1
|
di Biase L, Bonura A, Pecoraro PM, Carbone SP, Di Lazzaro V. Unlocking the Potential of Stroke Blood Biomarkers: Early Diagnosis, Ischemic vs. Haemorrhagic Differentiation and Haemorrhagic Transformation Risk: A Comprehensive Review. Int J Mol Sci 2023; 24:11545. [PMID: 37511304 PMCID: PMC10380631 DOI: 10.3390/ijms241411545] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Stroke, a complex and heterogeneous disease, is a leading cause of morbidity and mortality worldwide. The timely therapeutic intervention significantly impacts patient outcomes, but early stroke diagnosis is challenging due to the lack of specific diagnostic biomarkers. This review critically examines the literature for potential biomarkers that may aid in early diagnosis, differentiation between ischemic and hemorrhagic stroke, and prediction of hemorrhagic transformation in ischemic stroke. After a thorough analysis, four promising biomarkers were identified: Antithrombin III (ATIII), fibrinogen, and ischemia-modified albumin (IMA) for diagnostic purposes; glial fibrillary acidic protein (GFAP), micro RNA 124-3p, and a panel of 11 metabolites for distinguishing between ischemic and hemorrhagic stroke; and matrix metalloproteinase-9 (MMP-9), s100b, and interleukin 33 for predicting hemorrhagic transformation. We propose a biomarker panel integrating these markers, each reflecting different pathophysiological stages of stroke, that could significantly improve stroke patients' early detection and treatment. Despite promising results, further research and validation are needed to demonstrate the clinical utility of this proposed panel for routine stroke treatment.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Adriano Bonura
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Roma, Italy
| | - Pasquale Maria Pecoraro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Roma, Italy
| | - Simona Paola Carbone
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Roma, Italy
| | - Vincenzo Di Lazzaro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Roma, Italy
| |
Collapse
|
2
|
Wu Q, Wei C, Guo S, Liu J, Xiao H, Wu S, Wu B, Liu M. Acute iron overload aggravates blood-brain barrier disruption and hemorrhagic transformation after transient focal ischemia in rats with hyperglycemia. IBRO Neurosci Rep 2022; 13:87-95. [PMID: 35847179 PMCID: PMC9284446 DOI: 10.1016/j.ibneur.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Qian Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenchen Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Siqi Guo
- West China School of Clinical Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Junfeng Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hengyi Xiao
- Lab for Aging Research, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Simiao Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bo Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ming Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Correspondence to: Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
3
|
Song X, Liu J, Wang Y, Zheng L, Liu M. Serum microRNA miR-491-5p/miR-206 Is Correlated with Poor Outcomes/Spontaneous Hemorrhagic Transformation after Ischemic Stroke: A Case Control Study. Brain Sci 2022; 12:brainsci12080999. [PMID: 36009063 PMCID: PMC9405583 DOI: 10.3390/brainsci12080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022] Open
Abstract
Background: It is unclear whether miR-491-5p, miR-206, miR-21-5p or miR-3123 are associated with functional outcomes and hemorrhagic transformation (HT) after acute ischemic stroke (AIS). In this study, we aimed to investigate the correlation between these four microRNAs and functional outcomes, as well as spontaneous HT after AIS; Methods: We included 215 AIS patients and retrospectively assayed for miR-21-5p, miR-206, miR-3123 and miR-491-5p levels in serum. Poor functional outcome was defined as a modified Rankin Scale score ≥ 3. Spontaneous HT referred to hemorrhage detected in follow-up brain imaging but not on admission, without reperfusion therapies. Logistic regression, generalized additive model and 2-piecewise regression model were used to explore the independent, non-linear correlation between miRNA expression levels and outcomes; Results: We included 215 AIS patients. Higher miR-491-5p level independently reduced the risk of poor functional outcomes at 1 year (OR 0.90, 95% CI 0.82–0.98, corrected p value = 0.044). Higher miR-206 level significantly increased the risk of spontaneous HT (OR 1.64, 95% CI 1.17–2.30, corrected p value = 0.016). There was a nonlinear correlation found between miR-491-5p level and 1 year outcome with an inflection point of 2.180, while an approximately linear correlation was observed with an inflection point of 2.037 between miR-206 level and spontaneous HT; Conclusions: Higher serum miR-491-5p level independently reduced risk of 1-year poor functional outcome of AIS patients. Higher serum miR-206 level independently increased the risk of spontaneous HT in AIS patients. These two miRNAs may be as the potential biomarkers for improving prognosis after AIS.
