1
|
Uchio Y, Ishijima M, Ikeuchi M, Ikegawa S, Ishibashi Y, Omori G, Shiba N, Takeuchi R, Tanaka S, Tsumura H, Deie M, Tohyama H, Yoshimura N, Nakashima Y. Japanese Orthopaedic Association (JOA) clinical practice guidelines on the management of Osteoarthritis of the knee - Secondary publication. J Orthop Sci 2024:S0949-2658(24)00139-8. [PMID: 39127581 DOI: 10.1016/j.jos.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Affiliation(s)
- Yuji Uchio
- Department of Orthopaedic Surgery, Shimane University, Izumo, Japan.
| | | | - Masahiko Ikeuchi
- Department of Orthopaedic Surgery, Kochi University, Nankoku, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrated Medical Science (IMS), RIKEN, Tokyo, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Go Omori
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Naoto Shiba
- Department of Orthopaedics, Kurume University School of Medicine, Fukuoka, Japan
| | - Ryohei Takeuchi
- Department of Joint Surgery Center, Yokohama Sekishinkai Hospital, Yokohama, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, University of Tokyo, Tokyo, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Oita University, Oita, Japan
| | - Masataka Deie
- Department of Orthopaedic Surgery, Aichi Medical University, Nagakute, Japan
| | | | - Noriko Yoshimura
- Department of Preventive Medicine for Locomotive Organ Disorders, 22nd Century Medical and Research Center, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
2
|
Ruan H, Zhu T, Wang T, Guo Y, Liu Y, Zheng J. Quercetin Modulates Ferroptosis via the SIRT1/Nrf-2/HO-1 Pathway and Attenuates Cartilage Destruction in an Osteoarthritis Rat Model. Int J Mol Sci 2024; 25:7461. [PMID: 39000568 PMCID: PMC11242395 DOI: 10.3390/ijms25137461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, causing symptoms such as joint pain, swelling, and deformity, which severely affect patients' quality of life. Despite advances in medical treatment, OA management remains challenging, necessitating the development of safe and effective drugs. Quercetin (QUE), a natural flavonoid widely found in fruits and vegetables, shows promise due to its broad range of pharmacological effects, particularly in various degenerative diseases. However, its role in preventing OA progression and its underlying mechanisms remain unclear. In this study, we demonstrated that QUE has a protective effect against OA development both in vivo and in vitro, and we elucidated the underlying molecular mechanisms. In vitro, QUE inhibited the expression of IL-1β-induced chondrocyte matrix metalloproteinases (MMP3 and MMP13) and inflammatory mediators such as INOS and COX-2. It also promoted the expression of collagen II, thereby preventing the extracellular matrix (ECM). Mechanistically, QUE exerts its protective effect on chondrocytes by activating the SIRT1/Nrf-2/HO-1 and inhibiting chondrocyte ferroptosis. Similarly, in an OA rat model induced by anterior cruciate ligament transection (ACLT), QUE treatment improved articular cartilage damage, reduced joint pain, and normalized abnormal subchondral bone remodeling. QUE also reduced serum IL-1β, TNF-α, MMP3, CTX-II, and COMP, thereby slowing the progression of OA. QUE exerts chondroprotective effects by inhibiting chondrocyte oxidative damage and ferroptosis through the SIRT1/Nrf-2/HO-1 pathway, effectively alleviating OA progression in rats.
Collapse
Affiliation(s)
- Hongri Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.R.); (T.Z.); (T.W.); (Y.G.)
| | - Tingting Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.R.); (T.Z.); (T.W.); (Y.G.)
| | - Tiantian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.R.); (T.Z.); (T.W.); (Y.G.)
| | - Yingchao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.R.); (T.Z.); (T.W.); (Y.G.)
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (H.R.); (T.Z.); (T.W.); (Y.G.)
| | - Jiasan Zheng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| |
Collapse
|
3
|
Lee JM, Lim S, Kang G, Chung JY, Yun HW, Jin YJ, Park DY, Park JY. Synovial fluid monocyte-to-lymphocyte ratio in knee osteoarthritis patients predicts patient response to conservative treatment: a retrospective cohort study. BMC Musculoskelet Disord 2024; 25:379. [PMID: 38745277 PMCID: PMC11092220 DOI: 10.1186/s12891-024-07475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Biomarkers that predict the treatment response in patients with knee osteoarthritis are scarce. This study aimed to investigate the potential role of synovial fluid cell counts and their ratios as biomarkers of primary knee osteoarthritis. METHODS This retrospective study investigated 96 consecutive knee osteoarthritis patients with knee effusion who underwent joint fluid aspiration analysis and received concomitant intra-articular corticosteroid injections and blood tests. The monocyte-to-lymphocyte ratio (MLR) and neutrophil-to-lymphocyte ratio (NLR) were calculated. After 6 months of treatment, patients were divided into two groups: the responder group showing symptom resolution, defined by a visual analog scale (VAS) score of ≤ 3, without additional treatment, and the non-responder group showing residual symptoms, defined by a VAS score of > 3 and requiring further intervention, such as additional medication, repeated injections, or surgical treatment. Unpaired t-tests and univariate and multivariate logistic regression analyses were conducted between the two groups to predict treatment response after conservative treatment. The predictive value was calculated using the area under the receiver operating characteristic curve, and the optimal cutoff value was determined. RESULTS Synovial fluid MLR was significantly higher in the non-responder group compared to the responder group (1.86 ± 1.64 vs. 1.11 ± 1.37, respectively; p = 0.02). After accounting for confounding variables, odds ratio of non-responder due to increased MLR were 1.63 (95% confidence interval: 1.11-2.39). The optimal MLR cutoff value for predicting patient response to conservative treatment was 0.941. CONCLUSIONS MLR may be a potential biomarker for predicting the response to conservative treatment in patients with primary knee osteoarthritis.
