1
|
Chang MC, Wu JH, Chen SY, Hsu YT, Yeung SY, Pan YH, Jeng JH. Inducing cyclooxygenase-2 expression, prostaglandin E 2 and prostaglandin F 2α production of human dental pulp cells by activation of toll-like receptor-3, mitogen-activated protein kinase kinase/extracellular signal-regulated kinase and p38 signaling. J Dent Sci 2024; 19:1190-1199. [PMID: 38618082 PMCID: PMC11010691 DOI: 10.1016/j.jds.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose Bacterial infection was the major etiology for pulpal/root canal infection. This study aimed to investigate the activation of toll-like receptor-3 (TLR) on cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) and PGF2α production of human dental pulp cells (HDPCs) and associated signaling. Materials and methods HDPCs were exposed to different concentrations of Poly (I:C) (a TLR3 activator). Cell viability was determined by 3- (4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and alkaline phosphatase (ALP) activity was evaluated by ALP staining. Activation of extracellular signal-regulated kinase (ERK) and p38 by Poly (I:C) was determined by immunofluorescent staining. The COX-2 protein expression was analyzed by Western blot. PGE2 and PGF2α production was measured by enzyme-linked immunosorbent assay. The mRNA expression was studied by real-time polymerase-chain reaction. Moreover, HDPCs were exposed to Poly(I:C) with/without U0126 or SB203580 treatment and analysis of COX-2 expression and prostanoid production were conducted. Results Poly (I:C) showed little effect on ALP activity, but decreased viability of HDPCs. It stimulated COX-2 mRNA and protein expression. Poly (I:C) induced PGE2 and PGF2α production of HDPCs. Poly (I:C) activated p-ERK, and p-p38 protein expression. Treatment by U0126 (a mitogen-activated protein kinase kinase (MEK)/ERK inhibitor) and SB203580 (a p38 inhibitor) attenuated Poly (I:C)-induced COX-2 mRNA and protein expression as well as PGE2 and PGF2α production. Conclusion TLR3 activation is involved in the infection and inflammatory responses of pulp tissues, via MEK/ERK, and p38 signaling to mediate COX-2 expression as well as PGE2 and PGF2α production, contributing to the pathogenesis and progression of pulpal/periapical diseases.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan City, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ju-Hui Wu
- Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shyuan-Yow Chen
- Department of Dentistry, Cathay General Hospital, Taipei, Taiwan
| | - Yung-Ting Hsu
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA, USA
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Zhang L, Xu S, Cheng X, Wu J, Wang Y, Gao W, Bao J, Yu H. Inflammatory tumor microenvironment of thyroid cancer promotes cellular dedifferentiation and silencing of iodide-handling genes expression. Pathol Res Pract 2023; 246:154495. [PMID: 37172523 DOI: 10.1016/j.prp.2023.154495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Due to dedifferentiation of tumor cells, manifested by a decreased expression of iodide-handling genes in thyrocytes, some thyroid carcinomas lose their capability for radioiodine concentration and gradually develop radioactive iodine (RAI) resistance. This work aimed to investigate the role of tumor microenvironment (TME) in the process of tumor cell dedifferentiation. MATERIALS AND METHODS Bioinformatic analyses and subsequent immunohistochemistry (IHC) and western blot assays were performed in papillary thyroid carcinoma (PTC) and matched normal tissue. ELISA was used to assess the secretion of cytokines under the stimulation of pharmacological endoplasmic reticulum (ER) stress inducer. RESULTS Higher levels of pro-inflammatory cytokines, interleukin 6 (IL-6) and (C-X-C motif chemokine ligand 8 (CXCL8), were found in thyroid cancer tissues compared with matched normal tissues. ER stress, induced by stressful environmental stimuli, such as nutrient deprivation and hypoxia, occurred in thyroid tumors. Classic ER stress inducers, thapsigargin (Tg) and tunicamycin (Tm), promoted the expression of IL6 and CXCL8 in thyroid cancer cells at mRNA and protein levels. Of note, rIL-6 and rCXCL8 promoted the dedifferentiation of thyroid cancer cells or even non-transformed cells in an autocrine/paracrine manner, weakening radioiodine uptake ability of thyroid cancer cells. Intriguingly, sorafenib, a multiple kinase inhibitor (MKI), could potently suppress not only ER stress-induced but also basal expressions of IL-6 and CXCL8 in thyroid cancer cells. CONCLUSIONS The inflammatory TME could regulate cell dedifferentiation, leading to loss of thyroid-specific gene expressions, through reciprocal interaction between thyroid tumor cells and follicular cells. Our study provides a new perspective on the mechanisms of how inflammatory TME affects DTC dedifferentiation.
