; 45:236-246. [PMID: 38601200 PMCID: PMC11004501 DOI: 10.1016/j.jot.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 04/12/2024] Open
Abstract
Objective Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage damage. In order to find a safer and more effective drug to treat OA, we investigated the role of quercetin-3-O-β-D-glucuronide (Q3GA) in OA. Methods We used qRT-PCR and western blots to detect the effects of Q3GA on extracellular matrix (ECM) and inflammation related genes and proteins in interleukin-1β (IL-1β) induced chondrocytes. We determined the effect of Q3GA on the NF-κB pathway using western blots and immunofluorescence. Moreover, the effect of Q3GA on the Nrf2 pathway was evaluated through molecular docking, western blots, and immunofluorescence experiments and further validated by transfection with Nrf2 siRNA. Subsequently, we established a rat model of OA and injected Q3GA into the joint cavity for treatment. After 5 weeks of Q3GA administration, samples were obtained for micro-computed tomography scanning and histopathological staining to determine the effects of Q3GA on OA rats. Results We found that Q3GA reduced the degradation of ECM and the expression of inflammatory related proteins and genes in primary chondrocytes of rats induced by IL-1β, as well as the expression of nitric oxide (NO) and reactive oxygen species (ROS). It inhibited the activation of the NF-κB pathway by increasing the expression of Nrf2 in the nucleus. In addition, Q3GA inhibited cartilage degradation in OA rats and promoted cartilage repair. Conclusion Q3GA attenuates OA by inhibiting ECM degradation and inflammation via the Nrf2/NF-κB axis. The translational potential of this article The results of our study demonstrate the promising potential of Q3GA as a candidate drug for the treatment of OA and reveal its key mechanisms.
Collapse
Affiliation(s)
- Haijun Mao
- Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Yanwei Feng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Juan Feng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yalikun Yusufu
- Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, China
| | - Minghui Sun
- Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qing Jiang
- Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, China
| |
Collapse
|
39
|
Sun K, Sun J, Yan C, Sun J, Xu X, Shi J. Sympathetic Neurotransmitter, VIP, Delays Intervertebral Disc Degeneration via FGF18/FGFR2-Mediated Activation of Akt Signaling Pathway. Adv Biol (Weinh) 2024; 8:e2300250. [PMID: 38047500 DOI: 10.1002/adbi.202300250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Indexed: 12/05/2023]
Abstract
Neuromodulation-related intervertebral disc degeneration (IVDD) is a novel IVDD pattern and are proposed recently. However, the mechanistic basis of neuromodulation and intervertebral disc (IVD) homeostasis remains unclear. Here, this study aimed to investigate the expression of postganglionic sympathetic nerve fiber-derived vasoactive intestinal peptide (VIP) system in human IVD tissue, and to assess the role of VIP-related neuromodulation in IVDD. Patient samples and in vitro cell experiments showed that the expression of receptors for VIP is negatively correlated with the severity of IVDD, and the administration of exogenous VIP can ameliorate interleukin 1β-induced nucleus pulposus (NP) cell apoptosis and inflammation. Further mRNA-seq analysis revealed that fibroblast growth factor 18- (FGF18)-mediated activation of V-akt murine thymoma viral oncogene homolog signaling pathway is involved in the protective effects of VIP on inflammation-induced NP cell degeneration. Further analysis identified VIP via its receptor vasoactive intestinal peptide receptor 2 can directly result in decreased expression of miR-15a-5p, which targeted FGF18. Finally, in vivo mice lumbar IVDD model confirmed that focally exogenous administration of VIP can effectively ameliorated the progression of IVDD, as shown by the radiological and histological analysis. In conclusion, these results indicated that sympathetic neurotransmitter, VIP, delayed IVDD via FGF18/FGFR2-mediated activation of V-akt murine thymoma viral oncogene homolog signaling pathway, which will broaden the horizon concerning how the neuromodulation correlates with IVDD and shed new light on novel therapeutical alternatives to IVDD.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai, 200003, China
- Department of Orthopedics, Naval Medical Center of PLA, Navy Medical University, No.338 Western HuaiHai Road, Shanghai, 200003, China
| | - Jiuyi Sun
- Department of Orthopedics, Naval Medical Center of PLA, Navy Medical University, No.338 Western HuaiHai Road, Shanghai, 200003, China
| | - Chen Yan
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Ximing Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| | - Jiangang Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai, 200003, China
| |
Collapse
|
40
|
