1
|
Ni W, Wolf K, Breitner S, Zhang S, Nikolaou N, Ward-Caviness CK, Waldenberger M, Gieger C, Peters A, Schneider A. Higher Daily Air Temperature Is Associated with Shorter Leukocyte Telomere Length: KORA F3 and KORA F4. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17815-17824. [PMID: 36442845 PMCID: PMC9775210 DOI: 10.1021/acs.est.2c04486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Higher air temperature is associated with increased age-related morbidity and mortality. To date, short-term effects of air temperature on leukocyte telomere length have not been investigated in an adult population. We aimed to examine the short-term associations between air temperature and leukocyte telomere length in an adult population-based setting, including two independent cohorts. This population-based study involved 5864 participants from the KORA F3 (2004-2005) and F4 (2006-2008) cohort studies conducted in Augsburg, Germany. Leukocyte telomere length was assessed by a quantitative PCR-based method. We estimated air temperature at each participant's residential address through a highly resolved spatiotemporal model. We conducted cohort-specific generalized additive models to explore the short-term effects of air temperature on leukocyte telomere length at lags 0-1, 2-6, 0-6, and 0-13 days separately and pooled the estimates by fixed-effects meta-analysis. Our study found that between individuals, an interquartile range (IQR) increase in daily air temperature was associated with shorter leukocyte telomere length at lags 0-1, 2-6, 0-6, and 0-13 days (%change: -2.96 [-4.46; -1.43], -2.79 [-4.49; -1.07], -4.18 [-6.08; -2.25], and -6.69 [-9.04; -4.27], respectively). This meta-analysis of two cohort studies showed that between individuals, higher daily air temperature was associated with shorter leukocyte telomere length.
Collapse
Affiliation(s)
- Wenli Ni
- Institute
of Epidemiology, Helmholtz Zentrum München—German
Research Center for Environmental Health (GmbH), Ingolstädter Landstraße
1, Neuherberg, Munich D-85764, Germany
- Institute
for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, 81377 Munich, Germany
| | - Kathrin Wolf
- Institute
of Epidemiology, Helmholtz Zentrum München—German
Research Center for Environmental Health (GmbH), Ingolstädter Landstraße
1, Neuherberg, Munich D-85764, Germany
| | - Susanne Breitner
- Institute
of Epidemiology, Helmholtz Zentrum München—German
Research Center for Environmental Health (GmbH), Ingolstädter Landstraße
1, Neuherberg, Munich D-85764, Germany
- Institute
for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, 81377 Munich, Germany
| | - Siqi Zhang
- Institute
of Epidemiology, Helmholtz Zentrum München—German
Research Center for Environmental Health (GmbH), Ingolstädter Landstraße
1, Neuherberg, Munich D-85764, Germany
| | - Nikolaos Nikolaou
- Institute
of Epidemiology, Helmholtz Zentrum München—German
Research Center for Environmental Health (GmbH), Ingolstädter Landstraße
1, Neuherberg, Munich D-85764, Germany
- Institute
for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, 81377 Munich, Germany
| | - Cavin K. Ward-Caviness
- Center
for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina 27599, United States
| | - Melanie Waldenberger
- Institute
of Epidemiology, Helmholtz Zentrum München—German
Research Center for Environmental Health (GmbH), Ingolstädter Landstraße
1, Neuherberg, Munich D-85764, Germany
- Research
Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Munich D-85764, Germany
- Partner
Site Munich Heart Alliance, DZHK (German
Centre for Cardiovascular Research), 80802 Munich, Germany
| | - Christian Gieger
- Institute
of Epidemiology, Helmholtz Zentrum München—German
Research Center for Environmental Health (GmbH), Ingolstädter Landstraße
1, Neuherberg, Munich D-85764, Germany
- Research
Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Munich D-85764, Germany
| | - Annette Peters
- Institute
of Epidemiology, Helmholtz Zentrum München—German
Research Center for Environmental Health (GmbH), Ingolstädter Landstraße
1, Neuherberg, Munich D-85764, Germany
- Institute
for Medical Information Processing, Biometry, and Epidemiology, Pettenkofer School of Public Health, LMU Munich, 81377 Munich, Germany
- Partner
Site Munich Heart Alliance, DZHK (German
Centre for Cardiovascular Research), 80802 Munich, Germany
- German
Center
for Diabetes Research (DZD), München-Neuherberg, D-85764 Munich, Germany
| | - Alexandra Schneider
- Institute
of Epidemiology, Helmholtz Zentrum München—German
Research Center for Environmental Health (GmbH), Ingolstädter Landstraße
1, Neuherberg, Munich D-85764, Germany
| |
Collapse
|
2
|
