1
|
Malla S, Martinez-Gamero C, Kumari K, Achour C, Mermelekas G, Martinez-Delgado D, Coego A, Guallar D, Roman AC, Aguilo F. Cooperative role of LSD1 and CHD7 in regulating differentiation of mouse embryonic stem cells. Sci Rep 2024; 14:28495. [PMID: 39557885 PMCID: PMC11574112 DOI: 10.1038/s41598-024-78920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Lysine-specific histone demethylase 1 (LSD1) is a histone demethylase that plays a critical role in epigenetic regulation by removing the methyl group from mono- and di-methylated lysine 4 on histone H3 (H3K4me1/2), acting as a repressor of gene expression. Recently, catalytically independent functions of LSD1, serving as a scaffold for assembling chromatin-regulator and transcription factor complexes, have been identified. Herein, we show for the first time that LSD1 interacts with chromodomain-helicase-DNA-binding protein 7 (CHD7) in mouse embryonic stem cells (ESCs). To further investigate the CHD7-LSD1 crosstalk, we engineered Chd7 and Chd7/Lsd1 knockout (KO) mouse ESCs. We show that CHD7 is dispensable for ESC self-renewal and survival, while Chd7 KO ESCs can differentiate towards embryoid bodies (EBs) with defective expression of ectodermal markers. Intriguingly, Chd7/Lsd1 double KO mouse ESCs exhibit proliferation defects similar to Lsd1 KO ESCs and have lost the capacity to differentiate properly. Furthermore, the increased co-occupancy of H3K4me1 and CHD7 on chromatin following Lsd1 deletion suggests that LSD1 is required for facilitating the proper binding of CHD7 to chromatin and regulating differentiation. Collectively, our results suggest that LSD1 and CHD7 work in concert to modulate gene expression and influence proper cell fate determination.
Collapse
Affiliation(s)
- Sandhya Malla
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Carlos Martinez-Gamero
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Kanchan Kumari
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Cyrinne Achour
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Georgios Mermelekas
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 21, Solna, Sweden
| | - David Martinez-Delgado
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Alba Coego
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Angel-Carlos Roman
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, 901 85, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden.
| |
Collapse
|
2
|
Schwanke D, Fatanmi OO, Wise SY, Ostheim P, Schüle S, Kaletka G, Stewart S, Wiegel T, Singh VK, Port M, Abend M. Validating Radiosensitivity with Pre-Exposure Differential Gene Expression in Peripheral Blood Predicting Survival and Non-Survival in a Second Irradiated Rhesus Macaque Cohort. Radiat Res 2024; 201:384-395. [PMID: 38282135 DOI: 10.1667/rade-23-00099.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/27/2023] [Indexed: 01/30/2024]
Abstract
Radiosensitivity differs in humans and possibly in closely related nonhuman primates. The reasons for variation in radiosensitivity are not well known. In an earlier study, we examined gene expression (GE) pre-radiation in peripheral blood among male (n = 62) and female (n = 60) rhesus macaques (n = 122), which did or did not survive (up to 60 days) after whole-body exposure of 7.0 Gy (LD66/60). Eight genes (CHD5, CHI3L1, DYSF, EPX, IGF2BP1, LCN2, MBOAT4, SLC22A4) revealed significant associations with survival. Access to a second rhesus macaque cohort (males = 40, females = 23, total n = 63) irradiated with 5.8-7.2 Gy (LD29-50/60) and some treated with gamma-tocotrienol (GT3, a radiation countermeasure) allowed us to validate these gene expression changes independently. Total RNA was isolated from whole blood samples and examined by quantitative RT-PCR on a 96-well format. cycle threshold (Ct)-values normalized to 18S rRNA were analyzed for their association with survival. Regardless of the species-specific TaqMan assay, similar results were obtained. Two genes (CHD5 and CHI3L1) out of eight revealed a significant association with survival in the second cohort, while only CHD5 (involved in DNA damage response and proliferation control) showed mean gene expression changes in the same direction for both cohorts. No expected association of CHD5 GE with dose, treatment, or sex could be established. Instead, we observed significant associations for those comparisons comprising pre-exposure samples with CHD5 Ct values ≤ 11 (total n = 17). CHD5 Ct values ≤ 11 in these comparisons were mainly associated with increased frequencies (61-100%) of non-survivors, a trend which depending on the sample numbers, reached significance (P = 0.03) in males and, accordingly, in females. This was also reflected by a logistic regression model including all available samples from both cohorts comprising CHD5 measurements (n = 104, odds ratio 1.38, 95% CI 1.07-1.79, P = 0.01). However, this association was driven by males (odds ratio 1.62, 95% CI 1.10-2.38, P = 0.01) and CHD5 Ct values ≤ 11 since removing low CHD5 Ct values from this model, converted to insignificance (P = 0.19). A second male subcohort comprising high CHD5 Ct values ≥ 14.4 in both cohorts (n = 5) appeared associated with survival. Removing these high CHD5 Ct values converted the model borderline significant (P = 0.051). Based on the probability function of the receiver operating characteristics (ROC) curves, 8 (12.3%) and 5 (7.7%) from 65 pre-exposure RNA measurements in males, death and survival could be predicted with a negative and positive predictive value ranging between 85-100%. An associated odds ratio reflected a 62% elevated risk for dying or surviving per unit change (Ct-value) in gene expression, considering the before-mentioned CHD5 thresholds in RNA copy numbers. In conclusion, we identified two subsets of male animals characterized by increased (Ct values ≤ 11) and decreased (Ct values ≥ 14.4) CHD5 GE copy numbers before radiation exposure, which independently of the cohort, radiation exposure or treatment appeared to predict the death or survival in males.
