1
|
Belwal P, Singh S. Deep Learning techniques to detect and analysis of multiple sclerosis through MRI: A systematic literature review. Comput Biol Med 2024; 185:109530. [PMID: 39693692 DOI: 10.1016/j.compbiomed.2024.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Deep learning (DL) techniques represent a rapidly advancing field within artificial intelligence, gaining significant prominence in the detection and analysis of various medical conditions through the analysis of medical data. This study presents a systematic literature review (SLR) focused on deep learning methods for the detection and analysis of multiple sclerosis (MS) using magnetic resonance imaging (MRI). The initial search identified 401 articles, which were rigorously screened, a selection of 82 highly relevant studies. These selected studies primarily concentrate on key areas such as multiple sclerosis, deep learning, convolutional neural networks (CNN), lesion segmentation, and classification, reflecting their alignment with the current state of the art. This review comprehensively examines diverse deep-learning approaches for MS detection and analysis, offering a valuable resource for researchers. Additionally, it presents key insights by summarizing these DL techniques for MS detection and analysis using MRI in a structured tabular format.
Collapse
Affiliation(s)
- Priyanka Belwal
- Department of Computer Science and Engineering, NIT Uttarakhand, India.
| | - Surendra Singh
- Department of Computer Science and Engineering, NIT Uttarakhand, India.
| |
Collapse
|
2
|
Cagol A, Tsagkas C, Granziera C. Advanced Brain Imaging in Central Nervous System Demyelinating Diseases. Neuroimaging Clin N Am 2024; 34:335-357. [PMID: 38942520 DOI: 10.1016/j.nic.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In recent decades, advances in neuroimaging have profoundly transformed our comprehension of central nervous system demyelinating diseases. Remarkable technological progress has enabled the integration of cutting-edge acquisition and postprocessing techniques, proving instrumental in characterizing subtle focal changes, diffuse microstructural alterations, and macroscopic pathologic processes. This review delves into state-of-the-art modalities applied to multiple sclerosis, neuromyelitis optica spectrum disorders, and myelin oligodendrocyte glycoprotein antibody-associated disease. Furthermore, it explores how this dynamic landscape holds significant promise for the development of effective and personalized clinical management strategies, encompassing support for differential diagnosis, prognosis, monitoring treatment response, and patient stratification.
Collapse
Affiliation(s)
- Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland; Department of Health Sciences, University of Genova, Via A. Pastore, 1 16132 Genova, Italy. https://twitter.com/CagolAlessandr0
| | - Charidimos Tsagkas
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland.
| |
Collapse
|
3
|
Huang L, Shao Y, Yang H, Guo C, Wang Y, Zhao Z, Gong Y. A joint model for lesion segmentation and classification of MS and NMOSD. Front Neurosci 2024; 18:1351387. [PMID: 38863883 PMCID: PMC11166028 DOI: 10.3389/fnins.2024.1351387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Multiple sclerosis (MS) and neuromyelitis optic spectrum disorder (NMOSD) are mimic autoimmune diseases of the central nervous system with a very high disability rate. Their clinical symptoms and imaging findings are similar, making it difficult to diagnose and differentiate. Existing research typically employs the T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) MRI imaging technique to focus on a single task in MS and NMOSD lesion segmentation or disease classification, while ignoring the collaboration between the tasks. Methods To make full use of the correlation between lesion segmentation and disease classification tasks of MS and NMOSD, so as to improve the accuracy and speed of the recognition and diagnosis of MS and NMOSD, a joint model is proposed in this study. The joint model primarily comprises three components: an information-sharing subnetwork, a lesion segmentation subnetwork, and a disease classification subnetwork. Among them, the information-sharing subnetwork adopts a dualbranch structure composed of a convolution module and a Swin Transformer module to extract local and global features, respectively. These features are then input into the lesion segmentation subnetwork and disease classification subnetwork to obtain results for both tasks simultaneously. In addition, to further enhance the mutual guidance between the tasks, this study proposes two information interaction methods: a lesion guidance module and a crosstask loss function. Furthermore, the lesion location maps provide interpretability for the diagnosis process of the deep learning model. Results The joint model achieved a Dice similarity coefficient (DSC) of 74.87% on the lesion segmentation task and accuracy (ACC) of 92.36% on the disease classification task, demonstrating its superior performance. By setting up ablation experiments, the effectiveness of information sharing and interaction between tasks is verified. Discussion The results show that the joint model can effectively improve the performance of the two tasks.