Von Schulze AT, Geiger PC. Heat and Mitochondrial Bioenergetics. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Greene ES, Adeogun E, Orlowski SK, Nayani K, Dridi S. Effects of heat stress on cyto(chemo)kine and inflammasome gene expression and mechanical properties in isolated red and white blood cells from 4 commercial broiler lines and their ancestor jungle fowl. Poult Sci 2022; 101:101827. [PMID: 35390570 PMCID: PMC8987627 DOI: 10.1016/j.psj.2022.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
Commercial broilers have been selected for high growth rate and productivity; however, this has negatively impacted their susceptibility to heat stress (HS). Insight into the molecular mechanisms underlying this vulnerability can help design targeted strategies for improvement of HS tolerance. Red blood cells (RBC) and white blood cells (WBC) were isolated from red jungle fowl and 4 lines of commercial modern broilers. Lines A and B are considered standard-yielding lines, whereas Lines C and D are high-yielding. Cells were cultured at either 37°C or 45°C for 2 h to induce heat stress (HS). Gene expression of cytokines, chemokines, and inflammasome components were measured. Heat shock proteins 27 and 70 (HSPs) in RBC were significantly affected by line (P < 0.05), whereas HSP27 and 60 were affected by temperature (P < 0.05). In WBC, there was a significant line effect on HSP gene expression (P < 0.05), and a significant increase (P < 0.05) in HSP90 in Line D in HS compared to TN conditions. In RBC, there was a main effect of HS on TNFα, CCL4, and CCLL4 (P < 0.05). HS significantly increased IL-8L1 (>30-fold, P < 0.0001) in Line C. Inflammasome genes (NLRP3, NLRC5 and NLRC3) were significantly affected by the line studied (P < 0.05). In WBC, the effect of line was significant for all cytokines, chemokines, and inflammasome components studied (P < 0.05). To examine the mechanical properties of isolated RBC from the 4 commercial lines and jungle fowl, RBC were placed into nematic liquid crystals, where Lines B and D were the most strained, and Line A and the jungle fowl were the least strained. Together, these findings indicate not only the dynamic nature of circulating cells, but the differences in the stress and inflammatory response among commercially available lines and their common ancestor. These profiles have the potential to serve as a future marker for stress responses in broilers, though further study is warranted.
Collapse
|
4
|
Abstract
Oral cancer ranks first among males and is the primary cause of cancer-related deaths in Pakistan. We studied the epidemiology and risk factors associated with this cancer. The main risk factors in the Pakistani population include the usage of chewable and non-chewable tobacco, areca nut, betel leaf, poor dental hygiene practices, oncogenic viral infections, and genetic predispositions. The impact of socioeconomic status and the available health resources on the management of oral cancer is also discussed. It is concluded that being a low-middle economy efforts should be primarily focused on awareness for early screening, diagnosis, and prevention strategies.
Collapse
Affiliation(s)
- Naila Malkani
- Department of Zoology, GC University, Lahore, Pakistan
| | - Sara Kazmi
- Department of Zoology, GC University, Lahore, Pakistan
| | - Muhammad Usman Rashid
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| |
Collapse
|
5
|
Schubert J, Kirkpatrick T, Roberts H. The effect of endodontic access preparation on the failure load resistance of a 3Y-TZP monolithic zirconia crown. AUST ENDOD J 2021; 48:138-143. [PMID: 34258848 DOI: 10.1111/aej.12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/20/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022]
Abstract
The effect of endodontic access preparation on the failure load resistance of 3Y-TZP zirconia crowns was accomplished by preparing human molars and luting monolithic zirconia crowns with a self-adhesive resin cement. Besides the intact control, teeth received endodontic access preparations and then grouped (n = 12) into a positive control (no access repair), dentin core replacement only and complete access repair groups. Specimens were axially tested until failure with results of no significant difference between the failure load of intact controls and the complete access repair group. However, the positive control and dentin replacement only groups failed at significantly lower loads. Under the conditions of this study, there was no significant failure load difference between 3Y-TZP monolithic zirconia crowns with repaired endodontic access preparations to that evidenced by an unprepared control. Although this evidence is encouraging, caution is advised and definitive recommendations cannot be made until verified by clinical studies.