Collapse
Affiliation(s)
- D Schwanke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - O O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, and
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - S Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, and
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - G Kaletka
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S Stewart
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - T Wiegel
- Department of Radiation Oncology, University Hospital, Ulm, Germany
| | - V K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, and
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
3
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
4
|
Li X, Huo X, Zhao C, Chen Z, Xu Z, Yu J, Sun X. A novel chromatin regulator signature predicts the prognosis, clinical features and immunotherapy of colon cancer. Epigenomics 2022; 14:1325-1341. [PMID: 36545887 DOI: 10.2217/epi-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To elucidate the potential function and prognostic value of chromatin regulators (CRs) in colon cancer. Materials & methods: A comprehensive analysis of CR RNA expression data from public databases was conducted. Results: The authors successfully established and validated a 17 CR-based signature using public databases. Ten CRs of the signature were eventually verified at the protein level using the Human Protein Atlas database. Functional enrichment showed that CRs were significantly enriched in cancer-related pathways. This signature was remarkably relevant to immune cell infiltration, immune checkpoints, tumor immune dysfunction and exclusion (TIDE) score and drug sensitivity. Conclusion: The authors identified a novel, reliable prognostic signature for colon cancer. The study provided new insights into the function of CRs and has important clinical implications for immunotherapy for colon cancer.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiongwei Huo
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chenye Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
5
|
Qi Y, Ma N, Chen X, Wang Y, Zhang W, Wan J. CircRtn4 Acts as the Sponge of miR-24-3p to Promote Neurite Growth by Regulating CHD5. Front Mol Neurosci 2021; 14:660429. [PMID: 34305525 PMCID: PMC8294096 DOI: 10.3389/fnmol.2021.660429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules. After derived from precursor mRNA back-splicing, circRNAs play important roles in many biological processes. Recently, it was shown that several circRNAs were enriched in the mammalian brain with unclear functions. The expression of circRtn4 in the mouse brain was increased with the differentiation of primary neurons. In our study, knockdown of circRtn4 inhibited neurite growth, while overexpression of circRtn4 significantly increased neurite length. By dual-luciferase reporter assay and RNA antisense purification assay, circRtn4 was identified as a miRNA sponge for miR-24-3p. Moreover, knockdown of miR-24-3p increased neurite length, while overexpression of miR-24-3p significantly inhibited neurite growth. Furthermore, CHD5 was confirmed to be a downstream target gene of miR-24-3p. And CHD5 silence counteracted the positive effect of circRtn4 overexpression on neurite growth. In conclusion, circRtn4 may act as the sponge for miR-24-3p to promote neurite growth by regulating CHD5.
Collapse
Affiliation(s)
- Yue Qi
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Nana Ma
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiaofan Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yue Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wei Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
6
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Chromodomain Helicase DNA-Binding Protein 5 Inhibits Renal Cell Carcinoma Tumorigenesis by Activation of the p53 and RB Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5425612. [PMID: 33062682 PMCID: PMC7542531 DOI: 10.1155/2020/5425612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022]
Abstract
Chromodomain helicase DNA-binding protein 5 (CHD5) plays a crucial tumor suppressor role in multiple types of tumors. For this study, we investigated its clinical significance and the molecular mechanism(s) underlying tumorigenesis in renal cell carcinoma (RCC). Initially, CHD5 expression was assessed in primary tumor tissue and in tissue array. Correlations among CHD5 expression and clinicopathological characteristics were analyzed. Next, lentivirus-mediated CHD5 overexpression in the ACHN and 769-P cells was used to assess effects on proliferation, migration, invasion ability, and the regulation of the p14ARF/p53 and p16INK4a/RB signaling pathways. Finally, a xenograft mouse model was used to verify its impact on tumor growth in vivo. Results demonstrated that CHD5 was downregulated in tumor tissues and that low CHD5 expression was correlated with advanced TNM stage, high Fuhrman grade, lymph node metastasis, and poor survival. Overexpression of CHD5 inhibited proliferation, migration, and invasion in vitro; prompted cell cycle G1 phase arrest; induced apoptosis; and suppressed tumor growth in vivo. Furthermore, we confirmed that CHD5 activates the p53 and RB pathways to inhibit tumorigenesis in RCC. In summary, CHD5 is involved in the initiation and progression of RCC and may serve as a diagnostic biomarker and a potential therapeutic target for RCC.
