1
|
Burzyńska M, Woźniak J, Urbański P, Kędziora J, Załuski R, Goździk W, Uryga A. Heart Rate Variability and Cerebral Autoregulation in Patients with Traumatic Brain Injury with Paroxysmal Sympathetic Hyperactivity Syndrome. Neurocrit Care 2024:10.1007/s12028-024-02149-1. [PMID: 39470966 DOI: 10.1007/s12028-024-02149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Severe traumatic brain injury (TBI) can lead to transient changes in autonomic nervous system (ANS) functioning and development of paroxysmal sympathetic hyperactivity (PSH) syndrome. Clinical manifestation of ANS disorders may be obscured by therapeutic interventions in TBI. This study aims to analyze ANS metrics and cerebral autoregulation in patients with PSH syndrome to determine their significance in early prognostication. METHODS This single-center retrospective study investigated the relationship between changes in ANS metrics, cerebral autoregulation, and PSH syndrome. Arterial blood pressure and intracranial pressure signals were monitored for 5 days post TBI. ANS metrics included time and frequency domain heart rate variability (HRV) metrics. Cerebral autoregulation was assessed using the pressure reactivity index. RESULTS Sixty-six patients with severe TBI (median age 33 [interquartile range 26-50] years) were analyzed, and PSH was confirmed in nine cases. Impairment of cerebral autoregulation was observed in 67% of patients with PSH and 72% without the syndrome. Patients with PSH had higher HRV in the low-frequency range (LF; 253 ± 178 vs. 176 ± 227 ms2; p = 0.035) and lower heart rates (HRs; 70 ± 7 vs. 78 ± 19 bpm; p = 0.027) compared to those without PSH. A receiver operating characteristic curve analysis indicated that HR (area under the curve (AUC) = 0.73, p = 0.006) and HRV in the LF (AUC = 0.70, p = 0.009) are moderate predictors of PSH. In the multiple logistic regression model for PSH, diffuse axonal trauma (odds ratio (OR) = 10.82, 95% confidence interval (CI) = 1.70-68.98, p = 0.012) and HR (OR = 0.91, 95% CI 0.84-0.98, p = 0.021) were significant factors. CONCLUSIONS Elevated HRV in the LF and decreased HR may serve as early predictors of PSH syndrome development, particularly in patients with diffuse axonal trauma. Further research is needed to investigate the utility of the cerebral autoregulation-ANS relationship in PSH prognostication.
Collapse
Affiliation(s)
- Małgorzata Burzyńska
- Clinical Department of Anesthesiology and Intensive Care, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jowita Woźniak
- Department of Neurosurgery, Wroclaw University Hospital, Wroclaw, Poland
| | - Piotr Urbański
- Clinical Department of Anesthesiology and Intensive Care, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jarosław Kędziora
- Clinical Department of Anesthesiology and Intensive Care, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Rafał Załuski
- Clinical Department of Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Waldemar Goździk
- Clinical Department of Anesthesiology and Intensive Care, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
2
|
Chai CZ, Ho UC, Kuo LT. Systemic Inflammation after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:10943. [PMID: 37446118 DOI: 10.3390/ijms241310943] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is one of the most severe neurological disorders, with a high mortality rate and severe disabling functional sequelae. Systemic inflammation following hemorrhagic stroke may play an important role in mediating intracranial and extracranial tissue damage. Previous studies showed that various systemic inflammatory biomarkers might be useful in predicting clinical outcomes. Anti-inflammatory treatment might be a promising therapeutic approach for improving the prognosis of patients with aSAH. This review summarizes the complicated interactions between the nervous system and the immune system.
Collapse
Affiliation(s)
- Chang-Zhang Chai
- Department of Medical Education, National Taiwan University, School of Medicine, Taipei 100, Taiwan
| | - Ue-Cheung Ho
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
3
|
Mankoo A, Roy S, Davies A, Panerai RB, Robinson TG, Brassard P, Beishon LC, Minhas JS. The role of the autonomic nervous system in cerebral blood flow regulation in stroke: A review. Auton Neurosci 2023; 246:103082. [PMID: 36870192 DOI: 10.1016/j.autneu.2023.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
Stroke is a pathophysiological condition which results in alterations in cerebral blood flow (CBF). The mechanism by which the brain maintains adequate CBF in presence of fluctuating cerebral perfusion pressure (CPP) is known as cerebral autoregulation (CA). Disturbances in CA may be influenced by a number of physiological pathways including the autonomic nervous system (ANS). The cerebrovascular system is innervated by adrenergic and cholinergic nerve fibers. The role of the ANS in regulating CBF is widely disputed owing to several factors including the complexity of the ANS and cerebrovascular interactions, limitations to measurements, variation in methods to assess the ANS in relation to CBF as well as experimental approaches that can or cannot provide insight into the sympathetic control of CBF. CA is known to be impaired in stroke however the number of studies investigating the mechanisms by which this occurs are limited. This literature review will focus on highlighting the assessment of the ANS and CBF via indices derived from the analyses of heart rate variability (HRV), and baroreflex sensitivity (BRS), and providing a summary of both clinical and animal model studies investigating the role of the ANS in influencing CA in stroke. Understanding the mechanisms by which the ANS influences CBF in stroke patients may provide the foundation for novel therapeutic approaches to improve functional outcomes in stroke patients.
