1
|
Hu T, Liu L, Lam RWM, Toh SY, Abbah SA, Wang M, Ramruttun AK, Bhakoo K, Cool S, Li J, Cho-Hong Goh J, Wong HK. Bone marrow mesenchymal stem cells with low dose bone morphogenetic protein 2 enhances scaffold-based spinal fusion in a porcine model. J Tissue Eng Regen Med 2021; 16:63-75. [PMID: 34687157 DOI: 10.1002/term.3260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 11/07/2022]
Abstract
High doses bone morphogenetic protein 2 (BMP-2) have resulted in a series of complications in spinal fusion. We previously established a polyelectrolyte complex (PEC) carrier system that reduces the therapeutic dose of BMP-2 in both rodent and porcine spinal fusion models. This study aimed to evaluate the safety and efficacy of the combination of bone marrow mesenchymal stem cells (BMSCs) and low dose BMP-2 delivered by PEC for bone regeneration in a porcine model of anterior lumbar interbody spinal fusion (ALIF) application. Six Yorkshire pigs underwent a tri-segmental (L2/L3; L3/L4; L4/L5) ALIF in four groups, namely: (a) BMSCs + 25 μg BMP-2/PEC (n = 9), (b) 25 μg BMP-2/PEC (n = 3), (c) BMSCs (n = 3), and (d) 50 μg BMP-2/absorbable collagen sponge (n = 3). Fusion outcomes were evaluated by radiography, biomechanical testing, and histological analysis after 12 weeks. Mean radiographic scores at 12 weeks were 2.7, 2.0, 1.0, and 1.0 for Groups 1 to 4, respectively. μ-CT scanning, biomechanical evaluation, and histological analysis demonstrated solid fusion and successful bone regeneration in Group 1. In contrast, Group 2 showed inferior quality and slow rate of fusion, and Groups 3 and 4 failed to fuse any of the interbody spaces. There was no obvious evidence of seroma formation, implant rejection, or any other complications in all groups. The results suggest that the combination of BMSCs and low dose BMP-2/PEC could further lower down the effective dose of the BMP-2 and be used as a bone graft substitute in the large animal ALIF model.
Collapse
Affiliation(s)
- Tao Hu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Spine Surgery, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
| | - Ling Liu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Raymond Wing Moon Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Soo Yein Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sunny Akogwu Abbah
- Department of Obstetrics and Gynaecology, Portiuncula University Hospital Ballinasloe, Galway, Ireland.,CÚRAM, Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Ming Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amit Kumarsing Ramruttun
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kishore Bhakoo
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Simon Cool
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - James Cho-Hong Goh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Hee-Kit Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Tissue Engineering Programme (NUSTEP), Life Sciences Institute, Singapore, Singapore
| |
Collapse
|
2
|
Mesenchymal Stem Cells for the Treatment of Spinal Arthrodesis: From Preclinical Research to Clinical Scenario. Stem Cells Int 2017; 2017:3537094. [PMID: 28286524 PMCID: PMC5327761 DOI: 10.1155/2017/3537094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023] Open
Abstract
The use of spinal fusion procedures has rapidly augmented over the last decades and although autogenous bone graft is the “gold standard” for these procedures, alternatives to its use have been investigated over many years. A number of emerging strategies as well as tissue engineering with mesenchymal stem cells (MSCs) have been planned to enhance spinal fusion rate. This descriptive systematic literature review summarizes the in vivo studies, dealing with the use of MSCs in spinal arthrodesis surgery and the state of the art in clinical applications. The review has yielded promising evidence supporting the use of MSCs as a cell-based therapy in spinal fusion procedures, thus representing a suitable biological approach able to reduce the high cost of osteoinductive factors as well as the high dose needed to induce bone formation. Nevertheless, despite the fact that MSCs therapy is an interesting and important opportunity of research, in this review it was detected that there are still doubts about the optimal cell concentration and delivery method as well as the ideal implantation techniques and the type of scaffolds for cell delivery. Thus, further inquiry is necessary to carefully evaluate the clinical safety and efficacy of MSCs use in spine fusion.