Collapse
Affiliation(s)
- Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; School of Life science and Technology, Southeast University, Nanjing 210096, China.
| | - Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenjing Gao
- School of Life science and Technology, Southeast University, Nanjing 210096, China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| |
Collapse
|
3
|
Nijakowski K, Ortarzewska M, Jankowski J, Lehmann A, Surdacka A. The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review. Metabolites 2023; 13:metabo13040520. [PMID: 37110177 PMCID: PMC10143950 DOI: 10.3390/metabo13040520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The cellular metabolic processes ensure the physiological integrity of the dentine-pulp complex. Odontoblasts and odontoblast-like cells are responsible for the defence mechanisms in the form of tertiary dentine formation. In turn, the main defence reaction of the pulp is the development of inflammation, during which the metabolic and signalling pathways of the cells are significantly altered. The selected dental procedures, such as orthodontic treatment, resin infiltration, resin restorations or dental bleaching, can impact the cellular metabolism in the dental pulp. Among systemic metabolic diseases, diabetes mellitus causes the most consequences for the cellular metabolism of the dentine-pulp complex. Similarly, ageing processes present a proven effect on the metabolic functioning of the odontoblasts and the pulp cells. In the literature, several potential metabolic mediators demonstrating anti-inflammatory properties on inflamed dental pulp are mentioned. Moreover, the pulp stem cells exhibit the regenerative potential essential for maintaining the function of the dentine-pulp complex.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Martyna Ortarzewska
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Jakub Jankowski
- Student's Scientific Group in the Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Lehmann
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
4
|
Tsai YL, Wang CY, Chuang FH, Pan YH, Lin YR, Dhingra K, Liao PS, Huang FS, Chang MC, Jeng JH. Stimulation phosphatidylinositol 3-kinase/protein kinase B signaling by Porphyromonas gingivalis lipopolysacch aride mediates interleukin-6 and interleukin-8 mRNA/protein expression in pulpal inflammation. J Formos Med Assoc 2023; 122:47-57. [PMID: 36031486 DOI: 10.1016/j.jfma.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND/PURPOSE The signaling mechanisms for Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammation in human dental pulp cells are not fully clarified. This in vitro study aimed to evaluate the involvement of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in PgLPS-induced pulpal inflammation. METHODS Human dental pulp cells (HDPCs) were challenged with PgLPS with or without pretreatment and coincubation with a PI3K/Akt inhibitor (LY294002). The gene or protein levels of PI3K, Akt, interleukin (IL)-6, IL-8, alkaline phosphatase (ALP), osteocalcin and osteonectin were analyzed by reverse transcription polymerase chain reaction (PCR), real-time PCR, western blotting, and immunofluorescent staining. In addition, an enzyme-linked immunosorbent assay was used to analyze IL-6 and IL-8 levels in culture medium. RESULTS In response to 5 μg/ml PgLPS, IL-6, IL-8, and PI3K, but not Akt mRNA expression of HDPCs, was upregulated. IL-6, IL-8, PI3K, and p-Akt protein levels were stimulated by 10-50 μg/ml of PgLPS in HDPCs. PgLPS also induced IL-6 and IL-8 secretion at concentrations higher than 5 μg/ml. Pretreatment and co-incubation by LY294002 attenuated PgLPS-induced IL-6 and IL-8 mRNA expression in HDPCs. The mRNA expression of ALP, but not osteocalcin and osteonectin, was inhibited by higher concentrations of PgLPS in HDPCs. CONCLUSION P. gingivalis contributes to pulpal inflammation in HDPCs by dysregulating PI3K/Akt signaling pathway to stimulate IL-6 and IL-8 mRNA/protein expression and secretion. These results are useful for understanding the pulpal inflammation and possible biomarkers of inflamed pulp diagnosis and treatment.