Collapse
Affiliation(s)
- Alex Mankoo
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom
| | - Sankanika Roy
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom.
| | - Aaron Davies
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom
| | - Ronney B Panerai
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Thompson G Robinson
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC, Canada; Research center of the Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, QC, Canada
| | - Lucy C Beishon
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom
| | - Jatinder S Minhas
- University of Leicester, Department of Cardiovascular Sciences, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
4
|
Francoeur CL, Lauzier F, Brassard P, Turgeon AF. Near Infrared Spectroscopy for Poor Grade Aneurysmal Subarachnoid Hemorrhage-A Concise Review. Front Neurol 2022; 13:874393. [PMID: 35518206 PMCID: PMC9062216 DOI: 10.3389/fneur.2022.874393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Delayed cerebral ischemia (DCI) disproportionately affects poor grade aneurysmal subarachnoid hemorrhage (aSAH) patients. An unreliable neurological exam and the lack of appropriate monitoring leads to unrecognized DCI, which in turn is associated with severe long-term deficits and higher mortality. Near Infrared Spectroscopy (NIRS) offers simple, continuous, real time, non-invasive cerebral monitoring. It provides regional cerebral oxygen saturation (c-rSO2), which reflects the balance between cerebral oxygen consumption and supply. Reports have demonstrated a good correlation with other cerebral oxygen and blood flow monitoring, and credible cerebrovascular reactivity indices were also derived from NIRS signals. Multiple critical c-rSO2 values have been reported in aSAH patients, based on various thresholds, duration, variation from baseline or cerebrovascular reactivity indices. Some were associated with vasospasm, some with DCI and others with clinical outcomes. However, the poor grade aSAH population has not been specifically studied and no randomized clinical trial has been published. The available literature does not support a specific NIRS-based intervention threshold to guide diagnostic or treatment in aSAH patients. We review herein the fundamental basic concepts behind NIRS technology, relationship of c-rSO2 to other brain monitoring values and their potential clinical interpretation. We follow with a critical evaluation of the use of NIRS in the aSAH population, more specifically its ability to diagnose vasospasm, to predict DCI and its association to outcome. In summary, NIRS might offer significant potential for poor grade aSAH in the future. However, current evidence does not support its use in clinical decision-making, and proper technology evaluation is required.
Collapse
Affiliation(s)
- Charles L. Francoeur
- Population Health and Optimal Health Practices Research Unit (Trauma—Emergency—Critical Care Medicine), Centre Hospitalier Universitaire (CHU) de Québec—Université Laval Research Centre, Université Laval, Québec City, QC, Canada
- Department of Anesthesiology and Critical Care, CHU de Québec—Université Laval, Critical Care Division, Québec City, QC, Canada
- Critical Care Medicine Service, CHU de Québec—Université Laval, Québec City, QC, Canada
| | - François Lauzier
- Population Health and Optimal Health Practices Research Unit (Trauma—Emergency—Critical Care Medicine), Centre Hospitalier Universitaire (CHU) de Québec—Université Laval Research Centre, Université Laval, Québec City, QC, Canada
- Department of Anesthesiology and Critical Care, CHU de Québec—Université Laval, Critical Care Division, Québec City, QC, Canada
- Critical Care Medicine Service, CHU de Québec—Université Laval, Québec City, QC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC, Canada
| | - Alexis F. Turgeon
- Population Health and Optimal Health Practices Research Unit (Trauma—Emergency—Critical Care Medicine), Centre Hospitalier Universitaire (CHU) de Québec—Université Laval Research Centre, Université Laval, Québec City, QC, Canada
- Department of Anesthesiology and Critical Care, CHU de Québec—Université Laval, Critical Care Division, Québec City, QC, Canada
- Critical Care Medicine Service, CHU de Québec—Université Laval, Québec City, QC, Canada
| |
Collapse
|
5
|
Uryga A, Nasr N, Kasprowicz M, Woźniak J, Goździk W, Burzyńska M. Changes in autonomic nervous system during cerebral desaturation episodes in aneurysmal subarachnoid hemorrhage. Auton Neurosci 2022; 239:102968. [DOI: 10.1016/j.autneu.2022.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
|