1
|
Jansen MP, Hodgins D, Mastbergen SC, Kloppenburg M, Blanco FJ, Haugen IK, Berenbaum F, Eckstein F, Roemer FW, Wirth W. Can gait patterns be explained by joint structure in people with and without radiographic knee osteoarthritis? Data from the IMI-APPROACH cohort. Skeletal Radiol 2024; 53:2409-2416. [PMID: 38536417 PMCID: PMC11410921 DOI: 10.1007/s00256-024-04666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE To determine the association between joint structure and gait in patients with knee osteoarthritis (OA). METHODS IMI-APPROACH recruited 297 clinical knee OA patients. Gait data was collected (GaitSmart®) and OA-related joint measures determined from knee radiographs (KIDA) and MRIs (qMRI/MOAKS). Patients were divided into those with/without radiographic OA (ROA). Principal component analyses (PCA) were performed on gait parameters; linear regression models were used to evaluate whether image-based structural and demographic parameters were associated with gait principal components. RESULTS Two hundred seventy-one patients (age median 68.0, BMI 27.0, 77% female) could be analyzed; 149 (55%) had ROA. PCA identified two components: upper leg (primarily walking speed, stride duration, hip range of motion [ROM], thigh ROM) and lower leg (calf ROM, knee ROM in swing and stance phases). Increased age, BMI, and radiographic subchondral bone density (sclerosis), decreased radiographic varus angle deviation, and female sex were statistically significantly associated with worse lower leg gait (i.e. reduced ROM) in patients without ROA (R2 = 0.24); in ROA patients, increased BMI, radiographic osteophytes, MRI meniscal extrusion and female sex showed significantly worse lower leg gait (R2 = 0.18). Higher BMI was significantly associated with reduced upper leg function for non-ROA patients (R2 = 0.05); ROA patients with male sex, higher BMI and less MRI synovitis showed significantly worse upper leg gait (R2 = 0.12). CONCLUSION Structural OA pathology was significantly associated with gait in patients with clinical knee OA, though BMI may be more important. While associations were not strong, these results provide a significant association between OA symptoms (gait) and joint structure.
Collapse
Affiliation(s)
- M P Jansen
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, HP G02.228 Heidelberglaan, 100 3584, CX, Utrecht, The Netherlands.
| | - D Hodgins
- Dynamic Metrics Limited, Codicote, UK
| | - S C Mastbergen
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, HP G02.228 Heidelberglaan, 100 3584, CX, Utrecht, The Netherlands
| | - M Kloppenburg
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
- Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - F J Blanco
- Departamento de Fisioterapia Y Medicina, Grupo de Investigación de Reumatología (GIR), INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS. Centro de Investigación CICA, Universidad de A Coruña, A Coruña, Spain. Servicio de Reumatologia, INIBIC- Universidade de A Coruña, A Coruña, Spain
| | - I K Haugen
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - F Berenbaum
- Department of Rheumatology, AP-HP Saint-Antoine Hospital, Paris, France
- INSERM, Sorbonne University, Paris, France
| | - F Eckstein
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology & Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - F W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA
- Department of Radiology, Universitätsklinikum Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - W Wirth
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology & Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| |
Collapse
|
2
|
Roemer FW, Jansen MP, Maschek S, Mastbergen SC, Marijnissen AK, Wisser A, Heiss R, Weinans HH, Blanco FJ, Berenbaum F, Kloppenburg M, Haugen IK, Eckstein F, Hunter DJ, Guermazi A, Wirth W. Fluctuation of Bone Marrow Lesions and Inflammatory MRI Markers over 2 Years and Concurrent Associations with Quantitative Cartilage Loss. Cartilage 2024:19476035241287694. [PMID: 39460605 DOI: 10.1177/19476035241287694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE To assess whether change of semiquantitatively magnetic resonance imaging (MRI)-defined bone marrow lesions (BMLs) and inflammatory markers is associated with change in quantitatively-assessed cartilage loss in the femorotibial joint (FTJ) in knees with radiographic osteoarthritis (OA) over 24 months. DESIGN Participants were included from the IMI-APPROACH and the Osteoarthritis Initiative FNIH studies. Semiquantitative MRI assessment was performed for BMLs, Hoffa- and effusion-synovitis. Quantitative cartilage thickness