Collapse
Affiliation(s)
| | | | - Howard Roberts
- University of Kentucky College of Dentistry, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Oxidative stress and oral cavity cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Mallya J, DuVall N, Brewster J, Roberts H. Endodontic Access Effect on Full Contour Zirconia and Lithium Disilicate Failure Resistance. Oper Dent 2020; 45:276-285. [DOI: 10.2341/18-231-l] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARY
Objectives:
To evaluate the effect of endodontic access on the failure load resistance of both adhesively and conventionally luted, full-contour monolithic yttria-stabilized zirconium dioxide (Y-TZP) and adhesively luted lithium disilicate (LD) crowns cemented on prepared teeth.
Methods and Materials:
Seventy-two human maxillary molars were prepared per respective guidelines for all-ceramic crowns with one group (n=24) restored with LD and the other (n=48) receiving Y-TZP crowns. Preparations were scanned using computer-aided design/computer-aided milling (CAD/CAM) technology, and milled crowns were sintered following manufacturer recommendations. All LD crowns and half (n=24) of the Y-TZP crowns were adhesively cemented, while the remaining Y-TZP specimens were luted using a conventional glass ionomer cement (GIC). One LD group, one Y-TZP adhesive group, and one GIC-luted group (all n=12) then received endodontic access preparations by a board-certified endodontist: the pulp chambers were restored with a dual-cure, two-step, self-etch adhesive and a dual-cure resin composite core material. The access preparations were restored using a nano-hybrid resin composite after appropriate ceramic margin surface preparation. After 24 hours, all specimens were loaded axially until failure; mean failure loads were analyzed using Mann-Whitney U test (α=0.05)
Results:
Endodontic access did not significantly reduce the failure load of adhesively luted LD or Y-TZP crowns, but Y-TZP crowns with GIC cementation demonstrated significantly less failure load.
Conclusions:
These initial findings suggest that endodontic access preparation may not significantly affect failure load resistance of adhesively luted Y-TZP and LD crowns. Definitive recommendations cannot be proposed until fatigue testing and coronal seal evaluations have been accomplished.
Collapse
Affiliation(s)
- J Mallya
- John Mallya, DMD, MS, 47th Medical Group, Laughlin AFB, TX, USA
| | - N DuVall
- Nicholas DuVall, DDS, MS, 96th Dental Squadron, Eglin AFB, FL USA
| | - J Brewster
- John Brewster, DDS, MS, USAF Postgraduate Dental School, Keesler AFB, MS, USA
| | - H Roberts
- Howard Roberts, DMD, MS, Division of Restorative Dentistry, University of Kentucky College of Dentistry, Lexington, KY, USA
| |
Collapse
|
8
|
Gharibi V, Khanjani N, Heidari H, Ebrahimi MH, Hosseinabadi MB. The effect of heat stress on hematological parameters and oxidative stress among bakery workers. Toxicol Ind Health 2020; 36:1-10. [PMID: 31934822 DOI: 10.1177/0748233719899824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heat stress causes physiological changes, and changes in hematological parameters and hormonal levels in the human body, known as thermal strain. This study was conducted to determine the effect of exposure to heat stress on hematological parameters and oxidative stress in the bakers of Shahroud City, Iran. A total of 163 bakery workers (exposed group) and 135 office workers (unexposed group) with a minimum of 1-year working experience were selected. Exposure to heat stress was measured using ISO-7243 criteria on the hottest days of the year (late July and August). Wet-bulb globe temperature (WBGT) was calculated based on indoor environments. Oxidative stress indices including malondialdehyde (MDA), nitric oxide (NO), total antioxidant capacity (TAC) in the bakers' and office workers' serum and hematological parameters were measured. Statistical analysis was done through independent t-test, and multivariate linear regression using SPSS v24. Analysis of hematological parameters showed that about 70% and 68% of the bakers had abnormal mean cell volume (MCV) and white blood cell (WBC) count, respectively, while only around 12% of them had abnormal mean cell hemoglobin concentration (MCHC). The counts of red blood cells (RBC), WBC, lymphocytes (LYM), and MCV showed significant differences in different occupational groups (p < 0.05). The levels of MDA and NO were significantly higher in bakers with WBGT more than the threshold value (p < 0.05). The WBGT index for assessing heat stress can be used as a predictor variable for MDA and NO levels. In addition, heat stress exposure could be a risk factor for abnormal WBC, RBC, LYM, and MCV.
