1
|
Quan G, Wang T, Ren JL, Xue X, Wang W, Wu Y, Li X, Yuan T. Prognostic and predictive impact of abnormal signal volume evolution early after chemoradiotherapy in glioblastoma. J Neurooncol 2023; 162:385-396. [PMID: 36991305 DOI: 10.1007/s11060-023-04299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION This study was designed to explore the feasibility of semiautomatic measurement of abnormal signal volume (ASV) in glioblastoma (GBM) patients, and the predictive value of ASV evolution for the survival prognosis after chemoradiotherapy (CRT). METHODS This retrospective trial included 110 consecutive patients with GBM. MRI metrics, including the orthogonal diameter (OD) of the abnormal signal lesions, the pre-radiation enhancement volume (PRRCE), the volume change rate of enhancement (rCE), and fluid attenuated inversion recovery (rFLAIR) before and after CRT were analyzed. Semi-automatic measurements of ASV were done through the Slicer software. RESULTS In logistic regression analysis, age (HR = 2.185, p = 0.012), PRRCE (HR = 0.373, p < 0.001), post CE volume (HR = 4.261, p = 0.001), rCE1m (HR = 0.519, p = 0.046) were the significant independent predictors of short overall survival (OS) (< 15.43 months). The areas under the receiver operating characteristic curve (AUCs) for predicting short OS with rFLAIR3m and rCE1m were 0.646 and 0.771, respectively. The AUCs of Model 1 (clinical), Model 2 (clinical + conventional MRI), Model 3 (volume parameters), Model 4 (volume parameters + conventional MRI), and Model 5 (clinical + conventional MRI + volume parameters) for predicting short OS were 0.690, 0.723, 0.877, 0.879, 0.898, respectively. CONCLUSION Semi-automatic measurement of ASV in GBM patients is feasible. The early evolution of ASV after CRT was beneficial in improving the survival evaluation after CRT. The efficacy of rCE1m was better than that of rFLAIR3m in this evaluation.
Collapse
Affiliation(s)
- Guanmin Quan
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Tianda Wang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jia-Liang Ren
- GE Healthcare China, Beijing, People's Republic of China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Wenyan Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yankai Wu
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaotong Li
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Tao Yuan
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
2
|
Bhaduri S, Lesbats C, Sharkey J, Kelly CL, Mukherjee S, Taylor A, Delikatny EJ, Kim SG, Poptani H. Assessing Tumour Haemodynamic Heterogeneity and Response to Choline Kinase Inhibition Using Clustered Dynamic Contrast Enhanced MRI Parameters in Rodent Models of Glioblastoma. Cancers (Basel) 2022; 14:cancers14051223. [PMID: 35267531 PMCID: PMC8909848 DOI: 10.3390/cancers14051223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
To investigate the utility of DCE-MRI derived pharmacokinetic parameters in evaluating tumour haemodynamic heterogeneity and treatment response in rodent models of glioblastoma, imaging was performed on intracranial F98 and GL261 glioblastoma bearing rodents. Clustering of the DCE-MRI-based parametric maps (using Tofts, extended Tofts, shutter speed, two-compartment, and the second generation shutter speed models) was performed using a hierarchical clustering algorithm, resulting in areas with poor fit (reflecting necrosis), low, medium, and high valued pixels representing parameters Ktrans, ve, Kep, vp, τi and Fp. There was a significant increase in the number of necrotic pixels with increasing tumour volume and a significant correlation between ve and tumour volume suggesting increased extracellular volume in larger tumours. In terms of therapeutic response in F98 rat GBMs, a sustained decrease in permeability and perfusion and a reduced cell density was observed during treatment with JAS239 based on Ktrans, Fp and ve as compared to control animals. No significant differences in these parameters were found for the GL261 tumour, indicating that this model may be less sensitive to JAS239 treatment regarding changes in vascular parameters. This study demonstrates that region-based clustered pharmacokinetic parameters derived from DCE-MRI may be useful in assessing tumour haemodynamic heterogeneity with the potential for assessing therapeutic response.