Collapse
Affiliation(s)
- Lan Huang
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yangguang Shao
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Hui Yang
- Public Computer Education and Research Center, Jilin University, Changchun, China
| | - Chunjie Guo
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Yan Wang
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Ziqi Zhao
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yingchun Gong
- College of Computer Science and Technology, Jilin University, Changchun, China
| |
Collapse
|
4
|
Demuth S, Paris J, Faddeenkov I, De Sèze J, Gourraud PA. Clinical applications of deep learning in neuroinflammatory diseases: A scoping review. Rev Neurol (Paris) 2024:S0035-3787(24)00522-8. [PMID: 38772806 DOI: 10.1016/j.neurol.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Deep learning (DL) is an artificial intelligence technology that has aroused much excitement for predictive medicine due to its ability to process raw data modalities such as images, text, and time series of signals. OBJECTIVES Here, we intend to give the clinical reader elements to understand this technology, taking neuroinflammatory diseases as an illustrative use case of clinical translation efforts. We reviewed the scope of this rapidly evolving field to get quantitative insights about which clinical applications concentrate the efforts and which data modalities are most commonly used. METHODS We queried the PubMed database for articles reporting DL algorithms for clinical applications in neuroinflammatory diseases and the radiology.healthairegister.com website for commercial algorithms. RESULTS The review included 148 articles published between 2018 and 2024 and five commercial algorithms. The clinical applications could be grouped as computer-aided diagnosis, individual prognosis, functional assessment, the segmentation of radiological structures, and the optimization of data acquisition. Our review highlighted important discrepancies in efforts. The segmentation of radiological structures and computer-aided diagnosis currently concentrate most efforts with an overrepresentation of imaging. Various model architectures have addressed different applications, relatively low volume of data, and diverse data modalities. We report the high-level technical characteristics of the algorithms and synthesize narratively the clinical applications. Predictive performances and some common a priori on this topic are finally discussed. CONCLUSION The currently reported efforts position DL as an information processing technology, enhancing existing modalities of paraclinical investigations and bringing perspectives to make innovative ones actionable for healthcare.
Collapse
Affiliation(s)
- S Demuth
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France; Inserm U1119 : biopathologie de la myéline, neuroprotection et stratégies thérapeutiques, University of Strasbourg, 1, rue Eugène-Boeckel - CS 60026, 67084 Strasbourg, France.
| | - J Paris
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France
| | - I Faddeenkov
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France
| | - J De Sèze
- Inserm U1119 : biopathologie de la myéline, neuroprotection et stratégies thérapeutiques, University of Strasbourg, 1, rue Eugène-Boeckel - CS 60026, 67084 Strasbourg, France; Department of Neurology, University Hospital of Strasbourg, 1, avenue Molière, 67200 Strasbourg, France; Inserm CIC 1434 Clinical Investigation Center, University Hospital of Strasbourg, 1, avenue Molière, 67200 Strasbourg, France
| | - P-A Gourraud
- Inserm U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 44000 Nantes, France; "Data clinic", Department of Public Health, University Hospital of Nantes, Nantes, France
| |
Collapse
|
5
|
Zhou D, Xu L, Wang T, Wei S, Gao F, Lai X, Cao J. M-DDC: MRI based demyelinative diseases classification with U-Net segmentation and convolutional network. Neural Netw 2024; 169:108-119. [PMID: 37890361 DOI: 10.1016/j.neunet.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have been paid to DDC in the past. How to accurately differentiate pediatric-onset neuromyelitis optica spectrum disorder (NMOSD) from acute disseminated encephalomyelitis (ADEM) based on MRI is challenging in DDC. In this paper, a novel architecture M-DDC based on joint U-Net segmentation network and deep convolutional network is developed. The U-Net segmentation can provide pixel-level structure information, that helps the lesion areas location and size estimation. The classification branch in DDC can detect the regions of interest inside MRIs, including the white matter regions where lesions appear. The performance of the proposed method is evaluated on MRIs of 201 subjects recorded from the Children's Hospital of Zhejiang University School of Medicine. The comparisons show that the proposed DDC achieves the highest accuracy of 99.19% and dice of 71.1% for ADEM and NMOSD classification and segmentation, respectively.