Collapse
Affiliation(s)
- Yi-Ling Tsai
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ying Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Hsiung Chuang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yan-Ru Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kunaal Dhingra
- Periodontics Division, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Pai-Shien Liao
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Fong-Shung Huang
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Chi Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan; Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Jiiang-Huei Jeng
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Al-Roub A, Al Madhoun A, Akhter N, Thomas R, Miranda L, Jacob T, Al-Ozairi E, Al-Mulla F, Sindhu S, Ahmad R. IL-1β and TNFα Cooperativity in Regulating IL-6 Expression in Adipocytes Depends on CREB Binding and H3K14 Acetylation. Cells 2021; 10:3228. [PMID: 34831450 PMCID: PMC8619559 DOI: 10.3390/cells10113228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
IL-6 was found to be overexpressed in the adipose tissue of obese individuals, which may cause insulin resistance. However, the regulation of IL-6 in adipocytes in obesity setting remains to be explored. Since IL-1β and TNFα are increased in obese adipose tissue and promote inflammation, we investigated whether cooperation between IL-1β and TNFα influences the production of IL-6. Our data show that IL-1β and TNFα cooperatively enhance IL-6 expression in 3T3L-1 adipocytes. Similar results were seen in human adipocytes isolated from subcutaneous and visceral fat. Although adipocytes isolated from lean and obese adipose tissues showed similar responses for production of IL-6 when incubated with IL-1β/TNFα, secretion of IL-6 was higher in adipocytes from obese tissue. TNFα treatment enhanced CREB binding at CRE locus, which was further enhanced with IL-1β, and was associated with elevated histone acetylation at CRE locus. On the other hand, IL-1β treatments mediated C/EBPβ binding to NF-IL-6 consensus, but not sufficiently to mediate significant histone acetylation. Interestingly, treatment with both stimulatory factors amplifies CREB binding and H3K14 acetylation. Furthermore, histone acetylation inhibition by anacardic acid or curcumin reduces IL-6 production. Notably, inhibition of histone deacetylase (HDAC) activity by trichostatin A (TSA) resulted in the further elevation of IL-6 expression in response to combined treatment of adipocytes with IL-1β and TNFα. In conclusion, our results show that there is an additive interaction between IL-1β and TNFα that depends on CREB binding and H3K14 acetylation, and leads to the elevation of IL-6 expression in adipocytes, providing interesting pathophysiological connection among IL-1β, TNFα, and IL-6 in settings such as obesity.
Collapse
Affiliation(s)
- Areej Al-Roub
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Ashraf Al Madhoun
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Nadeem Akhter
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Reeby Thomas
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Lavina Miranda
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Ebaa Al-Ozairi
- Medical Division, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| |
Collapse
|
6
|
Ju HM, Yu SN, Ahn YW, Ok SM, Ahn SC, Jeong SH. Correlation between Metal Ions and Cytokines in the Saliva of Patients with Oral Lichenoid Lesions. Yonsei Med J 2021; 62:767-775. [PMID: 34296555 PMCID: PMC8298875 DOI: 10.3349/ymj.2021.62.8.767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE We aimed to investigate the effect of metal ions from oral prostheses (OPs) released into the saliva of patients with oral lichenoid lesions (OLLs). MATERIALS AND METHODS Subjects (n=183) were divided into four groups according to the presence or absence of OLL and OP. Concentrations of the metal ions titanium, chromium (Cr), cobalt (Co), nickel (Ni), palladium (Pd), silver (Ag), platinum (Pt), gold (Au), and zirconium (Zr) were measured using a laser-ablation microprobe inductively coupled to a plasma mass spectrometer. Saliva levels of interleukin (IL)-6, IL-1β, IL-8, and tumor necrosis factor-α were detected using an enzyme-linked immunosorbent assay. The reticulation/keratosis, erythema, and ulceration (REU) scoring system was used to assess the severity of OLL. RESULTS Mean concentrations of IL-6 and IL-8 were statistically higher in OLL patients with OPs. The concentration of Ni was high in OLL groups. The concentrations of Cr, Ni, and Au ions in the saliva were positively correlated with IL-8. REU scores were positively correlated with salivary concentrations of IL-6 and IL-8, as well as with concentrations of Cr, Ni, and Au. CONCLUSION Increased concentrations of metal ions, especially Ni, in saliva were positively correlated with IL-8 and showed positive correlations with the severity of OLL.