Collapse
|
8
|
Liu L, Wang G, Wang L, Yu C, Li M, Song S, Hao L, Ma L, Zhang Z. Computational identification and characterization of glioma candidate biomarkers through multi-omics integrative profiling. Biol Direct 2020; 15:10. [PMID: 32539851 PMCID: PMC7294636 DOI: 10.1186/s13062-020-00264-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Glioma is one of the most common malignant brain tumors and exhibits low resection rate and high recurrence risk. Although a large number of glioma studies powered by high-throughput sequencing technologies have led to massive multi-omics datasets, there lacks of comprehensive integration of glioma datasets for uncovering candidate biomarker genes. RESULTS In this study, we collected a large-scale assemble of multi-omics multi-cohort datasets from worldwide public resources, involving a total of 16,939 samples across 19 independent studies. Through comprehensive molecular profiling across different datasets, we revealed that PRKCG (Protein Kinase C Gamma), a brain-specific gene detectable in cerebrospinal fluid, is closely associated with glioma. Specifically, it presents lower expression and higher methylation in glioma samples compared with normal samples. PRKCG expression/methylation change from high to low is indicative of glioma progression from low-grade to high-grade and high RNA expression is suggestive of good survival. Importantly, PRKCG in combination with MGMT is effective to predict survival outcomes in a more precise manner. CONCLUSIONS PRKCG bears the great potential for glioma diagnosis, prognosis and therapy, and PRKCG-like genes may represent a set of important genes associated with different molecular mechanisms in glioma tumorigenesis. Our study indicates the importance of computational integrative multi-omics data analysis and represents a data-driven scheme toward precision tumor subtyping and accurate personalized healthcare.
Collapse
Affiliation(s)
- Lin Liu
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangyu Wang
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
- Present Address: The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Chunlei Yu
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengwei Li
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuhui Song
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lili Hao
- China National Center for Bioinformation, Beijing, 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lina Ma
- China National Center for Bioinformation, Beijing, 100101, China.
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhang Zhang
- China National Center for Bioinformation, Beijing, 100101, China.
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Hashimoto T, Kurokawa Y, Wada N, Takahashi T, Miyazaki Y, Tanaka K, Makino T, Yamasaki M, Nakajima K, Mori M, Doki Y. Clinical significance of chromatin remodeling factor CHD5 expression in gastric cancer. Oncol Lett 2020; 19:1066-1073. [PMID: 31897220 PMCID: PMC6924149 DOI: 10.3892/ol.2019.11138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
Chromodomain helicase DNA-binding 5 (CHD5), which is a member of the CHD family, has been identified as a tumor suppressor gene in a variety of malignancies. The aim of the current study was to clarify the clinical significance of CHD5 expression in gastric cancer. CHD5 expression was evaluated using immunohistochemistry (IHC) in 154 specimens resected from patients with gastric cancer from January 2011 to December 2013, and assessed its relationships with clinicopathological characteristics and survival. In vitro cell proliferation, invasion, and migration assays and western blotting analysis were performed to clarify the role of CHD5 in human gastric cancer cell lines. Of a total of 154 patients, 57 (37.0%) exhibited low CHD5 expression, which was significantly associated with positive lymphatic invasion (P=0.032), advanced pT status (P=0.011), and advanced pStage (P=0.014). Overall survival (OS) in patients with low CHD5 expression was significantly worse compared with patients with high CHD5 expression (hazard ratio, 1.96; 95% confidence interval, 1.09-3.45; log-rank P=0.023). Cox multivariate analysis for OS revealed that CHD5 expression was an independent prognostic factor with age and pN status. In vitro, the upregulation of CHD5 in gastric cancer cells with low CHD5 expression significantly decreased cell proliferation, migration and invasion. CHD5 was associated with the regulation of multiple cancer-related targets, including p53 and enhancer of zeste homolog 2 (EZH2) in western blotting analysis. In conclusion, since CHD5 regulated multiple cancer-related targets, its expression may be a useful prognostic biomarker in patients with gastric cancer.
Collapse
Affiliation(s)
- Tadayoshi Hashimoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Noriko Wada
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Surgery and Science, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Liu Z, Su D, Qi X, Ma J. MiR‑500a‑5p promotes glioblastoma cell proliferation, migration and invasion by targeting chromodomain helicase DNA binding protein 5. Mol Med Rep 2018; 18:2689-2696. [PMID: 30015879 PMCID: PMC6102694 DOI: 10.3892/mmr.2018.9259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma is one of the most common malignant primary tumors and develops in brain. The molecular mechanism that regulates glioblastoma occurrence still remains unknown. MicroRNA (miR)-500a-5p has been reported to be involved in hepatocellular carcinoma and breast cancer. Whether miR-500a-5p regulates glioblastoma progression requires further investigation. In the present study, miR-500a-5p was highly expressed in malignant glioblastoma tissues and cell lines. Overexpression of miR-500a-5p promoted glioblastoma cell proliferation, migration and invasion in vitro. In addition, knockdown of miR-500a-5p accelerated cell apoptosis. Furthermore, miR-500a-5p inhibition significantly impaired tumor growth in vivo. The present study further explored the downstream mechanism. The luciferase reporter assay revealed that miR-500a-5p directly binds the 3′-untranslated region of chromodomain helicase DNA binding protein 5 (CHD5) mRNA. MiR-500a-5p markedly inhibited CHD5 expression in glioblastoma cells. Furthermore, CHD5 was downregulated in glioblastoma tissues, and the expression levels of miR-500a-5p and CHD5 were inversely correlated. In addition, knockdown of CHD5 restored the inhibition of cell proliferation and migration triggered by miR-500a-5p silence. Finally, it was demonstrated that miR-500a-5p can serve as a novel biomarker for the diagnosis and prognosis of glioblastoma patients. Taken together, the results of the present study indicated that miR-500a-5p may have promoted glioblastoma development and progression by targeting CHD5.
