1
|
Elnawam H, Thabet A, Mobarak A, Abdallah A, Elbackly R. Preparation and characterization of bovine dental pulp-derived extracellular matrix hydrogel for regenerative endodontic applications: an in vitro study. BMC Oral Health 2024; 24:1281. [PMID: 39448989 PMCID: PMC11515367 DOI: 10.1186/s12903-024-05004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The use of biological scaffolds in regenerative endodontics has gained much attention in recent years. The search for a new biomimetic scaffold that contains tissue-specific cell homing factors could lead to more predictable tissue regeneration. The aim of this study was to prepare and characterize decellularized bovine dental pulp-derived extracellular matrix (P-ECM) hydrogels for regenerative endodontic applications. METHODS Freshly extracted bovine molar teeth were collected. Bovine dental pulp tissues were harvested, and stored at -40º C. For decellularization, a 5-day protocol was implemented incorporating trypsin/EDTA, deionized water and DNase treatment. Decellularization was evaluated by DNA quantification and histological examination to assess collagen and glycosaminoglycans (GAGs) content. This was followed by the preparation of P-ECM hydrogel alone or combined with hyaluronic acid gel (P-ECM + HA). The fabricated scaffolds were then characterized using protein quantification, hydrogel topology and porosity, biodegradability, and growth factor content using Enzyme-linked immunosorbent assay (ELISA): transforming growth factor beta-1(TGF-β1), basic fibroblast growth factor (bFGF), bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF). RESULTS Decellularization was histologically confirmed, and DNA content was below (50 ng/mg tissue). P-ECM hydrogel was prepared with a final ECM concentration of 3.00 mg/ml while P-ECM + HA hydrogel was prepared with a final ECM concentration of 1.5 mg/ml. Total protein content in P-ECM hydrogel was found to be (439.0 ± 123.4 µg/µl). P-ECM + HA showed sustained protein release while the P-ECM group showed gradual decreasing release. Degradation was higher in P-ECM + HA which had a significantly larger fiber diameter, while P-ECM had a larger pore area percentage. ELISA confirmed the retention and release of growth factors where P-ECM hydrogel had higher BMP-2 release, while P-ECM + HA had higher release of TGF-β1, bFGF, and VEGF. CONCLUSIONS Both P-ECM and P-ECM + HA retained their bioactive properties demonstrating a potential role as functionalized scaffolds for regenerative endodontic procedures.
Collapse
Affiliation(s)
- Hisham Elnawam
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Abdelrahman Thabet
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ahmed Mobarak
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Amr Abdallah
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania Elbackly
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Elnawam H, Thabet A, Mobarak A, Khalil NM, Abdallah A, Nouh S, Elbackly R. Bovine pulp extracellular matrix hydrogel for regenerative endodontic applications: in vitro characterization and in vivo analysis in a necrotic tooth model. Head Face Med 2024; 20:61. [PMID: 39438876 PMCID: PMC11494807 DOI: 10.1186/s13005-024-00460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Regenerative endodontic procedures (REPs) offer the promise of restoring vitality and function to a previously necrotic and infected tooth. However, the nature of regenerated tissues following REPs remains unpredictable and uncontrollable. Decellularized extracellular matrix scaffolds have gained recent attention as scaffolds for regenerative endodontics. OBJECTIVES Preparation and characterization of a bovine dental pulp-derived extracellular matrix (P-ECM) hydrogel for regenerative endodontic applications. Biocompatibility and regenerative capacity of the prepared scaffold were evaluated in vivo in a canine animal model. METHODS Fifteen freshly extracted bovine molar teeth were used to prepare P-ECM hydrogels following approval of the institutional review board of the faculty of dentistry, Alexandria University. Decellularization and lyophilization of the extracted pulp tissues, DNA quantification and histological examination of decellularized P-ECM were done. P-ECM hydrogel was prepared by digestion of decellularized pulps. Prepared scaffolds were evaluated for protein content and release as well as release of VEGF, bFGF, TGF-β1 and BMP2 using ELISA. Rabbit dental pulp stem cells' (rDPSCs) viability in response to P-ECM hydrogels was performed. Finally, proof-of-concept of the regenerative capacity of P-ECM scaffolds was assessed in an infected mature canine tooth model following REPs versus blood clot (BC), injectable platelet-rich fibrin (i-PRF) or hyaluronic acid (HA). Statistical analysis was done using independent t test, the Friedman test and chi-square tests (p value ≤ 0.05). RESULTS DNA was found to be below the cut-off point (50 ng/mg tissue). Histological evaluation revealed absence of nuclei, retention of glycosaminoglycans (GAGs) and collagen content, respectively. P-ECM hydrogel had a total protein content of (493.12 µg/µl) and protein release was detected up to 14 days. P-ECM hydrogel also retained VEGF, bFGF, TGF-β1 and BMP2. P-ECM hydrogel maintained the viability of rDPSCs as compared to cells cultured under control conditions. P-ECM hydrogel triggered more organized tissues compared to BC, i-PRF and HA when used in REPs for necrotic mature teeth in dogs. Periapical inflammation was significantly less in HA and P-ECM groups compared to blood-derived scaffolds. CONCLUSION Bovine dental pulp-derived extracellular matrix (P-ECM) hydrogel scaffold retained its bioactive properties and demonstrated a promising potential in regenerative endodontic procedures compared to conventional blood-derived scaffolds.