Collapse
Affiliation(s)
- Hye Min Ju
- Department of Oral Medicine, Pusan National University Dental Hospital, Dental Research Institute, Yangsan, Korea
| | - Sun Nyoung Yu
- Department of Microbiology & Immunology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Yong Woo Ahn
- Department of Oral Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Dental and Life Science Institute, Yangsan, Korea
| | - Soo Min Ok
- Department of Oral Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Dental and Life Science Institute, Yangsan, Korea
| | - Soon Cheol Ahn
- Department of Microbiology & Immunology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Sung Hee Jeong
- Department of Oral Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Dental and Life Science Institute, Yangsan, Korea.
| |
Collapse
|
7
|
Kaufman G, Skrtic D. N-Acetyl Cysteine Modulates the Inflammatory and Oxidative Stress Responses of Rescued Growth-Arrested Dental Pulp Microtissues Exposed to TEGDMA in ECM. Int J Mol Sci 2020; 21:ijms21197318. [PMID: 33023018 PMCID: PMC7582816 DOI: 10.3390/ijms21197318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Dental pulp is exposed to resin monomers leaching from capping materials. Toxic doses of the monomer, triethyleneglycol dimethacrylate (TEGDMA), impact cell growth, enhance inflammatory and oxidative stress responses, and lead to tissue necrosis. A therapeutic agent is required to rescue growth-arrested tissues by continuing their development and modulating the exacerbated responses. The functionality of N-Acetyl Cysteine (NAC) as a treatment was assessed by employing a 3D dental pulp microtissue platform. Immortalized and primary microtissues developed and matured in the extracellular matrix (ECM). TEGDMA was introduced at various concentrations. NAC was administered simultaneously with TEGDMA, before or after monomer addition during the development and after the maturation stages of the microtissue. Spatial growth was validated by confocal microscopy and image processing. Levels of inflammatory (COX2, NLRP3, IL-8) and oxidative stress (GSH, Nrf2) markers were quantified by immunoassays. NAC treatments, in parallel with TEGDMA challenge or post-challenge, resumed the growth of the underdeveloped microtissues and protected mature microtissues from deterioration. Growth recovery correlated with the alleviation of both responses by decreasing significantly the intracellular and extracellular levels of the markers. Our 3D/ECM-based dental pulp platform is an efficient tool for drug rescue screening. NAC supports compromised microtissues development, and immunomodulates and maintains the oxidative balance.
Collapse
|
8
|
IL-1β induced IL-8 and uPA expression/production of dental pulp cells: Role of TAK1 and MEK/ERK signaling. J Formos Med Assoc 2018; 117:697-704. [PMID: 29709340 DOI: 10.1016/j.jfma.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/14/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/PURPOSE Interleukin 1 beta (IL-1β) is a pro-inflammatory cytokine involved in the inflammatory processes of dental pulp. IL-8 and urokinase plasminogen activator (uPA) are two inflammatory mediators. However, the role of transforming growth factor beta-activated kinase-1 (TAK1) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathways in responsible for the effects of IL-1β on IL-8 and uPA expression/secretion of dental pulp cells are not clear. METHODS Human dental pulp cells were exposed to IL-1β with/without pretreatment with 5z-7-oxozeaneaeol (a TAK1 inhibitor) or U0126 (a MEK/ERK inhibitor). TAK1 activation was determined by immunofluorescent staining. The protein expression of IL-8 was tested by western blot. The expression of IL-8 and uPA mRNA was studied by reverse transcriptase-polymerase chain reaction (RT-PCR). The secretion of IL-8 and uPA was measured by enzyme-linked immunosorbent assay. RESULTS Exposure of dental pulp cells to IL-1β (0.1-10 ng/ml) stimulated IL-8 and uPA expression. IL-1β also induced IL-8 and uPA secretion of dental pulp cells. IL-1β stimulated p-TAK1 activation of pulp cells. Pretreatment and co-incubation of pulp cells by 5z-7oxozeaenol (1 and 2.5 μM) and U0126 (10 and 20 μM) prevented the IL-1β-induced IL-8 and uPA expression. 5z-7oxozeaenol and U0126 also attenuated the IL-1β-induced IL-8 and uPA secretion. CONCLUSION IL-1β is important in the pathogenesis of pulpal inflammatory diseases and repair via stimulation of IL-8 and uPA expression and secretion. These events are associated with TAK1 and MEK/ERK signaling. Blocking of TAK1 and MEK/ERK signaling has potential to control inflammation of dental pulp.