Collapse
Affiliation(s)
- Xindi Song
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China; (X.S.); (J.L.); (Y.W.)
| | - Junfeng Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China; (X.S.); (J.L.); (Y.W.)
| | - Yanan Wang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China; (X.S.); (J.L.); (Y.W.)
| | - Lukai Zheng
- Institute for Stroke and Dementia Research, Ludwig Maximilian University Hospital of Munich (KUM), 81377 Munich, Germany;
| | - Ming Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China; (X.S.); (J.L.); (Y.W.)
- Correspondence:
| |
Collapse
|
4
|
Dias A, Silva L, Moura J, Gabriel D, Maia LF. Fluid biomarkers in stroke: From animal models to clinical care. Acta Neurol Scand 2022; 146:332-347. [PMID: 35838031 DOI: 10.1111/ane.13668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. Stroke prevention, early diagnosis, and efficient acute treatment are priorities to successfully impact stroke death and disability. Fluid biomarkers may improve stroke differential diagnostic, patient stratification for acute treatment, and post-stroke individualized rehabilitation. In the present work, we characterized the use of stroke animal models in fluid biomarker research through a systematic review of PubMed and Scopus databases, followed by a literature review on the translation to the human stroke care setting and future perspectives in the field. We found increasing numbers of publications but with limited translation to the clinic. Animal studies are very heterogeneous, do not account for several human features present in stroke, and, importantly, only a minority of such studies used human cohorts to validate biomarker findings. Clinical studies have found appealing candidates, both protein and circulating nucleic acids, to contribute to a more personalized stroke care pathway. Still, brain tissue complexity and the fact that different brain pathologies share lesion biomarkers make this task challenging due to biomarker low specificity. Moreover, the study design and lack of validation cohorts may have precluded a formal integration of biomarkers in different steps of stroke diagnosis and treatment. To overcome such issues, recent pivotal studies on biomarker dynamics in individual patients are providing added value to diagnosis and anticipating patients' early prognosis. Presently, the most consistent protein biomarkers for stroke diagnosis and short- and long-term prognosis are associated with tissue damage at neuronal (TAU), axonal (NFL), or astroglial (GFAP and S100β) levels. Most promising nucleic acids are microRNAs (miR), due to their stability in plasma and ease of access. Still, clinical validation and standardized quantitation place them a step behind compared protein as stroke biomarkers. Ultimately, the definition of clinically relevant biomarker panels and optimization of fast and sensitive biomarker measurements in the blood, together with their combination with clinical and neuroimaging data, will pave the way toward personalized stroke care.
Collapse
Affiliation(s)
- Alexandre Dias
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal
| | - Lénia Silva
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - João Moura
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Denis Gabriel
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luis F Maia
- Department of Neurology, Centro Hospitalar Universitário do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Ji X, Tian L, Yao S, Han F, Niu S, Qu C. A Systematic Review of Body Fluids Biomarkers Associated With Early Neurological Deterioration Following Acute Ischemic Stroke. Front Aging Neurosci 2022; 14:918473. [PMID: 35711907 PMCID: PMC9196239 DOI: 10.3389/fnagi.2022.918473] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Biomarkers are objectively measured biological properties of normal and pathological processes. Early neurological deterioration (END) refers to the deterioration of neurological function in a short time after the onset of acute ischemic stroke (AIS) and is associated with adverse outcomes. Although multiple biomarkers have been found to predict END, there are currently no suitable biomarkers to be applied in routine stroke care. According to the Preferred Reporting Items for Systematic Review standards, we present a systematic review, concentrating on body fluids biomarkers that have shown potential to be transferred into clinical practice. We also describe newly reported body fluids biomarkers that can supply different insights into the mechanism of END. In our review, 40 scientific papers were included. Depending on the various mechanisms, sources or physicochemical characteristics of body fluids biomarkers, we classified related biomarkers as inflammation, protease, coagulation, metabolism, oxidative stress, and excitatory neurotoxicity. The body fluids biomarkers whose related articles are limited or mechanisms are unknown are categorized as other biomarkers. The inflammation-related biomarkers, such as neutrophil-to-lymphocyte ratio and hypersensitive C-reactive protein, play a crucial role among the mentioned biomarkers. Considering the vast heterogeneity of stroke progression, using a single body fluids biomarker may not accurately predict the risk of stroke progression, and it is necessary to combine multiple biomarkers (panels, scores, or indices) to improve their capacity to estimate END.