Collapse
Affiliation(s)
- Zhiyong Liu
- Laboratory of Neurology, The Class of 2014 Outstanding Physician, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Danying Su
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiuying Qi
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Ma
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
11
|
Baykara O, Tansarikaya M, Bulut P, Demirkaya A, Buyru N. CHD5 is a potential tumor suppressor in non small cell lung cancer (NSCLC). Gene 2017; 618:65-68. [PMID: 28400267 DOI: 10.1016/j.gene.2017.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/17/2017] [Accepted: 04/07/2017] [Indexed: 01/17/2023]
Abstract
Lung cancer is one of the deadliest types of cancers and genetic and epigenetic alterations play major roles in its development. Chromodomain (CHD) protein family acts in chromatin organization, regulation of transcription and also genomic stability and cancer prevention. Although CHD5, a member of this family was shown to contribute to major cellular events and functions as a tumor suppressor gene in various types of cancer, it is not clear whether CHD5 plays a role in lung carcinogenesis. The aim of this study was to investigate the possible role of CHD5 in progression of non-small cell lung cancer (NSCLC). Expression levels of CHD5 gene in 59 tumor and corresponding non-cancerous lung tissue samples were analyzed by qRT-PCR and the methylation status of the promoter region was investigated by methylation specific PCR (MS-PCR). The Akt phosphorylation levels were investigated by Western Blot (WB). CHD5 was down-regulated in 17 (39.5%) and up-regulated in 24 (55.8%) of tumor specimens. Even though the promoter of CHD5 was hypermethylated in 8 patients, it was not found associated with CHD5 gene expression (p=0.08). Akt phosphorylation was increased in 14 (53.8%) and decreased in 12 (46.2%) of the samples but no significant association was found between p-Akt phosphorylation and CHD5 expression (p=0.67). We suggest that CHD5 may act as a tumor suppressor gene in NSCLC.
Collapse
Affiliation(s)
- Onur Baykara
- Istanbul University Cerrahpasa Medical Faculty, Dept. of Medical Biology and Genetics, Istanbul 34098, Turkey
| | - Merve Tansarikaya
- Istanbul University Cerrahpasa Medical Faculty, Dept. of Medical Biology and Genetics, Istanbul 34098, Turkey
| | - Pelin Bulut
- Istanbul University Cerrahpasa Medical Faculty, Dept. of Medical Biology and Genetics, Istanbul 34098, Turkey
| | - Ahmet Demirkaya
- Istanbul University Cerrahpasa Medical Faculty, Dept. of Thoracic Surgery, Istanbul 34098, Turkey
| | - Nur Buyru
- Istanbul University Cerrahpasa Medical Faculty, Dept. of Medical Biology and Genetics, Istanbul 34098, Turkey.
| |
Collapse
|
12
|
Mills AA. The Chromodomain Helicase DNA-Binding Chromatin Remodelers: Family Traits that Protect from and Promote Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026450. [PMID: 28096241 DOI: 10.1101/cshperspect.a026450] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A plethora of mutations in chromatin regulators in diverse human cancers is emerging, attesting to the pivotal role of chromatin dynamics in tumorigenesis. A recurrent theme is inactivation of the chromodomain helicase DNA-binding (CHD) family of proteins-ATP-dependent chromatin remodelers that govern the cellular machinery's access to DNA, thereby controlling fundamental processes, including transcription, proliferation, and DNA damage repair. This review highlights what is currently known about how genetic and epigenetic perturbation of CHD proteins and the pathways that they regulate set the stage for cancer, providing new insight for designing more effective anti-cancer therapies.
Collapse
Affiliation(s)
- Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724
| |
Collapse
|
13
|
Sun X, Xiao D, Xu T, Yuan Y. miRNA-24-3p promotes cell proliferation and regulates chemosensitivity in head and neck squamous cell carcinoma by targeting CHD5. Future Oncol 2016; 12:2701-2712. [PMID: 27513190 DOI: 10.2217/fon-2016-0179] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: To investigate the role of miR-24-3p in tumorigenesis and chemosensitivity in head and neck squamous cell carcinoma (HNSCC). Methods: Growth rate and colony formation assays were performed after transfection with miR-24-3p mimic and inhibitor in cultured SCC-15 cells, followed by a CellTiter-Glo® assay. Western blot and luciferase assays were performed to investigate the direct target of miR-24-3p. Xenograft mouse model was used to evaluate combinatorial effects of miR-24-3p inhibitor and 5-fluorouracil. Results & conclusion: Inhibition of miR-24-3p reduced cell proliferation, colony formation efficiency and reversed chemoresistance in HNSCC cells. CHD5 is the direct target of miR-24-3p which is required for the regulatory role of miR-24-3p in chemoresistance. miR-24-3p may represent a new therapeutic target for the improvement of clinical outcome in HNSCC.