Collapse
Affiliation(s)
- Vahid Gharibi
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran.,Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamidreza Heidari
- Department of Occupational Health, School of Public Health, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Hossein Ebrahimi
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | | |
Collapse
|
9
|
Facilitation of hippocampal long-term potentiation and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking learning, memory, and the potential eradication of HIV-1. Med Hypotheses 2018; 116:61-73. [DOI: 10.1016/j.mehy.2018.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 10/27/2017] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
|
10
|
Żukowski P, Maciejczyk M, Waszkiel D. Sources of free radicals and oxidative stress in the oral cavity. Arch Oral Biol 2018; 92:8-17. [PMID: 29729478 DOI: 10.1016/j.archoralbio.2018.04.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE An oral cavity is a place especially susceptible to oxidative damage. It is subjected to many environmental pro-oxidative factors or factors that have the ability to generate reactive oxygen species (ROS). The aim of this article is to present the main sources of ROS and oxidative stress in the oral environment. DESIGN A literature search was performed using the PubMed and Google Scholar databases. RESULTS One of the most important ROS sources in the oral cavity is periodontal inflammation. Other sources of ROS include: xenobiotics (ethanol, cigarette smoke, drugs), food (high-fat diet, high-protein diet, acrolein), dental treatment (ozone, ultrasound, non-thermal plasma, laser light, ultraviolet light), and dental materials (fluorides, dental composites, fixed orthodontic appliances, and titanium fixations). It has been shown that excessive production of ROS in the oral cavity may cause oxidative stress and oxidative damage to cellular DNA, lipids, and proteins, thus predisposing to many oral and systemic diseases. CONCLUSIONS Recognition of the exogenous sources of ROS and limitation of exposure to the ROS generating factors can be one of the prophylactic measures preventing oral and systemic diseases. It is suggested that antioxidant supplementation may be helpful in people exposed to excessive production of ROS in the oral cavity system.
Collapse
Affiliation(s)
- Piotr Żukowski
- Department of Hospital Dentistry, Croydon University Hospital, England, 530 London Road Croydon, Surrey CR7 7YE, United Kingdom.
| | - Mateusz Maciejczyk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c Str., 15-222 Bialystok, Poland.
| | - Danuta Waszkiel
- Department of Conservative Dentistry, Medical University Bialystok, Sklodowskiej M.C. 24a Str., 15-274 Bialystok, Poland.
| |
Collapse
|
11
|
Biological Activities and Potential Oral Applications of N-Acetylcysteine: Progress and Prospects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2835787. [PMID: 29849877 PMCID: PMC5937417 DOI: 10.1155/2018/2835787] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 12/27/2022]
Abstract
N-Acetylcysteine (NAC), a cysteine prodrug and glutathione (GSH) precursor, has been used for several decades in clinical therapeutic practices as a mucolytic agent and for the treatment of disorders associated with GSH deficiency. Other therapeutic activities of NAC include inhibition of inflammation/NF-κB signaling and expression of proinflammatory cytokines. N-Acetylcysteine is also a nonantibiotic compound possessing antimicrobial property and exerts anticarcinogenic and antimutagenic effects against certain types of cancer. Recently, studies describing potentially important biological and pharmacological activities of NAC have stimulated interests in using NAC-based therapeutics for oral health care. The present review focused on the biological activities of NAC and its potential oral applications. The potential side effects of NAC and formulations for drug delivery were also discussed, with the intent of advancing NAC-associated treatment modalities in oral medicine.
