1
|
Scherpelz KP, Yoda RA, Jayadev S, Davis MY, Hincks JC, Liachko NF, Bragg RM, Cochoit A, MacDonald CL, Keene CD, Bird TD, Latimer CS. Hereditary spastic paraplegia with thin corpus callosum and SPG11 mutation: A neuropathological evaluation. Neuropathology 2024. [PMID: 39391989 DOI: 10.1111/neup.13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Hereditary spastic paraplegia (HSP) with thin corpus callosum can be due to a variety of genetic causes, the most common of which are biallelic variants in SPG11 (HSP11). Only six cases of neuropathologic examination of HSP11 have been reported. Here we present neuropathological findings in another case of HSP11 with novel mutation (homozygous c.6439_6442del) and clinical features of three additional cases of HSP11. These four cases of HSP11 had similar disease courses with prominent lower extremity weakness and spasticity but varied cognitive symptoms and brain magnetic resonance imaging (MRI) findings. Neuropathological examination of one case included ex vivo MRI of the cerebrum, histologic and immunohistochemical evaluation, and Western blot for SPG11. The case was notable for a small cerebrum with decreased volume of cortex, white matter, and deep gray nuclei. The corpus callosum was thin, and the substantia nigra showed marked pallor. Microscopically, the cortex had normal lamination and mild loss of neurons with mild gliosis, the corpus callosum was thin with limited gliosis, and the substantia nigra had marked decrease in neurons and pigment, with minimal gliosis. In contrast, the basal ganglia, thalamus, and spinal cord (anterior horns, corticospinal, and spinocerebellar tracts) had prominent neuron loss and gliosis. Myelin-laden macrophages were found in multiple sites but were most common in the corpus callosum. No hyperphosphorylated tau or TDP-43 aggregates, Lewy bodies, or amyloid β plaques were found. Compared to control, SPG11 was absent in HSP11 brain and markers of autophagy were elevated by Western blot. Comparison with prior reports of HSP with thin corpus callosum and HSP11 demonstrates a disease with a broad range of structural changes of the brain, including features of abnormal development and degeneration.
Collapse
Affiliation(s)
- Kathryn P Scherpelz
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Rebecca A Yoda
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Marie Y Davis
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Joshua C Hincks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Robert M Bragg
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Alexa Cochoit
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Christine L MacDonald
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - C Dirk Keene
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Caitlin S Latimer
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Chojdak-Łukasiewicz J, Sulima K, Zimny A, Waliszewska-Prosół M, Budrewicz S. Hereditary Spastic Paraplegia Type 11-Clinical, Genetic and Neuroimaging Characteristics. Int J Mol Sci 2023; 24:17530. [PMID: 38139357 PMCID: PMC10743703 DOI: 10.3390/ijms242417530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of genetically determined diseases, characterised by progressive spastic paraparesis of the lower limbs, associated with degeneration of the corticospinal tract and the posterior column of the spinal cord. HSP occurs worldwide and the estimated prevalence is about 1-10/100,000, depending on the geographic localisation. More than 70 genes responsible for HSP have been identified to date, and reports of new potentially pathogenic variants appear regularly. All possible patterns of inheritance (autosomal dominant, autosomal recessive, X-linked and mitochondrial) have been described in families of HSP patients. Among the autosomal recessive forms of HSP (AR-HSP), hereditary spastic paraplegia type 11 is the most common one. We present a patient with diagnosed HSP 11, with a typical clinical picture and characteristic features in additional diagnostic tests.
Collapse
Affiliation(s)
| | - Katarzyna Sulima
- Department of Neurology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.C.-Ł.); (K.S.); (S.B.)
| | - Anna Zimny
- Department of General Radiology, Interventional Radiology and Neuroradiology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Marta Waliszewska-Prosół
- Department of Neurology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.C.-Ł.); (K.S.); (S.B.)
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.C.-Ł.); (K.S.); (S.B.)
| |
Collapse
|
3
|
Kim GH, Song T, Lee J, Jang DH. Syringomyelia: A New Phenotype of SPG11-Related Hereditary Spastic Paraplegia? BRAIN & NEUROREHABILITATION 2023; 16:e14. [PMID: 37554253 PMCID: PMC10404805 DOI: 10.12786/bn.2023.16.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 08/10/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) refers to a group of neurodegenerative disorders affecting motor neurons in the central nervous system. HSP type 11 is the most frequent subtype of autosomal recessive HSPs. Caused by pathogenic variants in SPG11, HSP type 11 has a heterogeneous clinical presentation, including various degrees of cognitive dysfunction, spasticity and weakness predominantly in the lower extremities among other features. An 8-year-old boy visited our rehabilitation clinic with a chief complaint of intellectual impairment. Motor weakness was not apparent, but he exhibited a mild limping gait with physical signs of upper motor neuron involvement. Next generation sequencing revealed biallelic pathogenic variants, c.2163dupT and c.5866+1G>A in SPG11, inherited biparentally which was confirmed by Sanger sequencing. Brain imaging study showed thinning of corpus callosum, consistent with previous reports, however whole spine imaging study revealed extensive syringomyelia in his spinal cord, a rare finding in HSP type 11. Further studies are needed to determine whether this finding is a true phenotype associated with HSP type 11.
Collapse
Affiliation(s)
- Ga Hye Kim
- Department of Rehabilitation Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Taeyoung Song
- Department of Rehabilitation Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, College of Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, Incheon, Korea
| | - Dae-Hyun Jang
- Department of Rehabilitation Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| |
Collapse
|
4
|
Rattay TW, Schöls L, Zeltner L, Rohrschneider WK, Ernemann U, Lindig T. "Ears of the lynx" sign and thin corpus callosum on MRI in heterozygous SPG11 mutation carriers. J Neurol 2022; 269:6148-6151. [PMID: 35614164 DOI: 10.1007/s00415-022-11198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Tim W Rattay
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Center for Rare Diseases (ZSE), University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany.