measurements were performed manually. Definitions of change included number of subregions with BMLs, change in sum and change in maximum increase in size. Change in Hoffa-synovitis and effusion-synovitis was categorized in addition. Between-group comparisons regarding cartilage loss in the FTJ, medial and lateral compartments were performed using analysis of variance (ANOVA). RESULTS A total of 629 participants were included. Knees without any BMLs at baseline (BL) and follow-up (FU) had significantly less cartilage loss compared to the other subgroups. Change in both directions in the sum score of BMLs was associated with increased rates of cartilage loss. Maximum increase in size of BMLs was associated with increased rates of cartilage loss (FTJ increase by 2 grades -0.183 mm, 95% CI [-0.335, -0.031], by 3 grades -0.306 mm, [-0.511, -0.101]). Worsening of Hoffa-synovitis was associated with increased rates of cartilage loss. CONCLUSION Knees without BMLs at BL and FU showed lowest rates of cartilage loss. Knees with an increase in BML size showed increased rates of concurrent cartilage loss. Approaches with the aim to inhibit BML development, avoidance of increase in size and avoidance of Hoffa-synovitis worsening may have beneficial effects on cartilage loss.
Collapse
Affiliation(s)
- Frank W Roemer
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
- Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | | | | | - Anna Wisser
- Chondrometrics GmbH, Freilassing, Germany
- Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
| | - Rafael Heiss
- Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | - Francis Berenbaum
- AP-HP Saint- Antoine Hospital, Paris, France
- Sorbonne University, Paris, France
| | | | | | - Felix Eckstein
- Chondrometrics GmbH, Freilassing, Germany
- Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
| | - David J Hunter
- Royal North Shore Hospital and Sydney Musculoskeletal Health, Kolling Institute, University of Sydney, St. Leonards, NSW, Australia
| | - Ali Guermazi
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
- VA Boston Healthcare System, West Roxbury, MA, USA
| | - Wolfgang Wirth
- Chondrometrics GmbH, Freilassing, Germany
- Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
| |
Collapse
|
3
|
Eckstein F, Walter-Rittel TC, Chaudhari AS, Brisson NM, Maleitzke T, Duda GN, Wisser A, Wirth W, Winkler T. The design of a sample rapid magnetic resonance imaging (MRI) acquisition protocol supporting assessment of multiple articular tissues and pathologies in knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100505. [PMID: 39183946 PMCID: PMC11342198 DOI: 10.1016/j.ocarto.2024.100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/21/2024] [Indexed: 08/27/2024] Open
Abstract
Objective This expert opinion paper proposes a design for a state-of-the-art magnetic resonance image (MRI) acquisition protocol for knee osteoarthritis clinical trials in early and advanced disease. Semi-quantitative and quantitative imaging endpoints are supported, partly amendable to automated analysis. Several (peri-) articular tissues and pathologies are covered, including synovitis. Method A PubMed literature search was conducted, with focus on the past 5 years. Further, osteoarthritis imaging experts provided input. Specific MRI sequences, orientations, spatial resolutions and parameter settings were identified to align with study goals. We strived for implementation on standard clinical scanner hardware, with a net acquisition time ≤30 min. Results Short- and long-term longitudinal MRIs should be obtained at ≥1.5T, if possible without hardware changes during the study. We suggest a series of gradient- and spin-echo-sequences, supporting MOAKS, quantitative analysis of cartilage morphology and T2, and non-contrast-enhanced depiction of synovitis. These sequences should be properly aligned and positioned using localizer images. One of the sequences may be repeated in each participant (re-test), optimally at baseline and follow-up, to estimate within-study precision. All images should be checked for quality and protocol-adherence as soon as possible after acquisition. Alternative approaches are suggested that expand on the structural endpoints presented. Conclusions We aim to bridge the gap between technical MRI acquisition guides and the wealth of imaging literature, proposing a balance between image acquisition efficiency (time), safety, and technical/methodological diversity. This approach may entertain scientific innovation on tissue structure and composition assessment in clinical trials on disease modification of knee osteoarthritis.