Collapse
|
3
|
Hu T, Abbah SA, Toh SY, Wang M, Lam RWM, Naidu M, Bhakta G, Cool SM, Bhakoo K, Li J, Goh JCH, Wong HK. Bone marrow-derived mesenchymal stem cells assembled with low-dose BMP-2 in a three-dimensional hybrid construct enhances posterolateral spinal fusion in syngeneic rats. Spine J 2015; 15:2552-63. [PMID: 26342750 DOI: 10.1016/j.spinee.2015.08.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/15/2015] [Accepted: 08/22/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The combination of potent osteoinductive growth factor, functional osteoblastic cells, and osteoconductive materials to induce bone formation is a well-established concept in bone tissue engineering. However, supraphysiological dose of growth factor, such as recombinant human bone morphogenetic protein 2 (rhBMP-2), which is necessary in contemporary clinical application, have been reported to result in severe side effects. PURPOSE We hypothesize that the synergistic osteoinductive capacity of low-dose bone morphogenetic protein 2 (BMP-2) combined with undifferentiated bone marrow-derived stromal cells (BMSCs) is comparable to that of osteogenically differentiated BMSCs when used in a rodent model of posterolateral spinal fusion. STUDY DESIGN/SETTING A prospective study using a rodent model of posterolateral spinal fusion was carried out. PATIENT SAMPLE Thirty-six syngeneic Fischer rats comprised the patient sample. METHODS Six groups of implants were evaluated as follows (n=6): (1) 10 µg BMP-2 with undifferentiated BMSCs; (2) 10 µg BMP-2 with osteogenic-differentiated BMSCs; (3) 2.5 µg BMP-2 with undifferentiated BMSCs; (4) 2.5 µg BMP-2 with osteogenic-differentiated BMSCs; (5) 0.5 µg BMP-2 with undifferentiated BMSCs; and (6) 0.5 µg BMP-2 with osteogenic-differentiated BMSCs. Optimal in vitro osteogenic differentiation of BMSCs was determined by quantitative real-time polymerase chain reaction (qRT-PCR) gene analysis whereas in vivo bone formation capacity was evaluated by manual palpation, micro-computed tomography, and histology. RESULTS Rat BMSCs cultured in fibrin matrix that was loaded into the pores of medical-grade poly epsilon caprolactone tricalcium phosphate scaffolds differentiated toward osteogenic lineage by expressing osterix, runt-related transcription factor 2, and osteocalcium mRNA when supplemented with dexamethasone, ascorbic acid, and β-glycerophosphate. Whereas qRT-PCR revealed optimal increase in osteogenic genes expression after 7 days of in vitro culture, in vivo transplantation study showed that pre-differentiation of BMSCs before transplantation failed to promote posterolateral spinal fusion when co-delivered with low-dose BMP-2 (1/6 or 17% fusion rate). In contrast, combined delivery of undifferentiated BMSCs with low-dose BMP-2 (2.5 µg) demonstrated significantly higher fusion rate (4/6 or 67%) as well as significantly increased volume of new bone formation (p<.05). CONCLUSION In summary, this study supports the combination of undifferentiated BMSCs and low-dose rhBMP-2 for bone tissue engineering construct.
Collapse
Affiliation(s)
- Tao Hu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Sunny Akogwu Abbah
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Soo Yein Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Ming Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Raymond Wing Moon Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Mathanapriya Naidu
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore
| | - Gajadhar Bhakta
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Simon M Cool
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore; Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Kishore Bhakoo
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore; Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, 138667, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Block EA, #03-12, 9 Engineering Drive 1, 117575, Singapore
| | - James Cho-Hong Goh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Block EA, #03-12, 9 Engineering Drive 1, 117575, Singapore
| | - Hee-Kit Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Level 11, NUHS Tower Block, 1E Kent Ridge Rd, 119228, Singapore.
| |
Collapse
|
4
|
Ghodasra JH, Daley EL, Hsu EL, Hsu WK. Factors influencing arthrodesis rates in a rabbit posterolateral spine model with iliac crest autograft. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 23:426-34. [PMID: 24166021 DOI: 10.1007/s00586-013-3074-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 10/12/2013] [Accepted: 10/13/2013] [Indexed: 12/01/2022]
Abstract
PURPOSE The rabbit posterolateral intertransverse spine arthrodesis model has been widely used to evaluate spinal biologics. However, to date, the validity and reproducibility of performance of iliac crest bone graft, the most common and critical control group, has not been firmly established. We evaluated original research publications that utilized this model, identified which experimental conditions affected fusion rates, and developed an algorithm to predict fusion rates for future study designs. METHODS A MEDLINE search was performed for publications through December, 2011 that utilized this model to evaluate fusion rates elicited by iliac crest autograft. All study parameters were recorded, and logistic regression analyses were performed to determine the effects of these variables on fusion rates as determined by either manual palpation or radiographs. RESULTS Seventy studies with 959 rabbits in 102 groups met the inclusion criteria. Excluding studies that measured fusion at 4 or fewer weeks or intentionally tried to decrease the fusion rate, the overall fusion rate for autograft was 58.3 ± 16.3 % (mean ± SD) as determined by manual palpation and 66.4 ± 17.8 % by plain radiographs. Regression analysis demonstrated a difference between these outcome measures with a trend towards significance (p = 0.09). Longer time points and larger volumes of autograft resulted in significantly greater reported fusion rates (p < 0.0001 and p < 0.05, respectively). Neither strain, age, weight, nor vertebral level significantly affected fusion rates. CONCLUSIONS Although experimental conditions varied across studies, time point evaluation and autograft volume significantly affected fusion rates. Despite some variability demonstrated across certain studies, we demonstrated that when the time point and volume of autograft were controlled for, the iliac crest control group of the rabbit posterolateral spinal arthrodesis model is both reliable and predictably affected by different experimental conditions.