Collapse
Affiliation(s)
- Xiaotan Ji
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurology, Jining No. 1 People’s Hospital, Jining, China
| | - Long Tian
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shumei Yao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Fengyue Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shenna Niu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chuanqiang Qu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chuanqiang Qu,
| |
Collapse
|
6
|
Krishnamoorthy S, Singh G, Jose K J, Soman B, Foerch C, Kimberly WT, Millán M, Świtońska M, Maestrini I, Bordet R, Malhotra K, Mechtouff L, Sylaja PN. Biomarkers in the Prediction of Hemorrhagic Transformation in Acute Stroke: A Systematic Review and Meta-Analysis. Cerebrovasc Dis 2021; 51:235-247. [PMID: 34569521 DOI: 10.1159/000518570] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hemorrhagic transformation (HT) is a complication that occurs spontaneously or after thrombolysis in acute ischemic stroke (AIS) and can increase morbidity and mortality. The association of biomarkers with the risk of HT has been variably reported. We conducted a systematic review of the literature and meta-analysis and sought to compare blood biomarkers associated with HT and its subtypes by evaluating its predictability and correlation with outcome in AIS. METHODS The study protocol was registered in the PROSPERO database (CRD42020201334) and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Among 2,230 articles identified from Cochrane Library, PubMed, and Web of Science databases, 30 quality-appraised articles were found eligible. Meta-analysis was conducted for matrix metalloproteinase-9 (MMP-9), cellular fibronectin (c-Fn), ferritin, S100 calcium-binding protein B (S100B), and neutrophil-lymphocyte ratio (NLR). We also reviewed biomarkers for correlation with the functional outcome at 90 days from stroke onset (poor outcome modified Rankin scale >2). RESULTS The pooled diagnostic odds ratio (DORpooled) was the highest for baseline c-Fn levels (299.253 [95% CI, 20.508-4,366.709]), followed by MMP-9 (DORpooled, 29.571 [95% CI 17.750-49.267]) and ferritin (DORpooled, 24.032 [95% CI 2.557-225.871]). However, wide confidence intervals for ferritin and c-Fn suggested lesser reliability of the markers. Patients with MMP-9 levels ≥140 ng/mL were 29.5 times at higher risk of developing symptomatic HT after AIS (area under the curve = 0.881). S100B (DORpooled, 6.286 [95% CI, 1.861-21.230]) and NLR (DORpooled, 5.036 [95% CI, 2.898-8.749]) had lower diagnostic accuracies. Among the markers not included for meta-analysis, caveolin-1, thrombin-activated fibrinolysis inhibitor, plasminogen activator inhibitor-1, and soluble ST2 were highly sensitive. Elevated levels of MMP-9, ferritin, and NLR were found to be associated with poor functional outcomes and mortality. CONCLUSION Of the 5 biomarkers, there was enough evidence that MMP-9 has higher diagnostic accuracy for predicting the risk of HT before thrombolysis. MMP-9, ferritin, and NLR also predicted poor short-term outcomes.