Collapse
Affiliation(s)
- Jong Min Lee
- Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, South Korea
| | - Sumin Lim
- Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, South Korea
| | - Gunoo Kang
- Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, South Korea
| | - Jun Young Chung
- Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, South Korea
| | - Hee-Woong Yun
- Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, South Korea
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Yong Jun Jin
- Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, South Korea
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Do Young Park
- Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, South Korea.
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea.
- Leading Convergence of Healthcare and Medicine, Ajou University, Institute of Science & Technology (ALCHeMIST), Suwon, Republic of Korea.
| | - Jae-Young Park
- Department of Orthopaedic Surgery, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si, Republic of Korea.
- Department of Orthopaedic Surgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
4
|
Negishi Y, Kaneko H, Aoki T, Liu L, Adili A, Arita H, Hada S, Momoeda M, Huang H, Tomura J, Wakana S, Shiozawa J, Kubota M, Someya Y, Tamura Y, Aoki S, Watada H, Kawamori R, Negishi-Koga T, Okada Y, Ishijima M. Medial meniscus extrusion is invariably observed and consistent with tibial osteophyte width in elderly populations: The Bunkyo Health Study. Sci Rep 2023; 13:22805. [PMID: 38129496 PMCID: PMC10739745 DOI: 10.1038/s41598-023-49868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
We reported that the full-length width of medial tibial osteophytes comprising cartilage and bone parts correlates with medial meniscus extrusion (MME) in early-stage knee osteoarthritis (OA). However, no data exist on the prevalence of MME and its relationship with osteophytes in the elderly population. 1191 elderly individuals (females 57%; 72.9 years old on average) in the Bunkyo Health Study underwent standing plain radiograph and proton density-weighted MRI on knee joints. MRI-detected OA changes were evaluated according to the Whole-Organ Magnetic Resonance Imaging Score. A new method of assessing the cartilage and bone parts of osteophytes was developed using pseudo-coloring images of proton density-weighted fat-suppressed MRI. Most subjects showed Kellgren-Lawrence grade 1 or 2 radiographic medial knee OA (88.1%), MME (98.7%, 3.90 ± 2.01 mm), and medial tibial osteophytes (99.3%, 3.27 ± 1.50 mm). Regarding OA changes, MME was closely associated with the full-length width of medial tibial osteophytes (β = 1.114; 95% CI 1.069-1.159; p < 0.001) in line with osteophyte width (intraclass correlation coefficient, 0.804; 95% CI 0.783-0.823). Our data revealed that MME and medial tibial osteophytes are observed in the elderly and demonstrate that the degree of MME is consistent with the full-length width of medial tibial osteophytes, suggesting that osteophytes might be implicated in MME.
Collapse
Affiliation(s)
- Yoshifumi Negishi
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Haruka Kaneko
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takako Aoki
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Lizu Liu
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Arepati Adili
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Arita
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shinnosuke Hada
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masahiro Momoeda
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hui Huang
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Jun Tomura
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Suguru Wakana
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Jun Shiozawa
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuaki Kubota
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Muneaki Ishijima
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Pathophysiology for Locomotive Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
5
|
Xu R, Wu J, Zheng L, Zhao M. Undenatured type II collagen and its role in improving osteoarthritis. Ageing Res Rev 2023; 91:102080. [PMID: 37774932 DOI: 10.1016/j.arr.2023.102080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, affecting 32.5 million US adults or 242 million people worldwide. There is no cure for OA. Many animal and clinical trials showed that oral administration of undenatured type II collagen could significantly reduce the incidence of OA or alleviate the symptoms of articular cartilage. Type II collagen is an important component of cartilage matrix. This article reviewed research progress of undenatured type II collagen including its methods of extraction and preparation, structure and characterization, solubility, thermal stability, gastrointestinal digestive stability, its role in improving OA, and the mechanism of its action in improving OA. Type II collagen has been extensively explored for its potential in improving arthritis. Methods of extraction of type II collagen are inefficient and tedious. The method of limited enzymatic hydrolysis is mainly used to prepare soluble undenatured type II collagen (SC II). The solubility, thermal and gastrointestinal digestive stability of SC II are affected by the sources of raw material, pH, salt ions, and temperature. Oral administration of undenatured type II collagen improves OA, whereas its activity is affected by the sources, degree of denaturalization, intervention methods and doses. However, the influence of the structure of undenatured type II collagen on its activity and the mechanism are unclear. The findings in this review support that undenatured type II collagen can be used in the intervention or auxiliary intervention of patients with OA.