Collapse
Affiliation(s)
- Xiaofeng Sun
- Department of Stomatology, The Second People’s Hospital of Wuxi, 68 Zhong Shan Road, Wuxi 214002, Jiangsu, PR China
| | - Dajiang Xiao
- Department of Otolaryngology, The Second People’s Hospital of Wuxi, 68 Zhong Shan Road, Wuxi 214002, Jiangsu, PR China
| | - Ting Xu
- Department of Otolaryngology, The Second People’s Hospital of Wuxi, 68 Zhong Shan Road, Wuxi 214002, Jiangsu, PR China
| | - Yuan Yuan
- Department of Otolaryngology, The Second People’s Hospital of Wuxi, 68 Zhong Shan Road, Wuxi 214002, Jiangsu, PR China
| |
Collapse
|
14
|
Du Z, Li L, Huang X, Jin J, Huang S, Zhang Q, Tao Q. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation. Oncotarget 2016; 7:21618-30. [PMID: 26943038 PMCID: PMC5008310 DOI: 10.18632/oncotarget.7822] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/29/2016] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common urological cancer with steadily increasing incidence. A series of tumor suppressor genes (TSGs) have been identified methylated in RCC as potential epigenetic biomarkers. We identified a 1p36.3 TSG candidate CHD5 as a methylated target in RCC through epigenome study. As the role of CHD5 in RCC pathogenesis remains elusive, we further studied its expression and molecular functions in RCC cells. We found that CHD5 was broadly expressed in most normal genitourinary tissues including kidney, but frequently silenced or downregulated by promoter CpG methylation in 78% of RCC cell lines and 44% (24/55) of primary tumors. In addition, CHD5 mutations appear to be rare in RCC tumors through genome database mining. In methylated/silenced RCC cell lines, CHD5 expression could be restored with azacytidine demethylation treatment. Ectopic expression of CHD5 in RCC cells significantly inhibited their clonogenicity, migration and invasion. Moreover, we found that CHD5, as a chromatin remodeling factor, suppressed the expression of multiple targets including oncogenes (MYC, MDM2, STAT3, CCND1, YAP1), epigenetic master genes (Bmi-1, EZH2, JMJD2C), as well as epithelial-mesenchymal transition and stem cell markers (SNAI1, FN1, OCT4). Further chromatin immunoprecipitation (ChIP) assays confirmed the binding of CHD5 to target gene promoters. Thus, we demonstrate that CHD5 functions as a novel TSG for RCC, but is predominantly inactivated by promoter methylation in primary tumors.
Collapse
Affiliation(s)
- Zhenfang Du
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shatin, Hong Kong
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shatin, Hong Kong
| | - Xin Huang
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shatin, Hong Kong
| | - Jie Jin
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing, China
| | - Suming Huang
- Departments of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK-Shenzhen Research Institute, Shatin, Hong Kong
| |
Collapse
|
15
|
Altered primary chromatin structures and their implications in cancer development. Cell Oncol (Dordr) 2016; 39:195-210. [PMID: 27007278 DOI: 10.1007/s13402-016-0276-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer development is a complex process involving both genetic and epigenetic changes. Genetic changes in oncogenes and tumor-suppressor genes are generally considered as primary causes, since these genes may directly regulate cellular growth. In addition, it has been found that changes in epigenetic factors, through mutation or altered gene expression, may contribute to cancer development. In the nucleus of eukaryotic cells DNA and histone proteins form a structure called chromatin which consists of nucleosomes that, like beads on a string, are aligned along the DNA strand. Modifications in chromatin structure are essential for cell type-specific activation or repression of gene transcription, as well as other processes such as DNA repair, DNA replication and chromosome segregation. Alterations in epigenetic factors involved in chromatin dynamics may accelerate cell cycle progression and, ultimately, result in malignant transformation. Abnormal expression of remodeler and modifier enzymes, as well as histone variants, may confer to cancer cells the ability to reprogram their genomes and to yield, maintain or exacerbate malignant hallmarks. At the end, genetic and epigenetic alterations that are encountered in cancer cells may culminate in chromatin changes that may, by altering the quantity and quality of gene expression, promote cancer development. METHODS During the last decade a vast number of studies has uncovered epigenetic abnormalities that are associated with the (anomalous) packaging and remodeling of chromatin in cancer genomes. In this review I will focus on recently published work dealing with alterations in the primary structure of chromatin resulting from imprecise arrangements of nucleosomes along DNA, and its functional implications for cancer development. CONCLUSIONS The primary chromatin structure is regulated by a variety of epigenetic mechanisms that may be deregulated through gene mutations and/or gene expression alterations. In recent years, it has become evident that changes in chromatin structure may coincide with the occurrence of cancer hallmarks. The functional interrelationships between such epigenetic alterations and cancer development are just becoming manifest and, therefore, the oncology community should continue to explore the molecular mechanisms governing the primary chromatin structure, both in normal and in cancer cells, in order to improve future approaches for cancer detection, prevention and therapy, as also for circumventing drug resistance.