Collapse
Affiliation(s)
- Soumya Krishnamoorthy
- Comprehensive Stroke Care Program, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India,
| | - Gurpreet Singh
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Jithu Jose K
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Biju Soman
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Christian Foerch
- Department of Neurology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - W Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mónica Millán
- Stroke Unit, Department of Neurosciences, Hospital Germans Trias i Pujol, Departament de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Milena Świtońska
- Department of Neurosurgery and Neurology, Nicolaus Copernicus University in Toru´n, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Ilaria Maestrini
- Department of Systems Medicine, Stroke Center, University of Rome Tor Vergata, Rome, Italy.,Department of Medical Pharmacology, Degenerative and Vascular Cognitive Disorders, University Hospital CHU Lille, Inserm U1171, University of Lille, Lille, France
| | - Régis Bordet
- Department of Medical Pharmacology, Degenerative and Vascular Cognitive Disorders, University Hospital CHU Lille, Inserm U1171, University of Lille, Lille, France
| | - Konark Malhotra
- Department of Neurology, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Laura Mechtouff
- Stroke Department, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Lyon, France
| | - P N Sylaja
- Comprehensive Stroke Care Program, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
7
|
SWATH-MS for prospective identification of protein blood biomarkers of rtPA-associated intracranial hemorrhage in acute ischemic stroke: a pilot study. Sci Rep 2021; 11:18765. [PMID: 34548538 PMCID: PMC8455557 DOI: 10.1038/s41598-021-97710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/27/2021] [Indexed: 11/08/2022] Open
Abstract
Intravenous recombinant tissue plasminogen activator (rtPA) is, besides mechanical thrombectomy, the highest class evidence based reperfusion treatment of acute ischemic stroke (AIS). The biggest concern of the therapy is symptomatic intracranial hemorrhage (sICH), which occurs in 3-7% of all treated patients, and is associated with worse functional outcome. Finding a method of the powerful identification of patients at highest risk of sICH, in order to increase the percentage of stroke patients safely treated with rtPA, is one of the most important challenges in stroke research. To address this problem, we designed a complex project to identify blood, neuroimaging, and clinical biomarkers combined for prospective assessment of the risk of rtPA-associated ICH. In this paper we present results of blood proteomic and peptide analysis of pilot 41 AIS patients before rtPA administration (the test ICH group, n = 9 or the controls, without ICH, n = 32). We demonstrated that pre-treatment blood profiles of 15 proteins differ depending on whether the patients develop rtPA-associated ICH or not. SWATH-MS quantification of serum or plasma proteins might allow for robust selection of blood biomarkers to increase the prospective assessment of rtPA-associated ICH over that based solely on clinical and neuroimaging characteristics.
Collapse
|
8
|
Liu J, Wang Y, Jin Y, Guo W, Song Q, Wei C, Li J, Zhang S, Liu M. Prediction of Hemorrhagic Transformation After Ischemic Stroke: Development and Validation Study of a Novel Multi-biomarker Model. Front Aging Neurosci 2021; 13:667934. [PMID: 34122045 PMCID: PMC8193036 DOI: 10.3389/fnagi.2021.667934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: We aimed to develop and validate a novel multi-biomarker model for predicting hemorrhagic transformation (HT) risk after acute ischemic stroke (AIS). Methods: We prospectively included patients with AIS admitted within 24 h of stroke from January 1st 2016 to January 31st 2019. A panel of 17 circulating biomarkers was measured and analyzed in this cohort. We assessed the ability of individual circulating biomarkers and the combination of multiple biomarkers to predict any HT, symptomatic HT (sHT) and parenchymal hematoma (PH) after AIS. The strategy of multiple biomarkers in combination was then externally validated in an independent cohort of 288 Chinese patients. Results: A total of 1207 patients with AIS (727 males; mean age, 67.2 ± 13.9 years) were included as a derivation cohort, of whom 179 patients (14.8%) developed HT. The final multi-biomarker model included three biomarkers [platelets, neutrophil-to-lymphocyte ratios (NLR), and high-density lipoprotein (HDL)] from different pathways, showing a good performance for predicting HT in both the derivation cohort (c statistic = 0·64, 95% CI 0·60–0·69), and validation cohort (c statistic = 0·70, 95% CI 0·58–0·82). Adding these three biomarkers simultaneously to the basic model with conventional risk factors improved the ability of HT reclassification [net reclassification improvement (NRI) 65.6%, P < 0.001], PH (NRI 64.7%, P < 0.001), and sHT (NRI 71.3%, P < 0.001). Conclusion: This easily applied multi-biomarker model had a good performance for predicting HT in both the derivation and external validation cohorts. Incorporation of biomarkers into clinical decision making may help to identify patients at high risk of HT after AIS and warrants further consideration.