Collapse
|
9
|
The antimicrobial peptide derived from insulin-like growth factor-binding protein 5, AMP-IBP5, regulates keratinocyte functions through Mas-related gene X receptors. J Dermatol Sci 2017; 88:117-125. [PMID: 28554590 DOI: 10.1016/j.jdermsci.2017.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/15/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND In addition to their microbicidal properties, host defense peptides (HDPs) display various immunomodulatory functions, including keratinocyte production of cytokines/chemokines, proliferation, migration and wound healing. Recently, a novel HDP named AMP-IBP5 (antimicrobial peptide derived from insulin-like growth factor-binding protein 5) was shown to exhibit antimicrobial activity against numerous pathogens, even at concentrations comparable to those of human β-defensins and LL-37. However, the immunomodulatory role of AMP-IBP5 in cutaneous tissue remains unknown. OBJECTIVES To investigate whether AMP-IBP5 triggers keratinocyte activation and to clarify its mechanism. METHODS Production of cytokines/chemokines and growth factors was determined by appropriate ELISA kits. Cell migration was assessed by in vitro wound closure assay, whereas cell proliferation was analyzed using BrdU incorporation assay complimented with XTT assay. MAPK and NF-κB activation was determined by Western blotting. Intracellular cAMP levels were assessed using cAMP enzyme immunoassay kit. RESULTS Among various cytokines/chemokines and growth factors tested, AMP-IBP5 selectively increased the production of IL-8 and VEGF. Moreover, AMP-IBP5 markedly enhanced keratinocyte migration and proliferation. AMP-IBP5-induced keratinocyte activation was mediated by Mrg X1-X4 receptors with MAPK and NF-κB pathways working downstream, as evidenced by the inhibitory effects of MrgX1-X4 siRNAs and ERK-, JNK-, p38- and NF-κB-specific inhibitors. We confirmed that AMP-IBP5 indeed induced MAPK and NF-κB activation. Furthermore, AMP-IBP5-induced VEGF but not IL-8 production correlated with an increase in intracellular cAMP. CONCLUSIONS Our findings suggest that in addition to its antimicrobial function, AMP-IBP5 might contribute to wound healing process through activation of keratinocytes.
