1
|
Shin C, Kim SI, Park SH, Kim JM, Lee JY, Chung SJ, Kim JW, Ahn TB, Park KW, Shin JH, Lee CY, Lee HJ, Kong SH, Suh YS, Kim HJ, Yang HK, Jeon B. Diagnostic accuracy and predictors of alpha-synuclein accumulation in the gastrointestinal tract of Parkinson's disease. NPJ Parkinsons Dis 2024; 10:155. [PMID: 39147801 PMCID: PMC11327357 DOI: 10.1038/s41531-024-00766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
The only characteristic of alpha-synuclein (AS) accumulation in the gastrointestinal (GI) tract of Parkinson's disease (PD) found in pathological studies is the "rostrocaudal gradient," which describes the more frequent presence of AS accumulation in the upper GI tract than in the lower GI tract. This study aimed to determine the diagnostic accuracy and identify predictors of AS accumulation in the GI tract of PD patients. The frequency of AS accumulation in the GI tract was compared between PD patients (N = 97) who underwent radical GI surgery for cancer and individually matched controls (N = 94). We evaluated AS accumulation in the neural structures using phosphorylated AS immunohistochemistry. A multivariable logistic regression analysis was conducted to determine the predictors of AS accumulation in the GI tract of PD patients. The frequency of AS accumulation was significantly higher in PD patients (75.3%) than in controls (8.5%, p-value < 0.001). The sensitivity and specificity of the full-layer evaluation were 75.3% and 91.5%, respectively. When the evaluation was confined to the mucosal/submucosal layer, the sensitivity and specificity were 46.9% and 94.7%, respectively. The rostrocaudal gradient of AS accumulation was found in PD patients. The duration from symptom onset to surgery was significantly longer in PD patients with AS accumulation (4.9 ± 4.9 years) than in PD patients without AS accumulation (1.8 ± 4.1 years, p-value = 0.005). Both disease duration and rostrocaudal gradient independently predicted the presence of AS accumulation in the GI tract of PD patients. Our study suggests PD-related AS accumulation in the GI tract follows a temporally increasing but spatially static progression pattern.
Collapse
Affiliation(s)
- Chaewon Shin
- Department of Neurology, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, 20, Bodeum 7-ro, Sejong-si, Republic of Korea
| | - Seong-Ik Kim
- Department of Pathology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Jong-Min Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 173 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jee-Young Lee
- Department of Neurology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, 07061, Seoul, Republic of Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Jae Woo Kim
- Department of Neurology, Dong-A University Hospital, 26 Daesingongwon-ro, Seo-gu, Busan, Republic of Korea
| | - Tae-Beom Ahn
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Kye Won Park
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
- Pacific Parkinson Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Chan Young Lee
- Department of Neurology, Ewha Womans University Mokdong Hospital, 1071 Annyangcheon-ro, Yangcheon-gu, Seoul, Republic of Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Seong-Ho Kong
- Department of Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Han-Kwang Yang
- Department of Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Beomseok Jeon
- Department of Neurology, Chung-ang University Health Care System Hyundae Hospital, Namyangju-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
2
|
Bindas AJ, Kulkarni S, Koppes RA, Koppes AN. Parkinson's disease and the gut: Models of an emerging relationship. Acta Biomater 2021; 132:325-344. [PMID: 33857691 DOI: 10.1016/j.actbio.2021.03.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by a progressive loss of fine motor function that impacts 1-2 out of 1,000 people. PD occurs predominately late in life and lacks a definitive biomarker for early detection. Recent cross-disciplinary progress has implicated the gut as a potential origin of PD pathogenesis. The gut-origin hypothesis has motivated research on gut PD pathology and transmission to the brain, especially during the prodromal stage (10-20 years before motor symptom onset). Early findings have revealed several possible triggers for Lewy pathology - the pathological hallmark of PD - in the gut, suggesting that microbiome and epithelial interactions may play a greater than appreciated role. But the mechanisms driving Lewy pathology and gut-brain transmission in PD remain unknown. Development of artificial α-Synuclein aggregates (α-Syn preformed fibrils) and animal disease models have recapitulated features of PD progression, enabling for the first time, controlled investigation of the gut-origin hypothesis. However, the role of specific cells in PD transmission, such as neurons, remains limited and requires in vitro models for controlled evaluation and perturbation. Human cell populations, three-dimensional organoids, and microfluidics as discovery platforms inch us closer to improving existing treatment for patients by providing platforms for discovery and screening. This review includes a discussion of PD pathology, conventional treatments, in vivo and in vitro models, and future directions. STATEMENT OF SIGNIFICANCE: Parkinson's Disease remains a common neurodegenerative disease with palliative versus causal treatments. Recently, the gut-origin hypothesis, where Parkinson's disease is thought to originate and spread from the gut to the brain, has gained traction as a field of investigation. However, despite the wealth of studies and innovative approaches to accelerate the field, there remains a need for in vitro tools to enable fundamental biological understanding of disease progression, and compound screening and efficacy. In this review, we present a historical perspective of Parkinson's Disease pathogenesis, detection, and conventional therapy, animal and human models investigating the gut-origin hypothesis, in vitro models to enable controlled discovery, and future outlooks for this blossoming field.
Collapse
Affiliation(s)
- Adam J Bindas
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA.
| | - Subhash Kulkarni
- Division of Gastroenterology and Hepatology, Johns Hopkins University, 720 Rutland Avenue., Baltimore, MD 21205, USA.
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA.
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA; Department of Biology, Northeastern University, 360 Huntington Ave., 313 Snell Engineering, Boston, MA 02115, USA.
| |
Collapse
|