Collapse
Affiliation(s)
- Junfeng Liu
- Department of Neurology, Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yanan Wang
- Department of Neurology, Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxi Jin
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Wen Guo
- Department of Neurology, Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Quhong Song
- Department of Neurology, Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chenchen Wei
- Department of Neurology, Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.,Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Li
- Department of Neurology, The First People's Hospital of Ziyang, Ziyang, China
| | - Shanshan Zhang
- Department of Neurology, Mianyang Central Hospital, Mianyang, China
| | - Ming Liu
- Department of Neurology, Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Wang L, Deng L, Yuan R, Liu J, Li Y, Liu M. Association of Matrix Metalloproteinase 9 and Cellular Fibronectin and Outcome in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:523506. [PMID: 33329294 PMCID: PMC7732454 DOI: 10.3389/fneur.2020.523506] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Introduction: The role of matrix metalloproteinase 9 (MMP-9) and cellular fibronectin (c-Fn) in acute ischemic stroke is controversial. We systematically reviewed the literature to investigate the association of circulating MMP-9 and c-Fn levels and MMP-9 rs3918242 polymorphism with the risk of three outcome measures after stroke. Methods: We searched English and Chinese databases to identify eligible studies. Outcomes included severe brain edema, hemorrhagic transformation, and poor outcome (modified Rankin scale score ≥3). We estimated standardized mean differences (SMDs) and pooled odds ratios (ORs) with 95% confidence intervals (CIs). Results: Totally, 28 studies involving 7,239 patients were included in the analysis of circulating MMP-9 and c-Fn levels. Meta-analysis indicated higher levels of MMP-9 in patients with severe brain edema (SMD, 0.76; 95% CI, 0.18–1.35; four studies, 419 patients) and hemorrhagic transformation (SMD, 1.00; 95% CI, 0.41–1.59; 11 studies, 1,709 patients) but not poor outcome (SMD, 0.30; 95% CI, −0.12 to 0.72; four studies, 759 patients). Circulating c-Fn levels were also significantly higher in patients with severe brain edema (SMD, 1.55; 95% CI, 1.18–1.93; four studies, 419 patients), hemorrhagic transformation (SMD, 1.75; 95% CI, 0.72–2.78; four studies, 458 patients), and poor outcome (SMD, 0.46; 95% CI, 0.16–0.76; two studies, 210 patients). Meta-analysis of three studies indicated that the MMP-9 rs3918242 polymorphism may be associated with hemorrhagic transformation susceptibility under the dominant model (TT + CT vs. CC: OR, 0.621; 95% CI, 0.424–0.908; P = 0.014). No studies reported the association between MMP-9 rs3918242 polymorphism and brain edema or functional outcome after acute stroke. Conclusion: Our meta-analysis showed that higher MMP-9 levels were seen in stroke patients with severe brain edema and hemorrhagic transformation but not poor outcome. Circulating c-Fn levels appear to be associated with all three outcomes including severe brain edema, hemorrhagic transformation, and poor functional outcome. The C-to-T transition at the MMP-9 rs3918242 gene appears to reduce the risk of hemorrhagic transformation.