Collapse
|
12
|
Varasteh S, Fink-Gremmels J, Garssen J, Braber S. α-Lipoic acid prevents the intestinal epithelial monolayer damage under heat stress conditions: model experiments in Caco-2 cells. Eur J Nutr 2017; 57:1577-1589. [PMID: 28349254 PMCID: PMC5960005 DOI: 10.1007/s00394-017-1442-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/14/2017] [Indexed: 01/18/2023]
Abstract
Purpose Under conditions of high ambient temperatures and/or strenuous exercise, humans and animals experience considerable heat stress (HS) leading among others to intestinal epithelial damage through induction of cellular oxidative stress. The aim of this study was to characterize the effects of α-Lipoic Acid (ALA) on HS-induced intestinal epithelial injury using an in vitro Caco-2 cell model. Methods A confluent monolayer of Caco-2 cells was pre-incubated with ALA (24 h) prior to control (37 °C) or HS conditions (42 °C) for 6 or 24 h and the expression of heat shock protein 70 (HSP70), heat shock factor-1 (HSF1), and the antioxidant Nrf2 were investigated. Intestinal integrity was determined by measuring transepithelial resistance, paracellular permeability, junctional complex reassembly, and E-cadherin expression and localization. Furthermore, cell proliferation was measured in an epithelial wound healing assay and the expression of the inflammatory markers cyclooxygenase-2 (COX-2) and transforming growth Factor-β (TGF-β) was evaluated. Results ALA pretreatment increased the HSP70 mRNA and protein expression under HS conditions, but did not significantly modulate the HS-induced activation of HSF1. The HS-induced increase in Nrf2 gene expression as well as the Nrf2 nuclear translocation was impeded by ALA. Moreover, ALA prevented the HS-induced impairment of intestinal integrity. Cell proliferation under HS conditions was improved by ALA supplementation as demonstrated in an epithelial wound healing assay and ALA was able to affect the HS-induced inflammatory response by decreasing the COX-2 and TGF-β mRNA expression. Conclusions ALA supplementation could prevent the disruption of intestinal epithelial integrity by enhancing epithelial cell proliferation, and reducing the inflammatory response under HS conditions in an in vitro Caco-2 cell model. Electronic supplementary material The online version of this article (doi:10.1007/s00394-017-1442-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soheil Varasteh
- Division of Veterinary Pharmacology, Pharmacotherapy and Toxicology, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands. .,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Johanna Fink-Gremmels
- Division of Veterinary Pharmacology, Pharmacotherapy and Toxicology, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Nutricia Research, 3584 CT, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
13
|
Kim EC, Kim MK, Leesungbok R, Lee SW, Ahn SJ. Co-Cr dental alloys induces cytotoxicity and inflammatory responses via activation of Nrf2/antioxidant signaling pathways in human gingival fibroblasts and osteoblasts. Dent Mater 2016; 32:1394-1405. [PMID: 27671470 DOI: 10.1016/j.dental.2016.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/08/2016] [Accepted: 09/03/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Although cobalt-chromium (Co-Cr) dental alloys are routinely used in prosthodontics, the biocompatibility of Co-Cr alloys is controversial. The aims of the present study were to investigate the effects of Co-Cr alloys on human gingival fibroblasts (HGF) and osteoblasts in an in vitro model as well as their potential molecular mechanisms, focusing on NF-E2-related factor 2 (Nrf2) pathways. METHODS Cells were directly seeded on prepared Co-Cr alloy discs (15.0mm diameter, 1.0mm thickness) or indirectly treated with Co-Cr alloy located at the bottom of an insert well and incubated for 3 days. Cytotoxicity and reactive oxygen species (ROS) production was evaluated by MTS assay and flow cytometry, respectively. Protein and mRNA levels were determined by Western blotting and RT-PCR analysis, respectively. RESULTS Cell viability and flow cytometric assay demonstrated that the Co-Cr alloy was cytotoxic to HGFs and osteoblasts, and significantly increased ROS production. In addition, the Co-Cr alloys upregulated pro-inflamamtory cytokines (TNF-α, IL-1β, IL-6, and IL-8) and increased levels of various inflammatory mediators (iNOS derived nitrite oxide, and COX-2-derived PGE2) in both cells. A mechanistic study showed that Co-Cr alloys activates the NRF2 pathway and up-regulate antioxidant enzymes including heme oxygenase-1 (HO-1). Co-Cr alloys activated JAK2/STAT3, p38/ERK/JNK MAPKs and NF-κB signaling pathways. Furthermore, antioxidants (resveratrol and NAC) and HO-1 inhibitor (SnPP) significantly inhibited the production of ROS and inflammatory mediators, as well as the activation of NF-κB signaling in Co-Cr alloy stimulated HGFs and osteoblasts. SIGNIFICANCE This study is the first to show that Co-Cr alloys exert cytotoxic and inflammatory effects via activation of Nrf2/ARE signaling and up-regulation of downstream HO-1, which could represent candidate targets for the regulation of inflammatory responses to Co-Cr alloys.