Collapse
Affiliation(s)
- Hisham Elnawam
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- Faculty of Dentistry, Champollion street, Azarita, Alexandria, Egypt.
| | - Abdelrahman Thabet
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ahmed Mobarak
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Nesma Mohamed Khalil
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Amr Abdallah
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Samir Nouh
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Surgery Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Rania Elbackly
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Pimenta RMN, Dos Reis-Prado AH, de Castro Oliveira S, Goto J, Cosme-Silva L, Cintra LTA, Benetti F. Effects of diabetes mellitus on dental pulp: A systematic review of in vivo and in vitro studies. Oral Dis 2024; 30:100-115. [PMID: 35657117 DOI: 10.1111/odi.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This systematic review (PROSPERO CRD42021227711) evaluated the influence of diabetes mellitus (DM) on the response of the pulp tissue and in the pulp cells behaviour. MATERIALS AND METHODS Searches in PubMed/MEDLINE, Embase, Web of Science and OpenGrey were performed until March 2022. Studies evaluating the effects of DM in the pulp tissue inflammation and in the cell behaviour were included, followed by risk of bias assessment (Methodological Index for Non-Randomized Studies and SYRCLE's RoB tools). The meta-analysis was unfeasible, and a narrative synthesis for each outcome was provided. RESULTS Of the 615 studies, 21 were eligible, mainly with in vivo analysis (16 studies). The pulp inflammation (10 studies) was analysed mainly by haematoxylin-eosin stain; DM increased pulp inflammation/degeneration in 9 studies, especially after dental procedures. The cell viability (5 studies) was analysed mostly using MTT assay; DM and glycating agents decreased cellular viability in 3 studies. DM reduced collagen in all of three studies. There were controversial results regarding mineralization; however, increased alkaline phosphatase was reported in three of four studies. CONCLUSIONS DM seems to increase inflammation/degeneration and mineralization in the pulp tissue while reducing cell proliferation. Further analyses in human pulp are important to provide stronger evidence.
Collapse
Affiliation(s)
- Rafaella Milla Nunes Pimenta
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Sabrina de Castro Oliveira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana Goto
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Leopoldo Cosme-Silva
- Department of Restorative Dentistry, School of Dentistry, Federal University of Alagoas (UFAL), Maceió, Brazil
| | | | - Francine Benetti
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
4
|
Li X, Xu W, Lin X, Wu J, Wu B. Effect of LncRNA-MALAT1 on mineralization of dental pulp cells in a high-glucose microenvironment. Front Cell Dev Biol 2022; 10:921364. [PMID: 36035997 PMCID: PMC9402893 DOI: 10.3389/fcell.2022.921364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) belongs to the long non-coding RNA (LncRNA) family. LncRNA-MALAT1 is expressed in a variety of tissues and is involved in a variety of diseases and biological processes. Although LncRNA-MALAT1 is upregulated in a high-glucose microenvironment and may participate in odontogenic differentiation, the underlying mechanism is not yet well elucidated. Here, we show that MALAT1 was mainly expressed in the cytoplasm of dental pulp cells (DPCs) in situ hybridization. In addition, high levels of mineralization-related factors, namely, tumor growth factors β 1 and 2 (TGFβ-1 and TGFβ-2), bone morphogenetic proteins 2 and 4 (BMP2 and BMP4), bone morphogenetic protein receptor 1 (BMPR1), SMAD family member 2 (SMAD2), runt-related transcription factor 2 (RUNX2), Msh homeobox 2 (MSX2), transcription factor SP7 (SP7), alkaline phosphatase (ALP), dentin matrix acidic phosphoprotein 1 (DMP1), and dentin sialophosphoprotein (DSPP), were expressed, and MALAT1 was significantly overexpressed in DPCs 7 and 14 days after mineralization induction in a high-glucose microenvironment, but only TGFβ-1, BMP2, MSX2, SP7, ALP, and DSPP were significantly downregulated in DPCs after MALAT1 inhibition. MALAT1 may participate in the mineralization process of DPCs by regulating multiple factors (TGFβ-1, BMP2, MSX2, SP7, ALP, and DSPP).