Collapse
|
16
|
Liu Z, Han H, He X, Li S, Wu C, Yu C, Wang S. Expression of the galectin-9-Tim-3 pathway in glioma tissues is associated with the clinical manifestations of glioma. Oncol Lett 2016; 11:1829-1834. [PMID: 26998085 DOI: 10.3892/ol.2016.4142] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 12/18/2015] [Indexed: 11/05/2022] Open
Abstract
Glioma is known to induce local and systemic immunosuppression, which inhibits antitumor T cell responses. The galectin-9-Tim-3-pathway negatively regulates T cell pathways in the tumor immunosuppressive environment. The present study assessed the expression of Tim-3 and galectin-9 in glioma patients, and evaluated the association between the expression of Tim-3 and galectin-9 with clinical characteristics. The present study identified that Tim-3 expression was significantly increased in peripheral blood T cells of glioma patients compared with those of healthy controls, and was additionally increased on tumor-infiltrating T cells. The expression of Tim-3 on tumor-infiltrating T cells was associated with the World Health Organization (WHO) grade of glioma, but negatively correlated with the Karnofsky Performance Status score of the glioma patients. Immunohistochemical analysis revealed that the expression of galectin-9 in tumor tissues was associated with Tim-3 expression on tumor-infiltrating T cells and the WHO grade of glioma. These findings suggest that the galectin-9-Tim-3 pathway may be critical in the immunoevasion of glioma and may be a potent target for immunotherapy in glioma patients.
Collapse
Affiliation(s)
- Zengjin Liu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Huamin Han
- Key Laboratory of Infection and Immunity, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xin He
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Shouwei Li
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Chenxing Wu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Chunjiang Yu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Shengdian Wang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
17
|
Abstract
Eukaryotic gene expression is developmentally regulated, in part by chromatin remodelling, and its dysregulation has been linked to cancer. CHD5 (chromodomain helicase DNA-binding protein 5) is a tumour suppressor gene (TSG) that maps to a region of consistent deletion on 1p36.31 in neuroblastomas (NBs) and other tumour types. CHD5 encodes a protein with chromatin remodelling, helicase and DNA-binding motifs that is preferentially expressed in neural and testicular tissues. CHD5 is highly homologous to CHD3 and CHD4, which are the core subunits of nucleosome remodelling and deacetylation (NuRD) complexes. To determine if CHD5 forms a similar complex, we performed studies on nuclear extracts from NBLS, SY5Y (both with endogenous CHD5 expression), NLF (CHD5 null) and NLF cells stably transfected with CHD5 cDNA (wild-type and V5-histidine-tagged). Immunoprecipitation (IP) was performed with either CHD5 antibody or antibody to V5/histidine-tagged protein. We identified NuRD components both by GST-FOG1 (Friend Of GATA1) pull-down and by IP. We also performed MS/MS analysis to confirm the presence of CHD5 or other protein components of the NuRD complex, as well as to identify other novel proteins. CHD5 was clearly associated with all canonical NuRD components, including metastasis-associated protein (MTA)1/2, GATA zinc finger domain containing 2A (GATAD2A), histone deacetylase (HDAC)1/2, retinoblastoma-binding protein (RBBP)4/7 and methyl DNA-binding domain protein (MBD)2/3, as determined by Western blotting and MS/MS. Our data suggest CHD5 forms a NuRD complex similar to CHD4. However, CHD5-NuRD may also have unique protein associations that confer functional specificity and may contribute to normal development and to tumour suppression in NB and other cancers.
Collapse
|
18
|
Li W, Mills AA. Architects of the genome: CHD dysfunction in cancer, developmental disorders and neurological syndromes. Epigenomics 2015; 6:381-95. [PMID: 25333848 DOI: 10.2217/epi.14.31] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chromatin is vital to normal cells, and its deregulation contributes to a spectrum of human ailments. An emerging concept is that aberrant chromatin regulation culminates in gene expression programs that set the stage for the seemingly diverse pathologies of cancer, developmental disorders and neurological syndromes. However, the mechanisms responsible for such common etiology have been elusive. Recent evidence has implicated lesions affecting chromatin-remodeling proteins in cancer, developmental disorders and neurological syndromes, suggesting a common source for these different pathologies. Here, we focus on the chromodomain helicase DNA binding chromatin-remodeling family and the recent evidence for its deregulation in diverse pathological conditions, providing a new perspective on the underlying mechanisms and their implications for these prevalent human diseases.