Collapse
Affiliation(s)
- Eun-Cheol Kim
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Myo-Kyoung Kim
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Richard Leesungbok
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Suk-Won Lee
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Su-Jin Ahn
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Park G, Oh MS. Acceleration of heat shock-induced collagen breakdown in human dermal fibroblasts with knockdown of NF-E2-related factor 2. BMB Rep 2016; 48:467-72. [PMID: 25441422 PMCID: PMC4576955 DOI: 10.5483/bmbrep.2015.48.8.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Indexed: 11/20/2022] Open
Abstract
Heat shock increases skin temperature during sun exposure and some evidence indicates that it may be involved in skin aging. The antioxidant response mediated by the transcription factor NF-E2-related factor 2 (Nrf2) is a critically important cellular defense mechanism that serves to limit skin aging. We investigated the effects of heat shock on collagenase expression when the antioxidant defense system was downregulated by knockdown of Nrf2. GSH and collagenases were analyzed, and the expression of inducible Nrf2, HO-1, and NQO1 was measured. HS68 cells were transfected with small interfering RNA against Nrf2. Heat shock induced the downregulation of Nrf2 in both the cytosol and nucleus and reduced the expression of HO-1, GSH, and NQO1. In addition, heat-exposed Nrf2-knockdown cells showed significantly increased levels of collagenase protein and decreased levels of procollagen. Our data suggest that Nrf2 plays an important role in protection against heat shock-induced collagen breakdown in skin. [BMB Reports 2015; 48(8): 467-472]
Collapse
Affiliation(s)
- Gunhyuk Park
- Department of Life and Nanopharmaceutical Science, Graduates School and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 02447, Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Science, Graduates School and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
15
|
Jirachotikoon C, Tannukit S, Kedjarune-Leggat U. Expression of translationally controlled tumor protein in heat-stressed human dental pulp cells. Arch Oral Biol 2015; 60:1474-81. [PMID: 26263535 DOI: 10.1016/j.archoralbio.2015.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 04/14/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of heat stress on cell viability, translationally controlled tumor protein (TCTP) expression, and the effects of recombinant TCTP on heat-stressed human dental pulp cells (HDPCs). METHODS HDPCs were isolated from human teeth and cultured at 37°C. For heat stress, HPDCs were incubated at 43°C for 45min. After heat stress, recombinant TCTP were added to HDPCs and cultured for various periods of time at 37°C. Heat-treated cells were then analyzed by DNA staining with Hoechst 33258, MTT, and caspase 3 activity assays. TCTP expression level was assessed by real-time PCR and western blot analysis. RESULTS Heat-treated cells displayed lower cell density and nuclear morphology resembling apoptotic body. Heat stress significantly decreased cell viability and induced activity of caspase 3. The effect of recombinant TCTP on pulp cell death from heat stress varied depending on each subject and TCTP concentration. Heat stress up-regulated TCTP mRNA expression level. In contrast, TCTP protein level remained unchanged. Recombinant TCTP did not affect TCTP mRNA expression but down-regulated TCTP protein in heat-treated cells. CONCLUSIONS Heat stress induces caspase 3 activation and up-regulates TCTP mRNA expression in HDPCs. TCTP did not play a key role on pulp cell recovery from heat stress.
Collapse
Affiliation(s)
- Canussanun Jirachotikoon
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Sissada Tannukit
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand.