- Center for Rare Diseases (ZSE), University of Tübingen, Tübingen, Germany.
| | - Lena Zeltner
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
- Center for Rare Diseases (ZSE), University of Tübingen, Tübingen, Germany
| | | | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Tobias Lindig
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Nuzhnyi EP, Abramycheva NY, Safonov DG, Fedotova EY, Illarioshkin SN. Massive Parallel Sequencing and the Problem of Overlapping Phenotypes in Hereditary Spastic Paraplegias and Spinocerebellar Ataxias. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Hayakawa M, Matsubara T, Mochizuki Y, Takeuchi C, Minamitani M, Imai M, Kosaki K, Arai T, Murayama S. An autopsied case report of spastic paraplegia with thin corpus callosum carrying a novel mutation in the SPG11 gene: widespread degeneration with eosinophilic inclusions. BMC Neurol 2022; 22:2. [PMID: 34979968 PMCID: PMC8722294 DOI: 10.1186/s12883-021-02514-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background The detailed neuropathological features of patients with autosomal recessive hereditary spastic paraplegia with a thin corpus callosum (TCC) and SPG11 mutations are poorly understood, as only a few autopsies have been reported. Herein, we describe the clinicopathological findings of a patient with this disease who received long-term care at our medical facility. Case presentation A Japanese man exhibited a mild developmental delay in early childhood and intellectual disability, followed by the appearance of a spastic gait by age 13. At the age of 25 years, he became bedridden and needed a ventilator. Genetic analysis revealed a homozygous splice site variant in the SPG11 gene (c. 4162–2A > G) after the provision of genetic counselling and acquisition of informed consent from his parents. He died of pneumonia at the age of 44. His brain weighed 967 g and was characterized by a TCC, and his spinal cord was flattened. Microscopically, degeneration was observed in the posterior spinocerebellar tract, the gracile fasciculus, and the posterior column in addition to the corticospinal tract. Marked neuronal loss and gliosis were observed in the anterior horn, Clarke’s column, and hypoglossal and facial nuclei. Various types of neurons, in addition to motor neurons, showed coarse eosinophilic granules that were immunoreactive for p62. The loss of pigmented neurons with gliosis was apparent in both the substantia nigra and locus coeruleus. Lateral geniculate body degeneration was a characteristic feature of this patient. Furthermore, peripheral Lewy body-related α-synucleinopathy and scattered α-synuclein–immunoreactive neurites in the locus coeruleus and reticular formation of the brainstem were observed. Conclusions In patients with hereditary spastic paraplegia with SPG11 mutations, a variety of clinical phenotypes develop due to widespread lesions containing p62-immunoreactive neuronal cytoplasmic inclusions. We herein report the lateral geniculate body as another degenerative site related to SPG11-related pathologies that should be studied in future investigations. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02514-z.
Collapse
Affiliation(s)
- Mika Hayakawa
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, 1-2-3 Jujodai Kita-ku, Tokyo, 114-0033, Japan
| | - Tomoyasu Matsubara
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yoko Mochizuki
- Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, 1-2-3 Jujodai Kita-ku, Tokyo, 114-0033, Japan
| | - Chisen Takeuchi
- Department of Neurology, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, 1-2-3 Jujodai Kita-ku, Tokyo, 114-0033, Japan
| | - Motoyuki Minamitani
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, 1-2-3 Jujodai Kita-ku, Tokyo, 114-0033, Japan
| | - Masayuki Imai
- Department of Pediatrics, Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled, 1-2-3 Jujodai Kita-ku, Tokyo, 114-0033, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinano-machi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan. .,The Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into Clinical, Genetic, and Pathological Aspects of Hereditary Spastic Paraplegias: A Comprehensive Overview. Front Mol Biosci 2021; 8:690899. [PMID: 34901147 PMCID: PMC8662366 DOI: 10.3389/fmolb.2021.690899] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a heterogeneous group of motor neurodegenerative disorders that have the core clinical presentation of pyramidal syndrome which starts typically in the lower limbs. They can present as pure or complex forms with all classical modes of monogenic inheritance reported. To date, there are more than 100 loci/88 spastic paraplegia genes (SPG) involved in the pathogenesis of HSP. New patterns of inheritance are being increasingly identified in this era of huge advances in genetic and functional studies. A wide range of clinical symptoms and signs are now reported to complicate HSP with increasing overall complexity of the clinical presentations considered as HSP. This is especially true with the emergence of multiple HSP phenotypes that are situated in the borderline zone with other neurogenetic disorders. The genetic diagnostic approaches and the utilized techniques leave a diagnostic gap of 25% in the best studies. In this review, we summarize the known types of HSP with special focus on those in which spasticity is the principal clinical phenotype ("SPGn" designation). We discuss their modes of inheritance, clinical phenotypes, underlying genetics, and molecular pathways, providing some observations about therapeutic opportunities gained from animal models and functional studies. This review may pave the way for more analytic approaches that take into consideration the overall picture of HSP. It will shed light on subtle associations that can explain the occurrence of the disease and allow a better understanding of its observed variations. This should help in the identification of future biomarkers, predictors of disease onset and progression, and treatments for both better functional outcomes and quality of life.
Collapse
Affiliation(s)
- Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University [PNU], Riyadh, Saudi Arabia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Ammar E. Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Giovanni Stevanin
- Institut du Cerveau – Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Paris, France
- CNRS, INCIA, Université de Bordeaux, Bordeaux, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|