Collapse
Affiliation(s)
- Wangzhi Li
- Cold Spring Harbor Laboratory Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
19
|
Quan J, Yusufzai T. The tumor suppressor chromodomain helicase DNA-binding protein 5 (CHD5) remodels nucleosomes by unwrapping. J Biol Chem 2015; 289:20717-26. [PMID: 24923445 DOI: 10.1074/jbc.m114.568568] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although mutations or deletions of chromodomain helicase DNA-binding protein 5 (CHD5) have been linked to cancer and implicate CHD5 in tumor suppression, the ATP-dependent activity of CHD5 is currently unknown. In this study, we discovered that CHD5 is a chromatin remodeling factor with a unique enzymatic activity. CHD5 can expose nucleosomal DNA at one or two discrete positions in the nucleosome. The exposure of the nucleosomal DNA by CHD5 is dependent on ATP hydrolysis, but continued ATP hydrolysis is not required to maintain the nucleosomes in their remodeled state. The activity of CHD5 is distinct from other related chromatin remodeling ATPases, such as ACF and BRG1, and does not lead to complete disruption or destabilization of the nucleosome. Rather, CHD5 likely initiates remodeling in a manner similar to that of other remodeling factors but does not significantly reposition the nucleosome. While the related factor CHD4 shows strong ATPase activity, it does not unwrap nucleosomes as efficiently as CHD5. Our findings add to the growing evidence that chromatin remodeling ATPases have diverse roles in modulating chromatin structure.
Collapse
|
20
|
The chromatin remodeling factor CHD5 is a transcriptional repressor of WEE1. PLoS One 2014; 9:e108066. [PMID: 25247294 PMCID: PMC4172601 DOI: 10.1371/journal.pone.0108066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022] Open
Abstract
Loss of the chromatin remodeling ATPase CHD5 has been linked to the progression of neuroblastoma tumors, yet the underlying mechanisms behind the tumor suppressor role of CHD5 are unknown. In this study, we purified the human CHD5 complex and found that CHD5 is a component of the full NuRD transcriptional repressor complex, which also contains methyl-CpG binding proteins and histone deacetylases. The CHD5/NuRD complex appears mutually exclusive with the related CHD4/NuRD complex as overexpression of CHD5 results in loss of the CHD4 protein in cells. Following a search for genes that are regulated by CHD5 in neuroblastoma cells, we found that CHD5 binds to and represses the G2/M checkpoint gene WEE1. Reintroduction of CHD5 into neuroblastoma cells represses WEE1 expression, demonstrating that CHD5 can function as a repressor in cells. A catalytically inactive mutant version of CHD5 is able to associate with a NuRD cofactor but fails to repress transcription. Our study shows that CHD5 is a NuRD-associated transcriptional repressor and identifies WEE1 as one of the CHD5-regulated genes that may link CHD5 to tumor suppression.
Collapse
|
21
|
Han S, Feng S, Xu L, Shi W, Wang X, Wang H, Yu C, Dong T, Xu M, Liang G. Tim-3 on peripheral CD4⁺ and CD8⁺ T cells is involved in the development of glioma. DNA Cell Biol 2014; 33:245-50. [PMID: 24512143 DOI: 10.1089/dna.2013.2306] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tim-3 acts as a negative regulatory molecule and plays a critical role in immune tolerance. The purpose of this study was to investigate the expression of Tim-3 on peripheral CD4⁺ and CD8⁺ T cells in glioma. A total of 30 newly diagnosed glioma patients and 30 healthy controls were recruited and leukocytes from peripheral blood mononuclear cells were analyzed for Tim-3 surface expression by flow cytometry. Plasma tumor necrosis factor-alpha (TNF-α) was also measured. Data showed that expression of Tim-3 was significantly increased in both CD4⁺ and CD8⁺ T cells in glioma patients than in controls (p<0.001 and p<0.001, respectively). Patients with a higher tumor grade revealed further elevated Tim-3 expression in CD8⁺ T cells compared with those with a lower tumor grade. Also, the Karnofsky score of patients was negatively correlated with the percentage of Tim-3⁺CD8⁺ T cells in glioma patients (p=0.007). In addition, an inverse correlation was observed between the plasma level of TNF-α and Tim-3⁺CD4⁺ T cells (p=0.005) or Tim-3⁺CD8⁺ T cells (p<0.001) in glioma patients. Our results suggested that Tim-3 may be involved in the development of glioma.
Collapse
Affiliation(s)
- Song Han
- 1 Department of Neurosurgery, Daping Hospital, Third Military Medical University , Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kolla V, Zhuang T, Higashi M, Naraparaju K, Brodeur GM. Role of CHD5 in human cancers: 10 years later. Cancer Res 2014; 74:652-8. [PMID: 24419087 DOI: 10.1158/0008-5472.can-13-3056] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CHD5 was first identified because of its location on 1p36 in a region of frequent deletion in neuroblastomas. CHD5 (chromodomain-helicase-DNA-binding-5) is the fifth member of a family of chromatin remodeling proteins, and it probably functions by forming a nucleosome remodeling and deacetylation (NuRD) complex that regulates transcription of particular genes. CHD5 is preferentially expressed in the nervous system and testis. On the basis of its position, pattern of expression, and function in neuroblastoma cells and xenografts, CHD5 was identified as a tumor suppressor gene (TSG). Evidence soon emerged that CHD5 also functioned as a TSG in gliomas and a variety of other tumor types, including breast, colon, lung, ovary, and prostate cancers. Although one copy of CHD5 is deleted frequently, inactivating mutations of the remaining allele are rare. However, DNA methylation of the CHD5 promoter is found frequently, and this epigenetic mechanism leads to biallelic inactivation. Furthermore, low CHD5 expression is strongly associated with unfavorable clinical and biologic features as well as outcome in neuroblastomas and many other tumor types. Thus, based on its likely involvement as a TSG in neuroblastomas, gliomas, and many common adult tumors, CHD5 may play an important developmental role in many other tissues besides the nervous system and testis.