| | - Ureporn Kedjarune-Leggat
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
16
|
Elisia I, Kitts DD. Tocopherol isoforms (α-, γ-, and δ-) show distinct capacities to control Nrf-2 and NfκB signaling pathways that modulate inflammatory response in Caco-2 intestinal cells. Mol Cell Biochem 2015; 404:123-31. [PMID: 25724683 DOI: 10.1007/s11010-015-2372-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
We recently showed that α-, γ-, and δ-tocopherols (Toc) were isoform dependent in modulating an inflammatory response in differentiated human Caco-2 intestinal cells. Here, we aim to investigate the relative capacity of Toc isoforms to modify the stress-activated NfκB and Nrf-2 signaling pathways that regulate the expression of pro-inflammatory cytokines and antioxidant enzymes, respectively, in this well-established in vitro model of the small intestine The modulation of IFNγ/phorbol myristate acetate (PMA)-induced inflammatory responses, determined by the expression of IL8 mRNA and protein, corresponded to the extent by which different Toc isoforms altered intracellular oxidative status in Caco-2 cells. α Toc was more effective at suppressing IFNγ/PMA-induced NfκB activation than γ-Toc, while δ-Toc was ineffective. On the other hand, only δ-Toc and to a lesser extent γ-Toc promoted IFNγ/PMA-induced Nrf-2 activation. Up-regulation of Nrf-2 by δ-Toc coincided with a decrease in GSH/GSSG ratio, thus pointing to pro-oxidant activity of δ-Toc isoform in IFNγ/PMA-stimulated Caco-2 cells. The induction of oxidative stress in IFNγ/PMA-treated cells by δ-Toc was lowered (P < 0.05) in the presence of ascorbic acid. Ascorbic acid also enabled a greater suppression of IL8 secretion than when cells were treated with δ-Toc isoform alone. Our findings show that δ-Toc uniquely promoted oxidative stress which translated to Toc isoform-specific modulation of the stress-activated Nrf-2 and NfκB signaling pathway and an influence on IL8 expression.
Collapse
Affiliation(s)
- Ingrid Elisia
- Food, Nutrition and Health Program, University of British Columbia, 219-2205 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | | |
Collapse
|
17
|
Avezov K, Reznick AZ, Aizenbud D. Oxidative stress in the oral cavity: sources and pathological outcomes. Respir Physiol Neurobiol 2014; 209:91-4. [PMID: 25461624 DOI: 10.1016/j.resp.2014.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 11/18/2022]
Abstract
Oxidative stress (OS), an imbalance in the oxidant-antioxidant equilibrium, is thought to be involved in the development of many seemingly unrelated diseases. Oral cavity tissues are a unique environment constantly exposed to internal and external compounds and material hazards as almost no other part of the human body. Some of the compounds are capable of generating OS. Here, the main groups of endogenous as well as exogenous OS sources are presented, followed by their oxidative effect on the salivary contents and function. The oxidative mechanisms in oral cells and their pathologic influence are also discussed.
Collapse
Affiliation(s)
- Katia Avezov
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, PO Box 9649, Haifa, Israel; Orthodontic and Craniofacial Department, Graduate School of Dentistry, Rambam Health Care Campus, PO Box 9602, Haifa, Israel
| | - Abraham Z Reznick
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, PO Box 9649, Haifa, Israel.
| | - Dror Aizenbud
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, PO Box 9649, Haifa, Israel; Orthodontic and Craniofacial Department, Graduate School of Dentistry, Rambam Health Care Campus, PO Box 9602, Haifa, Israel
| |
Collapse
|
18
|
Chang SW, Lee SY, Ann HJ, Kum KY, Kim EC. Effects of Calcium Silicate Endodontic Cements on Biocompatibility and Mineralization-inducing Potentials in Human Dental Pulp Cells. J Endod 2014; 40:1194-200. [DOI: 10.1016/j.joen.2014.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/13/2013] [Accepted: 01/02/2014] [Indexed: 12/22/2022]
|
19
|
Kim DS, Kang SI, Lee SY, Noh KT, Kim EC. Involvement of SDF-1 and monocyte chemoattractant protein-1 in hydrogen peroxide-induced extracellular matrix degradation in human dental pulp cells. Int Endod J 2013; 47:298-308. [DOI: 10.1111/iej.12147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 06/03/2013] [Indexed: 01/20/2023]
Affiliation(s)
- D.-S. Kim
- Department of Conservative Dentistry; School of Dentistry and Institute of Oral Biology; Kyung Hee University; Seoul Korea
| | - S. I. Kang
- Department of Maxillofacial Tissue Regeneration; School of Dentistry; Kyung Hee University; Seoul Korea