Collapse
Affiliation(s)
- Felix Eckstein
- Research Program for Musculoskeletal Imaging, Center for Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Thula Cannon Walter-Rittel
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | | | - Nicholas M. Brisson
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Movement Diagnostics (BeMoveD), Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tazio Maleitzke
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Trauma Orthopaedic Research Copenhagen Hvidovre (TORCH), Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Georg N. Duda
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Movement Diagnostics (BeMoveD), Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Anna Wisser
- Research Program for Musculoskeletal Imaging, Center for Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Wolfgang Wirth
- Research Program for Musculoskeletal Imaging, Center for Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| | - Tobias Winkler
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
4
|
Katano H, Nagai K, Kaneko H, Sasaki E, Hashiguchi N, Kuroda R, Ishijima M, Ishibashi Y, Adachi N, Tomita M, Masumoto J, Sekiya I. Variations in knee cartilage thickness: Fully automatic three-dimensional analysis of MRIs from five manufacturers. Eur J Radiol 2024; 176:111528. [PMID: 38815306 DOI: 10.1016/j.ejrad.2024.111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Measurements of knee cartilage thickness derived from MR images are attractive biomarkers for osteoarthritis research. Although some cross-sectional multivendor studies exist, none have employed fully automatic three-dimensional MRI analysis. Our objective was to evaluate the variations in knee cartilage thickness measurements obtained using automated methods and MRI instruments from five different vendors. METHODS The subjects were 10 healthy volunteers aged 22-60 years. MRI models with 3 Tesla strength from five different companies were used. Cartilage thickness was quantified fully automatically for seven regions. We hypothesized that "the MRI model influences cartilage thickness measurements." Inter-measurement error, defined as the absolute difference between the targeted and median thicknesses determined by the five MRI models, was analyzed using histograms. The factors generating the largest inter-measurement error were also examined. RESULTS No exceptional trends attributable to a specific instrument model were observed, and the p-value from the Kruskal-Wallis test exceeded 0.05 in all seven regions. Therefore, the study hypothesis was rejected. Of the 350 measurements, the inter-measurement error was ≤0.05 mm in 53 %, ≤0.10 mm in 75 %, and ≤0.20 mm in 95 %. Analysis of the medial tibial cartilage, which had the largest inter-measurement error, revealed mis-extraction of synovial fluid as cartilage. CONCLUSIONS The choice of MRI model did not influence cartilage thickness measurements. Overall, 95 % of the inter-measurement errors were within 0.20 mm. The greatest error resulted from mis-extracting synovial fluid as cartilage.