Collapse
|
10
|
Chang MC, Lin SI, Lin LD, Chan CP, Lee MS, Wang TM, Jeng PY, Yeung SY, Jeng JH. Prostaglandin E2 Stimulates EP2, Adenylate Cyclase, Phospholipase C, and Intracellular Calcium Release to Mediate Cyclic Adenosine Monophosphate Production in Dental Pulp Cells. J Endod 2016; 42:584-8. [PMID: 26906242 DOI: 10.1016/j.joen.2015.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/29/2015] [Accepted: 12/11/2015] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Prostaglandin E2 (PGE2) plays a crucial role in pulpal inflammation and repair. However, its induction of signal transduction pathways is not clear but is crucial for future control of pulpal inflammation. METHODS Primary dental pulp cells were exposed to PGE2 and 19R-OH PGE2 (EP2 agonist) or sulprostone (EP1/EP3 agonist) for 5 to 40 minutes. Cellular cyclic adenosine monophosphate (cAMP) levels were measured using the enzyme-linked immunosorbent assay. In some experiments, cells were pretreated with SQ22536 (adenylate cyclase inhibitor), H89 (protein kinase A inhibitor), dorsomorphin (adenosine monophosphate-activated protein kinase inhibitor), U73122 (phospholipase C inhibitor), thapsigargin (inhibitor of intracellular calcium release), W7 (calmodulin antagonist), verapamil (L-type calcium channel blocker), and EGTA (extracellular calcium chelator) for 20 minutes before the addition of PGE2. RESULTS PGE2 and 19R-OH PGE2 (EP2 agonist) stimulated cAMP production, whereas sulprostone (EP1/EP3 agonist) shows little effect. PGE2-induced cAMP production was attenuated by SQ22536 and U73122 but not H89 and dorsomorphin. Intriguingly, thapsigargin and W7 prevented PGE2-induced cAMP production, but verapamil and EGTA showed little effect. CONCLUSIONS These results indicate that PGE2-induced cAMP production is associated with EP2 receptor and adenylate cyclase activation. These events are mediated by phospholipase C, intracellular calcium release, and calcium-calmodulin signaling. These results are helpful for understanding the role of PGE2 in pulpal inflammation and repair and possible future drug intervention.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team and Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang-Gung University of Science and Technology and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Szu-I Lin
- Laboratory of Dental Pharmacology, Toxicology and Pulp Biology, School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Deh Lin
- Laboratory of Dental Pharmacology, Toxicology and Pulp Biology, School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Ming-Shu Lee
- Laboratory of Dental Pharmacology, Toxicology and Pulp Biology, School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Tong-Mei Wang
- Laboratory of Dental Pharmacology, Toxicology and Pulp Biology, School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry, University of Cardenal Herrera, CEU, Valencia, Spain
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Laboratory of Dental Pharmacology, Toxicology and Pulp Biology, School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
11
|
Chang MC, Lin LD, Wu MT, Chan CP, Chang HH, Lee MS, Sun TY, Jeng PY, Yeung SY, Lin HJ, Jeng JH. Effects of Camphorquinone on Cytotoxicity, Cell Cycle Regulation and Prostaglandin E2 Production of Dental Pulp Cells: Role of ROS, ATM/Chk2, MEK/ERK and Hemeoxygenase-1. PLoS One 2015; 10:e0143663. [PMID: 26658076 PMCID: PMC4682794 DOI: 10.1371/journal.pone.0143663] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022] Open
Abstract
Camphorquinone (CQ) is a popularly-used photosensitizer in composite resin restoration. In this study, the effects of CQ on cytotoxicity and inflammation-related genes and proteins expression of pulp cells were investigated. The role of reactive oxygen species (ROS), ATM/Chk2/p53 and hemeoxygenase-1 (HO-1) and MEK/ERK signaling was also evaluated. We found that ROS and free radicals may play important role in CQ toxicity. CQ (1 and 2 mM) decreased the viability of pulp cells to about 70% and 50% of control, respectively. CQ also induced G2/M cell cycle arrest and apoptosis of pulp cells. The expression of type I collagen, cdc2, cyclin B, and cdc25C was inhibited, while p21, HO-1 and cyclooxygenase-2 (COX-2) were stimulated by CQ. CQ also activated ATM, Chk2, and p53 phosphorylation and GADD45α expression. Besides, exposure to CQ increased cellular ROS level and 8-isoprostane production. CQ also stimulated COX-2 expression and PGE2 production