Liu Y, Dou Y, Sun X, Yang Q. Mechanisms and therapeutic strategies for senescence-associated secretory phenotype in the intervertebral disc degeneration microenvironment. J Orthop Translat 2024; 45:56-65. [PMID: 38495743 PMCID: PMC10943956 DOI: 10.1016/j.jot.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
As a permanent state of cell cycle arrest, cellular senescence has become an important factor in aging and age-related diseases. As a central regulator of physiology and pathology associated with cellular senescence, the senescence associated secretory phenotype can create an inflammatory and catabolic environment through autocrine and paracrine ways, ultimately affecting tissue microstructure. As an age-related disease, the correlation between intervertebral disc degeneration and cellular senescence has been confirmed by many studies. Various pathological factors in the microenvironment of intervertebral disc degeneration promote senescent cells to produce and accumulate and express excessive senescence associated secretory phenotype. In this case, senescence associated secretory phenotype has received considerable attention as a potential target for delaying or treating disc degeneration. Therefore, we reviewed the latest research progress of senescence associated secretory phenotype, related regulatory mechanisms and intervertebral disc cell senescence treatment strategies. It is expected that further understanding of the underlying mechanism between cellular senescence pathology and intervertebral disc degeneration will help to formulate reasonable senescence regulation strategies, so as to achieve ideal therapeutic effects. The translational potential of this article Existing treatment strategies often fall short in addressing the challenge of repairing intervertebral disc Intervertebral disc degeneration(IVD) degeneration. The accumulation of senescent cells and the continuous release of senescence-associated secretory phenotype (SASP) perpetually impede disc homeostasis and hinder tissue regeneration. This impairment in repair capability presents a significant obstacle to the practical clinical implementation of strategies for intervertebral disc degeneration. As a result, we present a comprehensive overview of the latest advancements in research, the associated regulatory mechanisms, and strategies for treating SASP in IVD cells. This article aims to investigate effective interventions for delaying the onset and progression of age-related intervertebral disc degeneration. In an era where the aging population is becoming increasingly prominent, this endeavor holds paramount practical and translational significance.
Collapse
Affiliation(s)
- Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
41
|
Wang X, Li X, Zhou J, Lei Z, Yang X. Fisetin suppresses chondrocyte senescence and attenuates osteoarthritis progression by targeting sirtuin 6. Chem Biol Interact 2024; 390:110890. [PMID: 38278314 DOI: 10.1016/j.cbi.2024.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Osteoarthritis (OA) is the most common type of arthritis and is an age-related joint disease that is particularly prevalent in subjects over 65 years old. The chronic rise of senescent cells has a close correlation with age-related diseases such as OA, and the senescence-associated secretory phenotype (SASP) is implicated in OA cartilage degeneration pathogenesis. Sirtuin 6 (SIRT6) is likely to be a key senescence-related regulator. Fisetin (FST) is a natural flavonol of the flavonoid family that is recommended as a senolytic drug to extend health and lifespan. However, the potential chondroprotective effects of FST on OA rats are largely unclarified. The aim of this study is to investigate the ameliorative effects of FST on OA joint cartilage and the relationship with SIRT6 and the detailed mechanisms from anti-inflammatory and anti-senescent perspectives. Rats were subjected to destabilization of the medial meniscus (DMM) surgery as a means of inducing the experimental OA model in vivo. Chondrocytes treated with IL-1β were utilized for mimicking the OA cell model in vitro. Intra-articular injection of FST, OSS_128,167 (OSS, SIRT6 inhibitor), and MDL800 (MDL, SIRT6 agonist) in vivo or administering them in IL-1β-induced rat chondrocytes in vitro were performed in order to determine the effects FST has on OA and the link with SIRT6. This study found SIRT6 level to be negatively correlated with OA severity. SIRT6 downregulation was validated in the joint cartilages of DMM rats and IL-1β-treated chondrocytes. It was also notably demonstrated that FST can activate SIRT6. Both the administration of FST and activation of SIRT6 using MDL were found to rescue cartilage erosion, decrease extracellular matrix (ECM) degradation, prevent cartilage from apoptosis, and improve detrimental senescence-related phenotype. The alleviative effects of FST against inflammation, ECM degradation, apoptosis, and senescence in IL-1β-stimulated chondrocytes were also confirmed. SIRT6 loss occurs in articular cartilage in OA pathogenesis, which is linked to aging. FST attenuates injury-induced aging-related phenotype changes in chondrocytes through the targeting of SIRT6.