| | - S.-Y. Lee
- Department of Maxillofacial Tissue Regeneration; School of Dentistry; Kyung Hee University; Seoul Korea
| | - K.-T. Noh
- Department of Prosthodontics; School of Dentistry; Kyung Hee University; Seoul Korea
| | - E.-C. Kim
- Department of Maxillofacial Tissue Regeneration; School of Dentistry; Kyung Hee University; Seoul Korea
| |
Collapse
|
20
|
Lee YH, Lee NH, Bhattarai G, Kim GE, Lee IK, Yun BS, Hwang PH, Yi HK. Anti-inflammatory effect of pachymic acid promotes odontoblastic differentiation via HO-1 in dental pulp cells. Oral Dis 2012; 19:193-9. [DOI: 10.1111/j.1601-0825.2012.01970.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/04/2012] [Accepted: 06/15/2012] [Indexed: 01/09/2023]
Affiliation(s)
- Y-H Lee
- Department of Oral Biochemistry; BK21 program; Jeonju Korea
| | - N-H Lee
- Department of Oral Biochemistry; BK21 program; Jeonju Korea
| | - G Bhattarai
- Department of Oral Biochemistry; BK21 program; Jeonju Korea
| | - G-E Kim
- Department of Oral Biochemistry; BK21 program; Jeonju Korea
| | - I-K Lee
- Division of Biotechnology; College of Environmental & Biosource Science; Jeonju Korea
| | - B-S Yun
- Division of Biotechnology; College of Environmental & Biosource Science; Jeonju Korea
| | - P-H Hwang
- Department of Pediatrics; School of Medicine; Chonbuk National University; Jeonju Korea
| | - H-K Yi
- Department of Oral Biochemistry; BK21 program; Jeonju Korea
| |
Collapse
|
21
|
Lee SI, Min KS, Bae WJ, Lee YM, Lee SY, Lee ES, Kim EC. Role of SIRT1 in heat stress- and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells. J Endod 2011; 37:1525-30. [PMID: 22000456 DOI: 10.1016/j.joen.2011.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/11/2011] [Accepted: 07/17/2011] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Although bacterial infection and heat stress are common causes of injury in human dental pulp cells (HDPCs), little is known about the potential defense mechanisms mediating their effects. This study examined the role of SIRT1 in mediating heat stress and lipopolysaccharide (LPS)-induced immune and defense gene expression in HDPCs. METHODS HDPCs were exposed to heat stress (42°C) for 30 minutes after stimulation with LPS (1 μg/mL) for 48 hours. The expression of defense genes was evaluated by reverse-transcriptase polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. RESULTS LPS and heat stress synergistically increased the expression of SIRT1 and immune and defense genes such as interleukin (IL)-8, hemeoxygenase-1 (HO-1), and human β-defensin 2 (hBD-2). Resveratrol enhanced LPS- and heat stress-induced expression of HO-1 and hBD-2 but reduced IL-8 messenger RNA levels. The stimulation of HO-1 and hBD-2 messenger RNA expression by LPS and heat stress was inhibited by sirtinol; SIRT1 small interfering RNA; and inhibitors of p38, ERK, JNK, and nuclear factor κB. CONCLUSIONS These results show for the first time that SIRT1 mediates the induction of immune and defense gene expression in HDPCs by LPS and heat stress. SIRT1 may play a pivotal role in host immune defense system in HDPCS.
Collapse
Affiliation(s)
- Sang-Im Lee
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci U S A 2010; 107:18838-43. [PMID: 20956331 DOI: 10.1073/pnas.1007387107] [Citation(s) in RCA: 344] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recognition and repair of cellular damage is crucial if organisms are to survive harmful environmental conditions. In mammals, the Keap1 protein orchestrates this response, but how it perceives adverse circumstances is not fully understood. Herein, we implicate NO, Zn(2+), and alkenals, endogenously occurring chemicals whose concentrations increase during stress, in this process. By combining molecular modeling with phylogenetic, chemical, and functional analyses, we show that Keap1 directly recognizes NO, Zn(2+), and alkenals through three distinct sensors. The C288 alkenal sensor is of ancient origin, having evolved in a common ancestor of bilaterans. The Zn(2+) sensor minimally comprises H225, C226, and C613. The most recent sensor, the NO sensor, emerged coincident with an expansion of the NOS gene family in vertebrates. It comprises a cluster of basic amino acids (H129, K131, R135, K150, and H154) that facilitate S-nitrosation of C151. Taken together, our data suggest that Keap1 is a specialized sensor that quantifies stress by monitoring the intracellular concentrations of NO, Zn(2+), and alkenals, which collectively serve as second messengers that may signify danger and/or damage.
Collapse
|