Collapse
Affiliation(s)
- Lu Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.,Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Deng
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruozhen Yuan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Junfeng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiao Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Bernardo-Castro S, Sousa JA, Brás A, Cecília C, Rodrigues B, Almendra L, Machado C, Santo G, Silva F, Ferreira L, Santana I, Sargento-Freitas J. Pathophysiology of Blood-Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front Neurol 2020; 11:594672. [PMID: 33362697 PMCID: PMC7756029 DOI: 10.3389/fneur.2020.594672] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) is a dynamic interface responsible for maintaining the central nervous system homeostasis. Its unique characteristics allow protecting the brain from unwanted compounds, but its impairment is involved in a vast number of pathological conditions. Disruption of the BBB and increase in its permeability are key in the development of several neurological diseases and have been extensively studied in stroke. Ischemic stroke is the most prevalent type of stroke and is characterized by a myriad of pathological events triggered by an arterial occlusion that can eventually lead to fatal outcomes such as hemorrhagic transformation (HT). BBB permeability seems to follow a multiphasic pattern throughout the different stroke stages that have been associated with distinct biological substrates. In the hyperacute stage, sudden hypoxia damages the BBB, leading to cytotoxic edema and increased permeability; in the acute stage, the neuroinflammatory response aggravates the BBB injury, leading to higher permeability and a consequent risk of HT that can be motivated by reperfusion therapy; in the subacute stage (1-3 weeks), repair mechanisms take place, especially neoangiogenesis. Immature vessels show leaky BBB, but this permeability has been associated with improved clinical recovery. In the chronic stage (>6 weeks), an increase of BBB restoration factors leads the barrier to start decreasing its permeability. Nonetheless, permeability will persist to some degree several weeks after injury. Understanding the mechanisms behind BBB dysregulation and HT pathophysiology could potentially help guide acute stroke care decisions and the development of new therapeutic targets; however, effective translation into clinical practice is still lacking. In this review, we will address the different pathological and physiological repair mechanisms involved in BBB permeability through the different stages of ischemic stroke and their role in the development of HT and stroke recovery.
Collapse
Affiliation(s)
| | - João André Sousa
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Brás
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Carla Cecília
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Bruno Rodrigues
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Luciano Almendra
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Cristina Machado
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Gustavo Santo
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Fernando Silva
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Ma G, Pan Z, Kong L, Du G. Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers. Int Immunopharmacol 2020; 90:107216. [PMID: 33296780 DOI: 10.1016/j.intimp.2020.107216] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
Hemorrhagic transformation (HT) is a common and serious complication following ischemic stroke, especially after tissue plasminogen activator (t-PA) thrombolysis, which is associated with increased mortality and disability. Due to the unknown mechanisms and targets of HT, there are no effective therapeutic drugs to decrease the incidence of HT. In recent years, many studies have found that neuroinflammation is closely related to the occurrence and development of HT after t-PA thrombolysis, including glial cell activation in the brain, peripheral inflammatory cell infiltration and the release of inflammatory factors, involving inflammation-related targets such as NF-κB, MAPK, HMGB1, TLR4 and NLRP3. Some drugs with anti-inflammatory activity have been shown to protect the BBB and reduce the risk of HT in preclinical experiments and clinical trials, including minocycline, fingolimod, tacrolimus, statins and some natural products. In addition, the changes in MMP-9, VAP-1, NLR, sICAM-1 and other inflammatory factors are closely related to the occurrence of HT, which may be potential biomarkers for the diagnosis and prognosis of HT. In this review, we summarize the potential inflammation-related mechanisms, targets, therapeutic drugs, and biomarkers associated with HT after t-PA thrombolysis and discuss the relationship between neuroinflammation and HT, which provides a reference for research on the mechanisms, prevention and treatment drugs, diagnosis and prognosis of HT.
Collapse
Affiliation(s)
- Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zirong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
12
|
Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol 2020; 16:247-264. [PMID: 32322099 DOI: 10.1038/s41582-020-0350-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Despite many years of research, no biomarkers for stroke are available to use in clinical practice. Progress in high-throughput technologies has provided new opportunities to understand the pathophysiology of this complex disease, and these studies have generated large amounts of data and information at different molecular levels. The integration of these multi-omics data means that thousands of proteins (proteomics), genes (genomics), RNAs (transcriptomics) and metabolites (metabolomics) can be studied simultaneously, revealing interaction networks between the molecular levels. Integrated analysis of multi-omics data will provide useful insight into stroke pathogenesis, identification of therapeutic targets and biomarker discovery. In this Review, we detail current knowledge on the pathology of stroke and the current status of biomarker research in stroke. We summarize how proteomics, metabolomics, transcriptomics and genomics are all contributing to the identification of new candidate biomarkers that could be developed and used in clinical stroke management.