Collapse
Affiliation(s)
- Xuezhong Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuyang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianlin Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zheng Lei
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
42
|
Wang T, Lv L, Feng H, Gu W. Unlocking the Potential: Quercetin and Its Natural Derivatives as Promising Therapeutics for Sepsis. Biomedicines 2024; 12:444. [PMID: 38398046 PMCID: PMC10887054 DOI: 10.3390/biomedicines12020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Sepsis is a syndrome of organ dysfunction caused by an uncontrolled inflammatory response, which can seriously endanger life. Currently, there is still a shortage of specific therapeutic drugs. Quercetin and its natural derivatives have received a lot of attention recently for their potential in treating sepsis. Here, we provide a comprehensive summary of the recent research progress on quercetin and its derivatives, with a focus on their specific mechanisms of antioxidation and anti-inflammation. To obtain the necessary information, we conducted a search in the PubMed, Web of Science, EBSCO, and Cochrane library databases using the keywords sepsis, anti-inflammatory, antioxidant, anti-infection, quercetin, and its natural derivatives to identify relevant research from 6315 articles published in the last five years. At present, quercetin and its 11 derivatives have been intensively studied. They primarily exert their antioxidation and anti-inflammation effects through the PI3K/AKT/NF-κB, Nrf2/ARE, and MAPK pathways. The feasibility of these compounds in experimental models and clinical application were also discussed. In conclusion, quercetin and its natural derivatives have good application potential in the treatment of sepsis.
Collapse
Affiliation(s)
- Tian Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, China; (T.W.); (L.L.)
| | - Linxi Lv
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, China; (T.W.); (L.L.)
| | - Hui Feng
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, China; (T.W.); (L.L.)
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400030, China; (T.W.); (L.L.)
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
43
|
Nieto M, Konigsberg M, Silva-Palacios A. Quercetin and dasatinib, two powerful senolytics in age-related cardiovascular disease. Biogerontology 2024; 25:71-82. [PMID: 37747577 DOI: 10.1007/s10522-023-10068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Cellular senescence is characteristic of the development and progression of multiple age-associated diseases. Accumulation of senescent cells in the heart contributes to various age-related pathologies. Several compounds called senolytics have been designed to eliminate these cells within the tissues. In recent years, the use and study of senolytics increased, representing a promising field for finding accessible and safe therapies for cardiovascular disease (CVD) treatment. This mini-review discusses the changes in the aging heart and the participation of senescent cells in CVD, as well as the use of senolytics to prevent the progression of myocardial damage, mainly the effect of dasatinib and quercetin. In particular, the mechanisms and physiological effects of senolytics therapies in the aged heart are discussed.