Collapse
Affiliation(s)
- Hisako Katano
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kanto Nagai
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7‑5‑2, Kusunoki‑cho, Chuo‑ku, Kobe, Hyogo 650‑0017, Japan
| | - Haruka Kaneko
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Eiji Sasaki
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki, Aomori 036-8562, Japan
| | - Naofumi Hashiguchi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7‑5‑2, Kusunoki‑cho, Chuo‑ku, Kobe, Hyogo 650‑0017, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki, Aomori 036-8562, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Makoto Tomita
- School of Data Science, Graduate School of Data Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Jun Masumoto
- Fujifilm Corporation, 7-3, Akasaka 9-chome, Minato-ku, Tokyo 107-0052, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
5
|
Eckstein F, Wluka AE, Wirth W, Cicuttini F. 30 Years of MRI-based cartilage & bone morphometry in knee osteoarthritis: From correlation to clinical trials. Osteoarthritis Cartilage 2024; 32:439-451. [PMID: 38331162 DOI: 10.1016/j.joca.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/20/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE The first publication on morphometric analysis of articular cartilage using magnetic resonance imaging (MRI) in 1994 set the scene for a game change in osteoarthritis (OA) research. The current review highlights milestones in cartilage and bone morphometry, summarizing the rapid progress made in imaging, its application to understanding joint (patho-)physiology, and its use in interventional clinical trials. METHODS Based on a Pubmed search of articles from 1994 to 2023, the authors subjectively selected representative work illustrating important steps in the development or application of magnetic resonance-based cartilage and bone morphometry, with a focus on studies in humans, and on the knee. Research on OA-pathophysiology is addressed only briefly, given length constraints. Compositional and semi-quantitative assessment are not covered here. RESULTS The selected articles are presented in historical order as well as by content. We review progress in the technical aspects of image acquisition, segmentation and analysis, advances in understanding tissue growth, physiology, function, and adaptation, and a selection of clinical trials examining the efficacy of interventions on knee cartilage and bone. A perspective is provided of how lessons learned may be applied to future research and clinical management. CONCLUSIONS Over the past 30 years, MRI-based morphometry of cartilage and bone has contributed to a paradigm shift in understanding articular tissue physiology and OA pathophysiology, and to the development of new treatment strategies. It is likely that these technologies will continue to play a key role in the development and (accelerated) approval of therapy, potentially targeted to different OA phenotypes.
Collapse
Affiliation(s)
- Felix Eckstein
- Department of Imaging & Functional Musculoskeletal Research, Center of Anatomy and Cell Biology, Paracelsus Medical University (PMU), Salzburg, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria; Chondrometrics GmbH, Freilassing, Bavaria, Germany.
| | - Anita E Wluka
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Wolfgang Wirth
- Department of Imaging & Functional Musculoskeletal Research, Center of Anatomy and Cell Biology, Paracelsus Medical University (PMU), Salzburg, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation (LBIAR), Paracelsus Medical University, Salzburg, Austria; Chondrometrics GmbH, Freilassing, Bavaria, Germany
| | - Flavia Cicuttini
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Jarraya M, Guermazi A, Roemer FW. Osteoarthritis year in review 2023: Imaging. Osteoarthritis Cartilage 2024; 32:18-27. [PMID: 37879600 DOI: 10.1016/j.joca.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE This narrative review summarizes the original research in the field of in vivo osteoarthritis (OA) imaging between 1 January 2022 and 1 April 2023. METHODS A PubMed search was conducted using the following several terms pertaining to OA imaging, including but not limited to "Osteoarthritis / OA", "Magnetic resonance imaging / MRI", "X-ray" "Computed tomography / CT", "artificial intelligence /AI", "deep learning", "machine learning". This review is organized by topics including the anatomical structure of interest and modality, AI, challenges of OA imaging in the context of clinical trials, and imaging biomarkers in clinical trials and interventional studies. Ex vivo and animal studies were excluded from this review. RESULTS Two hundred and forty-nine publications were relevant to in vivo human OA imaging. Among the articles included, the knee joint (61%) and MRI (42%) were the predominant anatomical area and imaging modalities studied. Marked heterogeneity of structural tissue damage in OA knees was reported, a finding of potential relevance to clinical trial inclusion. The use of AI continues to rise rapidly to be applied in various aspect of OA imaging research but a lack of generalizability beyond highly standardized datasets limit interpretation and wide-spread application. No pharmacologic clinical trials using imaging data as outcome measures have been published in the period of interest. CONCLUSIONS Recent advances in OA imaging continue to heavily weigh on the use of AI. MRI remains the most important modality with a growing role in outcome prediction and classification.