Collapse
Affiliation(s)
- Deyang Zhou
- Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China; Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310018, China; HDU-ITMO Joint Institute, Hangzhou Dianzi University, Zhejiang, 310018, China.
| | - Lu Xu
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, 310018, China.
| | - Tianlei Wang
- Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China; Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310018, China.
| | - Shaonong Wei
- Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China; Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310018, China; HDU-ITMO Joint Institute, Hangzhou Dianzi University, Zhejiang, 310018, China.
| | - Feng Gao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, 310018, China.
| | - Xiaoping Lai
- Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China; Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310018, China.
| | - Jiuwen Cao
- Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China; Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310018, China.
| |
Collapse
|
6
|
Hagiwara A, Fujita S, Kurokawa R, Andica C, Kamagata K, Aoki S. Multiparametric MRI: From Simultaneous Rapid Acquisition Methods and Analysis Techniques Using Scoring, Machine Learning, Radiomics, and Deep Learning to the Generation of Novel Metrics. Invest Radiol 2023; 58:548-560. [PMID: 36822661 PMCID: PMC10332659 DOI: 10.1097/rli.0000000000000962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Indexed: 02/25/2023]
Abstract
ABSTRACT With the recent advancements in rapid imaging methods, higher numbers of contrasts and quantitative parameters can be acquired in less and less time. Some acquisition models simultaneously obtain multiparametric images and quantitative maps to reduce scan times and avoid potential issues associated with the registration of different images. Multiparametric magnetic resonance imaging (MRI) has the potential to provide complementary information on a target lesion and thus overcome the limitations of individual techniques. In this review, we introduce methods to acquire multiparametric MRI data in a clinically feasible scan time with a particular focus on simultaneous acquisition techniques, and we discuss how multiparametric MRI data can be analyzed as a whole rather than each parameter separately. Such data analysis approaches include clinical scoring systems, machine learning, radiomics, and deep learning. Other techniques combine multiple images to create new quantitative maps associated with meaningful aspects of human biology. They include the magnetic resonance g-ratio, the inner to the outer diameter of a nerve fiber, and the aerobic glycolytic index, which captures the metabolic status of tumor tissues.
Collapse
Affiliation(s)
- Akifumi Hagiwara
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shohei Fujita
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Christina Andica
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- From theDepartment of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Tranfa M, Pontillo G, Petracca M, Brunetti A, Tedeschi E, Palma G, Cocozza S. Quantitative MRI in Multiple Sclerosis: From Theory to Application. AJNR Am J Neuroradiol 2022; 43:1688-1695. [PMID: 35680161 DOI: 10.3174/ajnr.a7536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023]
Abstract
Quantitative MR imaging techniques allow evaluating different aspects of brain microstructure, providing meaningful information about the pathophysiology of damage in CNS disorders. In the study of patients with MS, quantitative MR imaging techniques represent an invaluable tool for studying changes in myelin and iron content occurring in the context of inflammatory and neurodegenerative processes. In the first section of this review, we summarize the physics behind quantitative MR imaging, here defined as relaxometry and quantitative susceptibility mapping, and describe the neurobiological correlates of quantitative MR imaging findings. In the second section, we focus on quantitative MR imaging application in MS, reporting the main findings in both the gray and white matter compartments, separately addressing macroscopically damaged and normal-appearing parenchyma.
Collapse
Affiliation(s)
- M Tranfa
- From the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.)
| | - G Pontillo
- From the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.) .,Electrical Engineering and Information Technology (G. Pontillo), University of Naples "Federico II," Naples, Italy
| | - M Petracca
- Department of Human Neurosciences (M.P.), Sapienza University of Rome, Rome, Italy
| | - A Brunetti
- From the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.)
| | - E Tedeschi
- From the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.)
| | - G Palma
- Institute of Nanotechnology (G. Palma), National Research Council, Lecce, Italy
| | - S Cocozza
- From the Departments of Advanced Biomedical Sciences (M.T., G. Pontillo, A.B., E.T., S.C.)
| |
Collapse
|
8
|
Research Progress of Artificial Intelligence Image Analysis in Systemic Disease-Related Ophthalmopathy. DISEASE MARKERS 2022; 2022:3406890. [PMID: 35783011 PMCID: PMC9249504 DOI: 10.1155/2022/3406890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
The eye is one of the most important organs of the human body. Eye diseases are closely related to other systemic diseases, both of which influence each other. Numerous systemic diseases lead to special clinical manifestations and complications in the eyes. Typical diseases include diabetic retinopathy, hypertensive retinopathy, thyroid associated ophthalmopathy, optic neuromyelitis, and Behcet's disease. Systemic disease-related ophthalmopathy is usually a chronic disease, and the analysis of imaging markers is helpful for a comprehensive diagnosis of these diseases. Recently, artificial intelligence (AI) technology based on deep learning has rapidly developed, leading to numerous achievements and arousing widespread concern. Presently, AI technology has made significant progress in research on imaging markers of systemic disease-related ophthalmopathy; however, there are also many limitations and challenges. This article reviews the research achievements, limitations, and future prospects of AI image analysis technology in systemic disease-related ophthalmopathy.