Collapse
Affiliation(s)
- Xinzhu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenan Xu
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Xiaoyu Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyi Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Buling Wu
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
- *Correspondence: Buling Wu,
| |
Collapse
|
5
|
Akt-GSK3β-mPTP pathway regulates the mitochondrial dysfunction contributing to odontoblasts apoptosis induced by glucose oxidative stress. Cell Death Dis 2022; 8:168. [PMID: 35383148 PMCID: PMC8983683 DOI: 10.1038/s41420-022-00981-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Diabetes Mellitus can cause dental pulp cells apoptosis by oxidative stress, and affect the integrity and function of dental pulp tissue. Mitochondria are the main attack targets of oxidative stress and have a critical role in apoptosis. However, whether mitochondria are involved in dental pulp damage caused by diabetes mellitus remains unclear. This study aimed to investigate the role of mitochondria in the apoptosis of odontoblast-like cell line (mDPC6T) induced by glucose oxidative stress, and to explore its possible mechanism. We established an oxidative stress model in vitro using glucose oxidase/glucose to simulate the pathological state under diabetic conditions. We found that the opening of mitochondrial permeability transition pore (mPTP) contributed to the apoptosis of mDPC6T treated with glucose oxidase, as evidenced by enhanced mitochondrial reactive oxygen species (mtROS) and intracellular Ca2+ disorder, significantly reduced mitochondrial membrane potential (MMP) and ATP production. Antioxidant N-acetylcysteine (NAC) or Cyclosporine A (mPTP inhibitor) blocked the mPTP opening, which significantly attenuated mitochondrial dysfunction and apoptosis induced by glucose oxidative stress. In addition, we found that glucose oxidative stress stimulated mPTP opening may through inhibition of Akt-GSK3β pathway. This study provides a new insight into the mitochondrial mechanism underlying diabetes-associated odontoblast-like cell apoptosis, laying a foundation for the prevention and treatment of diabetes-associated pulp injury.
Collapse
|
6
|
Krunić J, Stojanović N, Đukić L, Roganović J, Popović B, Simić I, Stojić D. Clinical antibacterial effectiveness and biocompatibility of gaseous ozone after incomplete caries removal. Clin Oral Investig 2018; 23:785-792. [PMID: 29858659 DOI: 10.1007/s00784-018-2495-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/24/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To evaluate local effect of gaseous ozone on bacteria in deep carious lesions after incomplete caries removal, using chlorhexidine as control, and to investigate its effect on pulp vascular endothelial growth factor (VEGF), neuronal nitric oxide synthase (nNOS), and superoxide dismutase (SOD). MATERIALS AND METHODS Antibacterial effect was evaluated in 48 teeth with diagnosed deep carious lesion. After incomplete caries removal, teeth were randomly allocated into two groups regarding the cavity disinfectant used: ozone (open system) or 2% chlorhexidine. Dentin samples were analyzed for the presence of total bacteria and Lactobacillus spp. by real-time quantitative polymerase chain reaction. For evaluation of ozone effect on dental pulp, 38 intact permanent teeth indicated for pulp removal/tooth extraction were included. After cavity preparation, teeth were randomly allocated into two groups: ozone group and control group. VEGF/nNOS level and SOD activity in dental pulp were determined by enzyme-linked immunosorbent assay and spectrophotometric method, respectively. RESULTS Ozone application decreased number of total bacteria (p = 0.001) and Lactobacillus spp. (p < 0.001), similarly to chlorhexidine. The VEGF (p < 0.001) and nNOS (p = 0.012) levels in dental pulp after ozone application were higher, while SOD activity was lower (p = 0.001) comparing to those in control pulp. CONCLUSIONS Antibacterial effect of ozone on residual bacteria after incomplete caries removal was similar to that of 2% chlorhexidine. Effect of ozone on pulp VEGF, nNOS, and SOD indicated its biocompatibility. CLINICAL RELEVANCE Ozone appears as effective and biocompatible cavity disinfectant in treatment of deep carious lesions by incomplete caries removal technique.