of pulp cells. The reduction of cell viability caused by CQ can be attenuated by N-acetyl-L-cysteine (NAC), catalase and superoxide dismutase (SOD), but can be promoted by Zinc protoporphyin (ZnPP). CQ stimulated ERK1/2 phosphorylation, and U0126 prevented the CQ-induced COX-2 expression and prostaglandin E2 (PGE2) production. These results indicate that CQ may cause cytotoxicity, cell cycle arrest, apoptosis, and PGE2 production of pulp cells. These events could be due to stimulation of ROS and 8-isoprostane production, ATM/Chk2/p53 signaling, HO-1, COX-2 and p21 expression, as well as the inhibition of cdc2, cdc25C and cyclin B1. These results are important for understanding the role of ROS in pathogenesis of pulp necrosis and pulpal inflammation after clinical composite resin filling.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan City, Taiwan
| | - Li-Deh Lin
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry, and National Taiwan University Medical College, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Tsz Wu
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry, and National Taiwan University Medical College, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Hua Chang
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry, and National Taiwan University Medical College, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shu Lee
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry, and National Taiwan University Medical College, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Ying Sun
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry, and National Taiwan University Medical College, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry, University of Cardenal Herrera, CEU, Valencia, Spain
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Jen Lin
- Department of Dentistry, Show Chwan Memorial Hospital, Chang-Hua, Taiwan
| | - Jiiang-Huei Jeng
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry, and National Taiwan University Medical College, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Effect of interleukin-1β on ICAM-1 expression of dental pulp cells: role of PI3K/Akt, MEK/ERK, and cyclooxygenase. Clin Oral Investig 2014; 19:117-26. [DOI: 10.1007/s00784-014-1227-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/07/2014] [Indexed: 01/27/2023]
|
13
|
Tsai YL, Chang MC, Lin LD, Chan CP, Wang CY, Lin PS, Jeng JH. Stimulation of prostanoids and IL-8 production in human gingival fibroblasts by Porphyromonas gingivalis LPS is associated with MEK/ERK signaling. J Dent Sci 2014. [DOI: 10.1016/j.jds.2013.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
14
|
Regulation of vascular cell adhesion molecule-1 in dental pulp cells by interleukin-1β: the role of prostanoids. J Endod 2012; 38:774-9. [PMID: 22595111 DOI: 10.1016/j.joen.2012.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Vascular cell adhesion molecule (VCAM-1) plays a critical role in the inflammatory processes by stimulating the recruitment, extravasation, and migration of leukocytes. Its expression and regulation in the dental pulp is not well elucidated. METHODS Primary dental pulp cells were exposed to prostaglandin E(2) (PGE(2)), prostaglandin F(2α) (PGF(2α)), or interleukin 1β (IL-1β) with/without aspirin. VCAM-1 messenger RNA expression was analyzed by reverse transcriptase-polymerase chain reaction. Soluble VCAM-1 (sVCAM-1) in the culture medium was determined by enzyme-linked immunosorbent assay, and the number of viable cells was estimated by (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS IL-1β induced VCAM-1 gene expression of pulp cells. IL-1β also stimulated sVCAM-1 production. The IL-1β-induced sVCAM-1 production was not inhibited but rather enhanced by aspirin, a cyclooxygenase (COX) inhibitor. PGE(2) and PGF(2α) decreased the VCAM-1 expression and sVCAM-1 production of pulp cells. U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene), a mitogen-activated protein kinase kinase (MEK) inhibitor, attenuated IL-1β-induced sVCAM-1 production. However, no marked cytotoxicity was noted in these experimental conditions as analyzed by MTT assay. CONCLUSIONS IL-1β may be involved in the pulpal inflammatory processes via stimulation of VCAM-1 expression and sVCAM-1 production. This event is not mediated by COX activation and prostanoid production but is associated with MEK signaling. PGE(2) and PGF(2α) may potentially regulate inflammatory processes by the inhibition of VCAM-1.