Collapse
|
9
|
Andica C, Hagiwara A, Yokoyama K, Kato S, Uchida W, Nishimura Y, Fujita S, Kamagata K, Hori M, Tomizawa Y, Hattori N, Aoki S. Multimodal magnetic resonance imaging quantification of gray matter alterations in relapsing-remitting multiple sclerosis and neuromyelitis optica spectrum disorder. J Neurosci Res 2022; 100:1395-1412. [PMID: 35316545 DOI: 10.1002/jnr.25035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 11/08/2022]
Abstract
Herein, we combined neurite orientation dispersion and density imaging (NODDI) and synthetic magnetic resonance imaging (SyMRI) to evaluate the spatial distribution and extent of gray matter (GM) microstructural alterations in patients with relapsing-remitting multiple sclerosis (RRMS) and neuromyelitis optica spectrum disorder (NMOSD). The NODDI (neurite density index [NDI], orientation dispersion index [ODI], and isotropic volume fraction [ISOVF]) and SyMRI (myelin volume fraction [MVF]) measures were compared between age- and sex-matched groups of 30 patients with RRMS (6 males and 24 females; mean age, 51.43 ± 8.02 years), 18 patients with anti-aquaporin-4 antibody-positive NMOSD (2 males and 16 females; mean age, 52.67 ± 16.07 years), and 19 healthy controls (6 males and 13 females; mean age, 51.47 ± 9.25 years) using GM-based spatial statistical analysis. Patients with RRMS showed reduced NDI and MVF and increased ODI and ISOVF, predominantly in the limbic and paralimbic regions, when compared with healthy controls, while only increases in ODI and ISOVF were observed when compared with NMOSD. Compared to NDI and MVF, the changes in ODI and ISOVF were observed more widely, including in the cerebellar cortex. These abnormalities were associated with disease progression and disability. In contrast, patients with NMOSD only showed reduced NDI mainly in the cerebellar, limbic, and paralimbic cortices when compared with healthy controls and patients with RRMS. Taken together, our study supports the notion that GM pathologies in RRMS are distinct from those of NMOSD. However, owing to the limitations of the study, the results should be cautiously interpreted.
Collapse
Affiliation(s)
- Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kazumasa Yokoyama
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shimpei Kato
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuma Nishimura
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Yuji Tomizawa
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Maekawa T, Hagiwara A, Yokoyama K, Hori M, Andica C, Fujita S, Kamagata K, Wada A, Abe O, Tomizawa Y, Hattori N, Aoki S. Multiple sclerosis plaques may undergo continuous myelin degradation: a cross-sectional study with myelin and axon-related quantitative magnetic resonance imaging metrics. Neuroradiology 2021; 64:465-471. [PMID: 34383123 DOI: 10.1007/s00234-021-02781-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE We hypothesize that myelin is more susceptible to damage over time than axons. We investigated the association between the estimated duration from the onset of multiple sclerosis (MS) plaques and myelin- and axon-related quantitative synthetic magnetic resonance imaging (SyMRI) and neurite orientation dispersion and density imaging (NODDI) metrics. METHODS We analyzed 31 patients with MS with 73 newly appeared plaques. Simple linear regression analysis was performed to assess the association between the estimated duration from the onset of plaques and quantitative MRI metrics. These metrics included the myelin volume fraction (MVF), axon volume fraction, and g-ratio in plaque and normal-appearing white matter. RESULTS MS plaques with a longer estimated duration from onset were significantly correlated with a lower MVF (slope = - 0.0070, R2 = 0.0970), higher g-ratio (slope = 0.0078, R2 = 0.0842) (all P values < 0.05). CONCLUSION These results suggested that myelin in plaques undergoes continuous damage, more so than axons. Myelin imaging with SyMRI and NODDI may be useful for the quantitative assessment of temporal changes in MS plaques.
Collapse
Affiliation(s)
- Tomoko Maekawa
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kazumasa Yokoyama
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Diagnostic Radiology, Toho University Omori Medical Center, 6-11-1, Omori-Nishi, Ota-Ku, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Departmen of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Osamu Abe
- Departmen of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuji Tomizawa
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|