Collapse
Affiliation(s)
- Venkatadri Kolla
- Authors' Affiliations: Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia; and The University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
23
|
Brodeur GM, Iyer R, Croucher JL, Zhuang T, Higashi M, Kolla V. Therapeutic targets for neuroblastomas. Expert Opin Ther Targets 2014; 18:277-92. [PMID: 24387342 DOI: 10.1517/14728222.2014.867946] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Neuroblastoma (NB) is the most common and deadly solid tumor in children. Despite recent improvements, the long-term outlook for high-risk NB is still < 50%. Further, there is considerable short- and long-term toxicity. More effective, less toxic therapy is needed, and the development of targeted therapies offers great promise. AREAS COVERED Relevant literature was reviewed to identify current and future therapeutic targets that are critical to malignant transformation and progression of NB. The potential or actual NB therapeutic targets are classified into four categories: i) genes activated by amplification, mutation, translocation or autocrine overexpression; ii) genes inactivated by deletion, mutation or epigenetic silencing; iii) membrane-associated genes expressed on most NBs but few other tissues; or iv) common target genes relevant to NB as well as other tumors. EXPERT OPINION Therapeutic approaches have been developed to some of these targets, but many remain untargeted at the present time. It is unlikely that single targeted agents will be sufficient for long-term cure, at least for high-risk NBs. The challenge will be how to integrate targeted agents with each other and with conventional therapy to enhance their efficacy, while simultaneously reducing systemic toxicity.
Collapse
Affiliation(s)
- Garrett M Brodeur
- Children's Hospital of Philadelphia, Division of Oncology , CTRB Rm. 3018, 3501 Civic Center Blvd., Philadelphia, PA 19104-4302 , USA +1 215 590 2817 ; +1 215 590 3770 ;
| | | | | | | | | | | |
Collapse
|
24
|
Hall WA, Petrova AV, Colbert LE, Hardy CW, Fisher SB, Saka B, Shelton JW, Warren MD, Pantazides BG, Gandhi K, Kowalski J, Kooby DA, El-Rayes BF, Staley CA, Volkan Adsay N, Curran WJ, Landry JC, Maithel SK, Yu DS. Low CHD5 expression activates the DNA damage response and predicts poor outcome in patients undergoing adjuvant therapy for resected pancreatic cancer. Oncogene 2013; 33:5450-6. [PMID: 24276239 DOI: 10.1038/onc.2013.488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/17/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023]
Abstract
The DNA damage response (DDR) promotes genome integrity and serves as a cancer barrier in precancerous lesions but paradoxically may promote cancer survival. Genes that activate the DDR when dysregulated could function as useful biomarkers for outcome in cancer patients. Using a siRNA screen in human pancreatic cancer cells, we identified the CHD5 tumor suppressor as a gene, which, when silenced, activates the DDR. We evaluated the relationship of CHD5 expression with DDR activation in human pancreatic cancer cells and the association of CHD5 expression in 80 patients with resected pancreatic adenocarcinoma (PAC) by immunohistochemical analysis with clinical outcome. CHD5 depletion and low CHD5 expression in human pancreatic cancer cells lead to increased H2AX-Ser139 and CHK2-Thr68 phosphorylation and accumulation into nuclear foci. On Kaplan-Meier log-rank survival analysis, patients with low CHD5 expression had a median recurrence-free survival (RFS) of 5.3 vs 15.4 months for patients with high CHD5 expression (P=0.03). In 59 patients receiving adjuvant chemotherapy, low CHD5 expression was associated with decreased RFS (4.5 vs 16.3 months; P=0.001) and overall survival (OS) (7.2 vs 21.6 months; P=0.003). On multivariate Cox regression analysis, low CHD5 expression remained associated with worse OS (HR: 3.187 (95% CI: 1.49-6.81); P=0.003) in patients undergoing adjuvant chemotherapy. Thus, low CHD5 expression activates the DDR and predicts for worse OS in patients with resected PAC receiving adjuvant chemotherapy. Our findings support a model in which dysregulated expression of tumor suppressor genes that induce DDR activation can be utilized as biomarkers for poor outcome.
Collapse
Affiliation(s)
- W A Hall
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - A V Petrova
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - L E Colbert
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - C W Hardy
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - S B Fisher
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - B Saka
- Department of Pathology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - J W Shelton
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - M D Warren
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - B G Pantazides
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - K Gandhi
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Atlanta, GA, USA
| | - J Kowalski
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Atlanta, GA, USA
| | - D A Kooby
- 1] Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA [2] Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA
| | - B F El-Rayes
- Department of Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - C A Staley
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - N Volkan Adsay
- Department of Pathology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - W J Curran
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - J C Landry
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - S K Maithel
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - D S Yu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|