Collapse
|
15
|
Chang HH, Chang MC, Huang GF, Wang YL, Chan CP, Wang TM, Lin PS, Jeng JH. Effect of triethylene glycol dimethacrylate on the cytotoxicity, cyclooxygenase-2 expression and prostanoids production in human dental pulp cells. Int Endod J 2012; 45:848-58. [DOI: 10.1111/j.1365-2591.2012.02042.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Chang MC, Lin LD, Chuang FH, Chan CP, Wang TM, Lee JJ, Jeng PY, Tseng WY, Lin HJ, Jeng JH. Carboxylesterase expression in human dental pulp cells: role in regulation of BisGMA-induced prostanoid production and cytotoxicity. Acta Biomater 2012; 8:1380-7. [PMID: 21951919 DOI: 10.1016/j.actbio.2011.09.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/11/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
Abstract
Biocompatibility of dentin bonding agents (DBA) and composite resin may affect the treatment outcome (e.g., healthy pulp, pulpal inflammation, pulp necrosis) after operative restoration. Bisphenol-glycidyl methacrylate (BisGMA) is one of the major monomers present in DBA and resin. Prior studies focused on salivary esterase for metabolism and degradation of resin monomers clinically. This study found that human dental pulp cells expressed mainly carboxylesterase-2 (CES2) and smaller amounts of CES1A1 and CES3 isoforms. Exposure to BisGMA stimulated CES isoforms expression of pulp cells, and this event was inhibited by catalase. Exogenous addition of porcine esterase prevented BisGMA- and DBA-induced cytotoxicity. Interestingly, inhibition of CES by bis(p-nitrophenyl) phosphate (BNPP) and CES2 by loperamide enhanced the cytotoxicity of BisGMA and DBA. Addition of porcine esterase or N-acetyl-l-cysteine prevented BisGMA-induced prostaglandin E(2) (PGE(2)) and PGF(2α) production. In contrast, addition of BNPP and loperamide, but not mevastatin, enhanced BisGMA-induced PGE(2) and PGF(2α) production in dental pulp cells. These results suggest that BisGMA may induce the cytotoxicity and prostanoid production of pulp cells, leading to pulpal inflammation or necrosis via reactive oxygen species production. Expression of CES, especially CES2, in dental pulp cells can be an adaptive response to protect dental pulp against BisGMA-induced cytotoxicity and prostanoid release. Resin monomers are the main toxic components in DBA, and the ester group is crucial for monomer toxicity.
Collapse
|
17
|
Tomiyama H, Matsumoto C, Odaira M, Yamada J, Yoshida M, Shiina K, Nagata M, Yamashina A. Relationships among the serum omega fatty acid levels, serum C-reactive protein levels and arterial stiffness/wave reflection in Japanese men. Atherosclerosis 2011; 217:433-6. [PMID: 21536287 DOI: 10.1016/j.atherosclerosis.2011.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE We examined the relationship among the serum omega-3 and omega-6 fatty acid (O3FA and O6FA) levels, serum C-reactive protein (CRP) levels, and arterial stiffness/wave reflection (AS/WR) in healthy Japanese men. METHODS In 2206 Japanese healthy men, parameters related to the AS/WR (i.e., brachial-ankle pulse wave velocity and radial arterial pulse wave analysis) were measured. RESULTS No significant inverse relationships were observed between the serum O3FA levels and the AS/WR-related parameters. Adjusted values of the AS/WR-related parameters and serum CRP levels were higher in the subjects with serum O6FA levels in the highest tertile than in those with serum O6FA levels in the lowest tertile. CONCLUSIONS In healthy Japanese men with known high dietary intakes of O3FAs, the serum O3FA levels may not reflect the pathophysiological abnormalities related to AS/WR. Increased serum O6FA levels appeared to be independently associated with the unfavorable conditions related to AS/WR and inflammation.
Collapse
Affiliation(s)
- Hirofumi Tomiyama
- Second Department of Internal Medicine, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chang MC, Chen YJ, Lee MY, Lin LD, Wang TM, Chan CP, Tsai YL, Wang CY, Lin BR, Jeng JH. Prostaglandin F2α stimulates MEK-ERK signalling but decreases the expression of alkaline phosphatase in dental pulp cells. Int Endod J 2010; 43:461-8. [DOI: 10.1111/j.1365-2591.2010.01699.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
The effect of BisGMA on cyclooxygenase-2 expression, PGE2 production and cytotoxicity via reactive oxygen species- and MEK/ERK-dependent and -independent pathways. Biomaterials 2009; 30:4070-7. [DOI: 10.1016/j.biomaterials.2009.04.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 04/23/2009] [Indexed: 01/21/2023]
|