Collapse
Affiliation(s)
- Mario Nieto
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, Juan Badiano No. 1. Colonia Sección XVI, 14080, Mexico City, Mexico
- Department of Health Sciences, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Mina Konigsberg
- Department of Health Sciences, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, Juan Badiano No. 1. Colonia Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
44
|
Huang C, Zou K, Wang Y, Tang K, Wu Y. Esculetin Alleviates IL-1β-Evoked Nucleus Pulposus Cell Death, Extracellular Matrix Remodeling, and Inflammation by Activating Nrf2/HO-1/NF-kb. ACS OMEGA 2024; 9:817-827. [PMID: 38222570 PMCID: PMC10785627 DOI: 10.1021/acsomega.3c06771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Inflammation, extracellular matrix metabolic dysfunction, and oxidative stress are key pathogenic characteristics of intervertebral disk degeneration (IVDD), a major pathogenic cause of low back pain. Esculetin possesses anti-injury, anti-inflammation, and antinociceptive properties. This study aimed to explore its role in IVDD. In this research, esculetin exhibited little cytotoxicity to human nucleus pulposus cells (NPCs). Moreover, esculetin increased cell viability under IL-1β stimulation but attenuated IL-1β-induced cell apoptosis and caspase-3 activity. Furthermore, IL-1β-evoked increases in intracellular reactive oxygen species and malondialdehyde (MDA) levels, and decreases in superoxide dismutase (SOD) activity were reversed after esculetin treatment, indicating the antioxidative stress efficacy of esculetin. Esculetin alleviated the inhibitory effects of IL-1β on the transcription and protein expression of anabolic biomarkers (collagen II and aggrecan), accompanied by decreases in expression and release of catabolic biomarkers MMP-3 and MMP-13 from NPCs. Moreover, IL-1β exposure enhanced the expression levels of the inflammatory mediator nitric oxide and inflammatory cytokine IL-6 and TNF-α, which were overturned after esculetin treatment. Additionally, esculetin activated the nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) to inhibit the activation of nuclear factor κB (NF-κB) signaling in NPCs. Importantly, suppression of Nrf2 signaling reversed the protective efficacy of esculetin against IL-1β-mediated oxidative injury, matrix metabolism disruption, and inflammatory response in NPCs. Together, esculetin may alleviate IL-1β-induced dysfunction in NPCs by regulating the Nrf2/HO-1/NF-kb signaling, indicating its potential as a promising therapeutic agent against IVDD.
Collapse
Affiliation(s)
- Chunhui Huang
- Department
of Spinal Surgery, Longyan First Affiliated
Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Xin
Luo District, Longyan 364000, P. R. China
| | - Kaiwei Zou
- Department
of Spinal Surgery, Longyan First Affiliated
Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Xin
Luo District, Longyan 364000, P. R. China
| | - Yizhang Wang
- Department
of Cardiology, Longyan First Affiliated
Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Xin
Luo District, Longyan 364000, P. R. China
| | - Kai Tang
- Department
of Spinal Surgery, Longyan First Affiliated
Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Xin
Luo District, Longyan 364000, P. R. China
| | - Yiqi Wu
- Department
of Spinal Surgery, Longyan First Affiliated
Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Xin
Luo District, Longyan 364000, P. R. China
| |
Collapse
|
45
|
Fan C, Ling-Hu A, Sun D, Gao W, Zhang C, Duan X, Li H, Tian W, Yu Q, Ke Z. Nobiletin Ameliorates Hepatic Lipid Deposition, Oxidative Stress, and Inflammation by Mechanisms That Involve the Nrf2/NF-κB Axis in Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20105-20117. [PMID: 38073108 DOI: 10.1021/acs.jafc.3c06498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Nobiletin (NOB), a flavonoid with significant antioxidant potential, holds promise for treating nonalcoholic fatty liver disease (NAFLD). In this work, we aim to assess the effects and investigate the molecular mechanisms of NOB on NAFLD. After using a methionine choline-deficient diet to induce C57BL/6J mice, as well as oleic acid to induce HepG2 and L02 cells, we administered NOB as an intervention. The results indicated that the NOB significantly ameliorated lipid deposition, oxidative stress, and inflammation in NAFLD in both models. Its mechanism may involve the Nrf2, SREBP-1c, and NF-κB signaling pathways. Furthermore, Nrf2 is not only a direct target for NOB to improve oxidative damage but also indirectly involved in lipid-lowering and anti-inflammatory processes in NAFLD. By inhibiting Nrf2, we found that the regulatory role of Nrf2 in lipid metabolism is not related to SREBP-1c but is closely associated with NF-κB in terms of inflammation. Our results suggest that Nrf2 is one of the most critical targets for NOB against NAFLD in multiple aspects.