Collapse
Affiliation(s)
- Mohamed Jarraya
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ali Guermazi
- Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA, USA.
| | - Frank W Roemer
- Department of Radiology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA, USA; Department of Radiology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
7
|
Jansen MP, Roemer FW, Marijnissen AKCA, Kloppenburg M, Blanco FJ, Haugen IK, Berenbaum F, Lafeber FPJG, Welsing PMJ, Mastbergen SC, Wirth W. Exploring the differences between radiographic joint space width and MRI cartilage thickness changes using data from the IMI-APPROACH cohort. Skeletal Radiol 2023; 52:1339-1348. [PMID: 36607356 DOI: 10.1007/s00256-022-04259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Longitudinal weight-bearing radiographic joint space width (JSW) and non-weight-bearing MRI-based cartilage thickness changes often show weak correlations. The current objective was to investigate these correlations, and to explore the influence of different factors that could contribute to longitudinal differences between the two methods. METHODS The current study included 178 participants with medial osteoarthritis (OA) out of the 297 knee OA participants enrolled in the IMI-APPROACH cohort. Changes over 2 years in medial JSW (ΔJSWmed), minimum JSW (ΔJSWmin), and medial femorotibial cartilage thickness (ΔMFTC) were assessed using linear regression, using measurements from radiographs and MRI acquired at baseline, 6 months, and 1 and 2 years. Pearson R correlations were calculated. The influence of cartilage quality (T2 mapping), meniscal extrusion (MOAKS scoring), potential pain-induced unloading (difference in knee-specific pain scores), and increased loading (BMI) on the correlations was analyzed by dividing participants in groups based on each factor separately, and comparing correlations (slope and strength) between groups using linear regression models. RESULT Correlations between ΔMFTC and ΔJSWmed and ΔJSWmin were statistically significant (p < 0.004) but weak (R < 0.35). Correlations were significantly different between groups based on cartilage quality and on meniscal extrusion: only patients with the lowest T2 values and with meniscal extrusion showed significant moderate correlations. Pain-induced unloading or BMI-induced loading did not influence correlations. CONCLUSIONS While the amount of loading does not seem to make a difference, weight-bearing radiographic JSW changes are a better reflection of non-weight-bearing MRI cartilage thickness changes in knees with higher quality cartilage and with meniscal extrusion.
Collapse
Affiliation(s)
- Mylène P Jansen
- Department of Rheumatology & Clinical Immunology, HP G02.228 Heidelberglaan 100 3584CX, Utrecht, The Netherlands.
| | - Frank W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA
- Department of Radiology, Universitätsklinikum Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anne Karien C A Marijnissen
- Department of Rheumatology & Clinical Immunology, HP G02.228 Heidelberglaan 100 3584CX, Utrecht, The Netherlands
| | - Margreet Kloppenburg
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
- Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Francisco J Blanco
- Departamento de Fisioterapia Y Medicina, Grupo de Investigación de Reumatología (GIR), INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS. Centro de Investigación CICA, Universidad de A Coruña, A Coruña, Spain. Servicio de Reumatologia, INIBIC- Universidade de A Coruña, A Coruña, Spain
| | - Ida K Haugen
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Francis Berenbaum
- Department of Rheumatology, AP-HP Saint-Antoine Hospital, Paris, France
- INSERM, Sorbonne University, Paris, France
| | - Floris P J G Lafeber
- Department of Rheumatology & Clinical Immunology, HP G02.228 Heidelberglaan 100 3584CX, Utrecht, The Netherlands
| | - Paco M J Welsing
- Department of Rheumatology & Clinical Immunology, HP G02.228 Heidelberglaan 100 3584CX, Utrecht, The Netherlands
| | - Simon C Mastbergen
- Department of Rheumatology & Clinical Immunology, HP G02.228 Heidelberglaan 100 3584CX, Utrecht, The Netherlands
| | - Wolfgang Wirth
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Ludwig Boltzmann Inst. for Arthritis and Rehabilitation, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Chondrometrics GmbH, Freilassing, Germany
| |
Collapse
|