Collapse
Affiliation(s)
- Sourav Bhaduri
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Clémentine Lesbats
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - Jack Sharkey
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Claire Louise Kelly
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Soham Mukherjee
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Arthur Taylor
- Department of Molecular Physiology & Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK;
| | - Edward J. Delikatny
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Sungheon G. Kim
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
- Correspondence:
| |
Collapse
|
3
|
Metz G, Jayamanne D, Wheeler H, Wong M, Cook R, Little N, Parkinson J, Kastelan M, Brown C, Back M. Large tumour volume reduction of IDH-mutated anaplastic glioma involving the insular region following radiotherapy. BMC Neurol 2022; 22:24. [PMID: 35027006 PMCID: PMC8756697 DOI: 10.1186/s12883-021-02548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Background The impact of near-total resection of IDH-mutated anaplastic glioma (IDHmutAG) is well-established but there remains uncertainty of benefit in tumours of the insular cortex where the extent of safe resection may be limited. This study aimed to assess tumour volume reduction in patients following IMRT and impact of residual post-surgical volume. Methods and materials Patients with IDHmutAG involving insular cortex managed with IMRT from 2008 to 2019 had baseline patient, tumour and treatment factors recorded. Volumetric assessment of residual disease on MRI was performed at baseline, month+ 3 and month+ 12 post-IMRT. Potential prognostic factors were analysed for tumour reduction and relapse-free survival, and assessed by log-rank and Cox regression analyses. Results Thirty two patients with IDHmutAG of the insular cortex were managed with median follow-up post-IMRT of 67.2 months. Pathology was anaplastic astrocytoma (AAmut) in 20, and anaplastic oligodendroglioma (AOD) in 12 patients. Median pre-IMRT volume on T1 and T2Flair was 24.3cm3 and 52.2cm3. Twenty-seven patients were alive with 5-year relapse-free survival of 80%. There was a median 67 and 64% reduction from baseline occurring at 3 months post-IMRT for T1 and T2Flair respectively; and subsequent median 78 and 73% at 12 months. At 12 months AOD patients had median 83% T1 volume reduction compared to 63% in AAmut (p < 0.01). There was no difference on T2Flair volume (p = 0.64). No other pathological factors influenced volume reduction at 12 months. No factors were associated with relapse-free survival including baseline T1 (p = 0.52) and T2Flair (p = 0.93) volume. Conclusion IMRT provides large tumour volume reduction in IDHmutAG of the insular cortex. While maximal safe debulking remains standard of care when feasible, this patient cohort reported no significant negative impact of residual disease volume on relapse-free survival.
Collapse
Affiliation(s)
- Gabrielle Metz
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia.
| | - Dasantha Jayamanne
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia.,Genesis Cancer Care, Sydney, Australia
| | - Helen Wheeler
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia.,The Brain Cancer Group, Sydney, Australia
| | - Matthew Wong
- Central Coast Cancer Centre, Gosford Hospital, Gosford, Australia
| | - Raymond Cook
- The Brain Cancer Group, Sydney, Australia.,Department of Neurosurgery, Royal North Shore Hospital, Sydney, Australia
| | - Nicholas Little
- Department of Neurosurgery, Royal North Shore Hospital, Sydney, Australia
| | - Jonathon Parkinson
- The Brain Cancer Group, Sydney, Australia.,Department of Neurosurgery, Royal North Shore Hospital, Sydney, Australia
| | - Marina Kastelan
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia.,The Brain Cancer Group, Sydney, Australia
| | - Chris Brown
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Michael Back
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, Sydney, NSW, 2065, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia.,Genesis Cancer Care, Sydney, Australia.,The Brain Cancer Group, Sydney, Australia.,Central Coast Cancer Centre, Gosford Hospital, Gosford, Australia
| |
Collapse
|
4
|
Lukas RV, Wainwright DA, Horbinski CM, Iwamoto FM, Sonabend AM. Immunotherapy Against Gliomas: is the Breakthrough Near? Drugs 2019; 79:1839-1848. [PMID: 31598900 PMCID: PMC6868342 DOI: 10.1007/s40265-019-01203-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapeutic approaches have been, and continue to be, aggressively investigated in the treatment of infiltrating gliomas. While the results of late-phase clinical studies have been disappointing in this disease space thus far, the success of immunotherapies in other malignancies as well as the incremental gains in our understanding of immune-tumour interactions in gliomas has fuelled a strong continued interest of their evaluation in these tumours. We discuss a range of immunotherapeutic approaches including, but not limited to, vaccines, checkpoint inhibitors, oncolytic viruses, and gene therapies. Potential biomarkers under investigation to help elucidate which patients may respond or not respond to immunotherapeutic regimens are reviewed. Directions for future investigations are also noted.
Collapse
Affiliation(s)
- Rimas V Lukas
- Department of Neurology, Northwestern University, 710 N. Lake Shore Drive, Abbott Hall 1114, Chicago, IL, 60611, USA.
- Lou & Jean Malnati Brain Tumor Institute at the Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA.
| | - Derek A Wainwright
- Lou & Jean Malnati Brain Tumor Institute at the Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
- Department of Neurological Surgery, Northwestern University, Chicago, USA
- Department of Microbiology-Immunology, Northwestern University, Chicago, USA
- Department of Medicine-Hematology/Oncology, Northwestern University, Chicago, USA
| | - Craig M Horbinski
- Lou & Jean Malnati Brain Tumor Institute at the Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
- Department of Neurological Surgery, Northwestern University, Chicago, USA
- Department of Pathology, Northwestern University, Chicago, USA
| | | | - Adam M Sonabend
- Lou & Jean Malnati Brain Tumor Institute at the Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
- Department of Neurological Surgery, Northwestern University, Chicago, USA
| |
Collapse
|