Collapse
Affiliation(s)
- Chaowen Fan
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Anli Ling-Hu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Dali Sun
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Weiman Gao
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Chenfang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Xueqing Duan
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Haiyang Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Weiyi Tian
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Qi Yu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Zunli Ke
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| |
Collapse
|
46
|
Wang L, Wang J, Yang Z, Wang Y, Zhao T, Luo W, Liang T, Yang Z. Traditional herbs: mechanisms to combat cellular senescence. Aging (Albany NY) 2023; 15:14473-14505. [PMID: 38054830 PMCID: PMC10756111 DOI: 10.18632/aging.205269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2023] [Indexed: 12/07/2023]
Abstract
Cellular senescence plays a very important role in the ageing of organisms and age-related diseases that increase with age, a process that involves physiological, structural, biochemical and molecular changes in cells. In recent years, it has been found that the active ingredients of herbs and their natural products can prevent and control cellular senescence by affecting telomerase activity, oxidative stress response, autophagy, mitochondrial disorders, DNA damage, inflammatory response, metabolism, intestinal flora, and other factors. In this paper, we review the research information on the prevention and control of cellular senescence in Chinese herbal medicine through computer searches of PubMed, Web of Science, Science Direct and CNKI databases.
Collapse
Affiliation(s)
- Lei Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Yue Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Weisheng Luo
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zheng Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| |
Collapse
|
47
|
Che J, Yang X, Jin Z, Xu C. Nrf2: A promising therapeutic target in bone-related diseases. Biomed Pharmacother 2023; 168:115748. [PMID: 37865995 DOI: 10.1016/j.biopha.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) plays an important role in maintaining cellular homeostasis, as it suppresses cell damage caused by external stimuli by regulating the transcription of intracellular defense-related genes. Accumulating evidence has highlighted the crucial role of reduction-oxidation (REDOX) imbalance in the development of bone-related diseases. Nrf2, a transcription factor linked to nuclear factor-erythrocyte 2, plays a pivotal role in the regulation of oxidative stress and induction of antioxidant defenses. Therefore, further investigation of the mechanism and function of Nrf2 in bone-related diseases is essential. Considerable evidence suggests that increased nuclear transcription of Nrf2 in response to external stimuli promotes the expression of intracellular antioxidant-related genes, which in turn leads to the inhibition of bone remodeling imbalance, improved fracture recovery, reduced occurrence of osteoarthritis, and greater tumor resistance. Certain natural extracts can selectively target Nrf2, potentially offering therapeutic benefits for osteogenic arthropathy. In this article, the biological characteristics of Nrf2 are reviewed, the intricate interplay between Nrf2-regulated REDOX imbalance and bone-related diseases is explored, and the potential preventive and protective effects of natural products targeting Nrf2 in these diseases are elucidated. A comprehensive understanding of the role of Nrf2 in the development of bone-related diseases provides valuable insights into clinical interventions and can facilitate the discovery of novel Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
48
|
Zhao W, Li Y, Cheng X, Wei H, Li P, Fan L, Liu K, Zhang S, Wang H. The antioxidant Glycitin protects against intervertebral disc degeneration through antagonizing inflammation and oxidative stress in nucleus pulposus cells. Aging (Albany NY) 2023; 15:13693-13709. [PMID: 38019477 PMCID: PMC10756108 DOI: 10.18632/aging.205251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a kind of typical degenerative disorder of the skeletal muscle system caused by many factors including aging, abnormal mechanical stress and inflammatory responses. Glycitin is a natural isoflavone extracted from legumes. Previous studies have found that it is anti-inflammatory and promotes wound repair. However, the role of Glycitin in IVDD has not been elucidated. In the present research, we were surprised that Glycitin antagonized the NF-κB pathway activity. In addition, we also found that Glycitin alleviated TNF-α-induced metabolic disorders, extracellular matrix degradation, oxidative stress, inflammation responses, and mitochondrial damage. Furthermore, in in vivo experimental study, we discovered Glycitin attenuated IVDD. The results revealed that Glycitin alleviated the degenerative phenotype of IVDD. According to this research, Glycitin has anti-inflammatory properties that might exert a protective function in IVDD, suggesting a prospective therapeutic approach for IVDD.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Yanpei Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Xiang Cheng