Collapse
|
13
|
Su YY, Li HM, Yan ZX, Li MC, Wei JP, Zheng WX, Liu SQ, Deng YT, Xie HF, Li CG. Renin-angiotensin system activation and imbalance of matrix metalloproteinase-9/tissue inhibitor of matrix metalloproteinase-1 in cold-induced stroke. Life Sci 2019; 231:116563. [PMID: 31200003 DOI: 10.1016/j.lfs.2019.116563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
AIMS In the present study, we investigated the roles of renin-angiotensin system (RAS) activation and imbalance of matrix metalloproteinase-9 (MMP-9)/tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in cold-induced stroke during chronic hypertension, as well as the protective effects of captopril and recombinant human TIMP-1 (rhTIMP-1). MAIN METHODS Rats were randomly assigned to sham; 2-kidney, 2-clip (2K-2C); 2K-2C + captopril, and 2K-2C + rhTIMP-1 groups. After blood pressure values had stabilized, each group was randomly divided into an acute cold exposure (ACE) group (12-h light at 22 °C/12-h dark at 4 °C) and a non-acute cold exposure (NACE) group (12-h light/12-h dark at 22 °C), each of which underwent three cycles of exposure. Captopril treatment was administered via gavage (50 mg/kg/d), while rhTIMP-1 treatment was administered via the tail vein (60 μg/kg/36 h). KEY FINDINGS In the 2K-2C group, angiotensin II (AngII) and MMP-9 levels increased in both the plasma and cortex, while no such changes in TIMP-1 expression were observed. Cold exposure further upregulated AngII and MMP-9 levels and increased stroke incidence. Captopril and rhTIMP-1 treatment inhibited MMP-9 expression and activation and decreased stroke incidence in response to cold exposure. SIGNIFICANCE The present study is the first to demonstrate that cold exposure exacerbates imbalance between MMP-9 and TIMP-1 by activating the RAS, which may be critical in the initiation of stroke during chronic hypertension. In addition, our results suggest that captopril and rhTIMP-1 exert protective effects against cold-induced stroke by ameliorating MMP-9/TIMP-1 imbalance.
Collapse
Affiliation(s)
- Yu-Ying Su
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253, Middle Industrial Avenue, Haizhu District, Guangzhou, Guangdong 510282, PR China
| | - Huan-Min Li
- Department of Neurology, Third Affiliated Hospital of Southern Medical University, No. 183, West Zhongshan Avenue, Tianhe District, Guangzhou, Guangdong 510630, PR China
| | - Zhen-Xing Yan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253, Middle Industrial Avenue, Haizhu District, Guangzhou, Guangdong 510282, PR China
| | - Ming-Chun Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253, Middle Industrial Avenue, Haizhu District, Guangzhou, Guangdong 510282, PR China
| | - Ji-Peng Wei
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253, Middle Industrial Avenue, Haizhu District, Guangzhou, Guangdong 510282, PR China
| | - Wen-Xia Zheng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253, Middle Industrial Avenue, Haizhu District, Guangzhou, Guangdong 510282, PR China
| | - Si-Qin Liu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253, Middle Industrial Avenue, Haizhu District, Guangzhou, Guangdong 510282, PR China
| | - Yi-Ting Deng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253, Middle Industrial Avenue, Haizhu District, Guangzhou, Guangdong 510282, PR China
| | - Hui-Fang Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253, Middle Industrial Avenue, Haizhu District, Guangzhou, Guangdong 510282, PR China.
| | - Chun-Guang Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, No. 253, Middle Industrial Avenue, Haizhu District, Guangzhou, Guangdong 510282, PR China.
| |
Collapse
|