Collapse
Affiliation(s)
- Jason H Ghodasra
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., 76-143 CHS, Los Angeles, CA, 90095, USA,
| | | | | | | |
Collapse
|
5
|
Evans NR, Davies EM, Dare CJ, Oreffo RO. Tissue engineering strategies in spinal arthrodesis: the clinical imperative and challenges to clinical translation. Regen Med 2013; 8:49-64. [PMID: 23259805 DOI: 10.2217/rme.12.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Skeletal disorders requiring the regeneration or de novo production of bone present considerable reconstructive challenges and are one of the main driving forces for the development of skeletal tissue engineering strategies. The skeletal or mesenchymal stem cell is a fundamental requirement for osteogenesis and plays a pivotal role in the design and application of these strategies. Research activity has focused on incorporating the biological role of the mesenchymal stem cell with the developing fields of material science and gene therapy in order to create a construct that is not only capable of inducing host osteoblasts to produce bone, but is also osteogenic in its own right. This review explores the clinical need for reparative approaches in spinal arthrodesis, identifying recent tissue engineering strategies employed to promote spinal fusion, and considers the ongoing challenges to successful clinical translation.
Collapse
Affiliation(s)
- Nick R Evans
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Human Development & Health, Institute of Developmental Sciences, Southampton General Hospital, Southampton, UK.
| | | | | | | |
Collapse
|
6
|
Da H, Jia SJ, Meng GL, Cheng JH, Zhou W, Xiong Z, Mu YJ, Liu J. The impact of compact layer in biphasic scaffold on osteochondral tissue engineering. PLoS One 2013; 8:e54838. [PMID: 23382984 PMCID: PMC3557302 DOI: 10.1371/journal.pone.0054838] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 12/17/2012] [Indexed: 12/20/2022] Open
Abstract
The structure of an osteochondral biphasic scaffold is required to mimic native tissue, which owns a calcified layer associated with mechanical and separation function. The two phases of biphasic scaffold should possess efficient integration to provide chondrocytes and osteocytes with an independent living environment. In this study, a novel biphasic scaffold composed of a bony phase, chondral phase and compact layer was developed. The compact layer-free biphasic scaffold taken as control group was also fabricated. The purpose of current study was to evaluate the impact of the compact layer in the biphasic scaffold. Bony and chondral phases were seeded with autogeneic osteoblast- or chondrocyte-induced bone marrow stromal cells (BMSCs), respectively. The biphasic scaffolds-cells constructs were then implanted into osteochondral defects of rabbits’ knees, and the regenerated osteochondral tissue was evaluated at 3 and 6 months after surgery. Anti-tensile and anti-shear properties of the compact layer-containing biphasic scaffold were significantly higher than those of the compact layer-free biphasic scaffold in vitro. Furthermore, in vivo studies revealed superior macroscopic scores, glycosaminoglycan (GAG) and collagen content, micro tomograph imaging results, and histological properties of regenerated tissue in the compact layer-containing biphasic scaffold compared to the control group. These results indicated that the compact layer could significantly enhance the biomechanical properties of biphasic scaffold in vitro and regeneration of osteochondral tissue in vivo, and thus represented a promising approach to osteochondral tissue engineering.
Collapse
Affiliation(s)
- Hu Da
- Institute of Orthopaedics and Traumatology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- The 82nd hospital of PLA, Huaian, China
| | - Shuai-Jun Jia
- Shannxi Hospital of Armed Police Force, Xi’an, China
| | - Guo-Lin Meng
- Institute of Orthopaedics and Traumatology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | | | - Wei Zhou
- The 82nd hospital of PLA, Huaian, China
| | - Zhuo Xiong
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yun-Jing Mu
- Zhan Tan Si Clinic of 309 Hospital of PLA, Beijing, China
| | - Jian Liu
- Institute of Orthopaedics and Traumatology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- * E-mail:
| |
Collapse
|
7
|
Guerado E, Andrist T, Andrades J, Santos L, Cerván A, Guerado G, Becerra J. Spinal arthrodesis. Basic science. Rev Esp Cir Ortop Traumatol (Engl Ed) 2012. [DOI: 10.1016/j.recote.2012.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
8
|
Guerado E, Andrist T, Andrades JA, Santos L, Cerván A, Guerado G, Becerra J. [Spinal arthrodesis. basic science]. Rev Esp Cir Ortop Traumatol (Engl Ed) 2012; 56:227-44. [PMID: 23594811 DOI: 10.1016/j.recot.2012.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 01/01/2023] Open
Abstract
Spinal arthrodesis consists of a combination of a system of mechanical stabilisation of one or more vertebral segments with a biological substance that promotes osteoneogenesis, with aim of achieving the permanent fusion between areas more or less the same size of these segments. In spinal arthrodesis, the biological support par excellence is the autograft. However, obtaining this involves a high incidence of morbidity and, in cases of arthrodesis of more than one intervertebral space, the quantity available is usually insufficient. The extraction and implantation time prolongs the surgery, increasing the exposure to and risk of bleeding and infection. For these reasons, there is a search for substances that possess the properties of the autograft, avoiding the morbidity and added surgical time required to extract the autograft. The biomechanical-biological interaction in vertebral arthrodesis has been studied in this article.
Collapse
Affiliation(s)
- E Guerado
- Departamento de Cirugía Ortopédica y Traumatología, Hospital Costa del Sol, Universidad de Málaga, Marbella, Málaga, España.
| | | | | | | | | | | | | |
Collapse
|