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Hui Wei
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Peng Li
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Lixia Fan
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Kaiwen Liu
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Shuai Zhang
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Hao Wang
- Department of Trauma Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| |
Collapse
|
49
|
Bhoi A, Dwivedi SD, Singh D, Keshavkant S, Singh MR. Mechanistic prospective and pharmacological attributes of quercetin in attenuation of different types of arthritis. 3 Biotech 2023; 13:362. [PMID: 37840879 PMCID: PMC10570262 DOI: 10.1007/s13205-023-03787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Arthritis is a frequent autoimmune disease with undefined etiology and pathogenesis. Scientific community constantly fascinating quercetin (QUR), as it is the best-known flavonoid among others for curative and preventive properties against a wide range of diseases. Due to its multifaceted activities, the implementation of QUR against various types of arthritis namely, rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA) and psoriotic arthritis (PsA) has greatly increased in recent years. Many research evidenced that QUR regulates a wide range of pathways for instance NF-κB, MAK, Wnt/β-catenine, Notch, etc., that are majorly associated with the inflammatory mechanisms. Besides, the bioavailability of QUR is a major constrain to its therapeutic potential, and drug delivery techniques have experienced significant development to overcome the problem of its limited application. Hence, this review compiled the cutting-edge experiments on versatile effects of QUR on inflammatory diseases like RA, OA, GA and PsA, sources and bioavailability, therapeutic challenges, pharmacokinetics, clinical studies as well as toxicological impacts. The use of QUR in a health context would offer a tearing and potential therapeutic method, supporting the advancement of public health, particularly, of arthritic patients worldwide.
Collapse
Affiliation(s)
- Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - S. Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| |
Collapse
|
50
|
Xu H, Li J, Fei Q, Jiang L. Contribution of immune cells to intervertebral disc degeneration and the potential of immunotherapy. Connect Tissue Res 2023; 64:413-427. [PMID: 37161923 DOI: 10.1080/03008207.2023.2212051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
Substantial evidence supports that chronic low back pain is associated with intervertebral disc degeneration (IDD), which is accompanied by decreased cell activity and matrix degradation. The role of immune cells, especially macrophages, in a variety of diseases has been extensively studied; therefore, their role in IDD has naturally attracted widespread scholarly interest. The IVD is considered to be an immunologically-privileged site given the presence of physical and biological barriers that include an avascular microenvironment, a high proteoglycan concentration, high physical pressure, the presence of apoptosis inducers such as Fas ligand, and the presence of notochordal cells. However, during IDD, immune cells with distinct characteristics appear in the IVD. Some of these immune cells release factors that promote the inflammatory response and angiogenesis in the disc and are, therefore, important drivers of IDD. Although some studies have elucidated the role of immune cells, no specific strategies related to systemic immunotherapy have been proposed. Herein, we summarize current knowledge of the presence and role of immune cells in IDD and consider that immunotherapy targeting immune cells may be a novel strategy for alleviating IDD symptoms.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juan Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qinming Fei
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Xiamen, Fujian Province, China
| |
Collapse
|