Collapse
Affiliation(s)
- Rong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
6
|
Bernetti A, Agostini F, Paoloni M, Raele MV, Farì G, Megna M, Mangone M. Could Hyaluronic Acid Be Considered as a Senomorphic Agent in Knee Osteoarthritis? A Systematic Review. Biomedicines 2023; 11:2858. [PMID: 37893231 PMCID: PMC10604344 DOI: 10.3390/biomedicines11102858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is one of the most common causes of disability in elderly patients and tends to be a major burden on social and health care spending. Despite its severe socioeconomic impact, KOA remains, to date, an incurable disease. Due to its proper characteristics, KOA represents a favorable disease model for experimenting with senotherapeutics, a group of treatments that counteract the development of age-related disorders and chronic diseases. In recent years, the use of intra-articular hyaluronic acid (IAHA) in the treatment of diseases related to the wear and tear of the articular cartilage has been gaining popularity. Given its ability in joint lubrification, shock absorption, and cell signaling, our aim is to investigate, through the existing scientific literature, its potential role as a senomorphic agent, emphasizing its crucial function in KOA patients. Indeed, senomorphics are a particular group of senotherapeutics capable of modulating the functions and morphology of senescent cells to those of young cells or delaying the progression of young cells to senescent cells in tissues. METHODS A search in the scientific literature (PubMed, Cochrane Library, and Google Scholar) was carried out from 2019 to 2023, thus the last 5 years. RESULTS One hundred thirty-eight articles were found concerning the role of hyaluronic acid injections in KOA patients. In these studies, its therapeutic efficacy, its anti-inflammatory properties, and its low risk of side effects emerged. CONCLUSION IAHA injections are a valuable treatment option for KOA while they can provide pain relief, improve joint function, and slow the progression of joint degeneration. The inhibitory effect of HA on MMP13 and its action as a senomorphic agent suggests that it may have additional benefits beyond its lubricating and shock-absorbing properties. In order to clarify its mechanisms of action and to optimize its clinical use, further studies are definitely needed.
Collapse
Affiliation(s)
- Andrea Bernetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, 73100 Lecce, Italy;
| | - Francesco Agostini
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00189 Rome, Italy; (F.A.); (M.P.); (M.M.)
| | - Marco Paoloni
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00189 Rome, Italy; (F.A.); (M.P.); (M.M.)
| | - Maria Vittoria Raele
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Aldo Moro University, 70121 Bari, Italy; (M.V.R.); (M.M.)
| | - Giacomo Farì
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, 73100 Lecce, Italy;
| | - Marisa Megna
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Aldo Moro University, 70121 Bari, Italy; (M.V.R.); (M.M.)
| | - Massimiliano Mangone
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00189 Rome, Italy; (F.A.); (M.P.); (M.M.)
| |
Collapse
|
7
|
Soluble biomarkers in osteoarthritis in 2022: year in review. Osteoarthritis Cartilage 2023; 31:167-176. [PMID: 36179981 DOI: 10.1016/j.joca.2022.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To review articles reporting on the development of soluble biomarkers in osteoarthritis (OA) over the past year. DESIGN Two literature searches were conducted using the PubMed database for articles published between April 1, 2021 and March 31, 2022. Two searches were done, one on soluble biomarkers and another on circulating non-coding RNAs in OA. Additional articles were hand-picked to highlight emerging biomarker trends in OA. RESULTS Of 348 publications retrieved, we included 20 articles with 3 that were hand-picked for the narrative synthesis. We review recent data on soluble biomarkers and circulating non-coding microRNAs in OA using the BIPED classification system. We highlight studies using proteomics to show that cartilage acidic protein 1 (CRTAC1) is a promising biomarker, helping diagnose and estimate severity in hand, hip, and knee OA. Subtle changes in the structure of glycosaminoglycans from the extracellular cartilage matrix were shown to discriminate OA from non-OA cartilage. C-reactive protein metabolite (CRPM) and collagen metabolites may help discriminate subsets of OA patients as well as disease progression. Additionally, physical activity may impact determination of biomarkers. We also report on circulating microRNAs, lncRNAs, and circRNAs in OA and their predictive accuracy in diagnosis and prognosis. CONCLUSIONS Biomarkers for routine use are still an unmet need in the OA clinical scenario. Emerging data and novel classes of biomarkers (i.e., non-coding RNAs) show promise. Although still requiring validation in multiple independent cohorts, the past year brought advances towards a ready-to-use, reproducible, cost-effective biomarker, namely CRTAC1, to better manage the OA patient.
Collapse
|