Collapse
Affiliation(s)
- Jelena Krunić
- Department of Dental Pathology, Faculty of Medicine, University of East Sarajevo, Studentska 5, 73300, Foca, Bosnia and Herzegovina.
| | - Nikola Stojanović
- Department of Dental Pathology, Faculty of Medicine, University of East Sarajevo, Studentska 5, 73300, Foca, Bosnia and Herzegovina
| | - Ljiljana Đukić
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Roganović
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Branka Popović
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Simić
- Department of Oral Rehabilitation, Faculty of Medicine, University of East Sarajevo, Foca, Bosnia and Herzegovina
| | - Dragica Stojić
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Milosavljević A, DJukić L, Toljić B, Milašin J, DŽeletović B, Brković B, Roganović J. Melatonin levels in human diabetic dental pulp tissue and its effects on dental pulp cells under hyperglycaemic conditions. Int Endod J 2018; 51:1149-1158. [PMID: 29617040 DOI: 10.1111/iej.12934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/31/2018] [Indexed: 01/07/2023]
Abstract
AIM To investigate melatonin (MEL) levels in human dental pulp tissue (hDP) in type 2 diabetic (T2D) participants and the underlying molecular mechanisms of its effects in human dental pulp cells (hDPCs) under hyperglycaemia. METHODOLOGY The study included 16 healthy and 16 T2D participants who underwent vital pulp extirpation for hDP and four healthy participants undergoing third molar extraction for hDPCs analyses. MTT and NRU were used as tests for cytotoxicity. The pulp tissue levels of MEL, inducible NO synthase (iNOS) and superoxide dismutase (SOD) activity, as well as iNOS, histone acetyltransferase p300 (p300) and SOD activity levels in hDPCs incubated with MEL (0.1 and 1.0 mmol L-1 ) under normoglycaemia and hyperglycaemia were measured by enzyme-linked immunosorbent assay. Comparisons between the two groups were made by unpaired t-tests or Mann-Whitney test whilst the chi-square test was used for dichotomous variables. To compare more groups, the Kruskal-Wallis test with Dunn's multiple comparison was used, whilst Spearman correlation was used to assess association between two variables. RESULTS Melatonin was decreased (124.30 ± 21.6 vs. 240.0 ± 19.1 pg mL-1 , P < 0.01), whilst iNOS levels increased (0.92 ± 0.08 vs. 0.32 ± 0.09 ng mL-1 , P < 0.01) in hDP from T2D compared to nondiabetic participants. In hDPCs, MEL (0.1 and 1.0 mmol L-1 ) had no cytotoxicity. Incubation with 1.0 mmol L-1 of MEL (24 h) decreased hyperglycaemia-induced increases of iNOS (0.34 ± 0.01 ng mL-1 vs. 0.40 ± 0.01 ng mL-1 , P < 0.01) and p300 (11.59 ± 0.58 ng mL-1 vs. 16.12 ± 0.39 ng mL-1 , P < 0.01), and also, increased SOD activity (87.11 ± 3.10% vs. 68.56 ± 3.77%, P < 0.01) to the levels comparable to the normoglycaemic; iNOS and p300 protein expression levels showed strong positive correlation under hyperglycaemia (Spearman r = 0.8242, P < 0.001). CONCLUSION Type 2 diabetic participants had decreased MEL in hDP. At pharmacological concentrations, MEL is not cytotoxic for hDPCs and normalizes iNOS and SOD activity levels in hyperglyceamic hDPCs suggesting its antioxidant and protective effects in human dental pulp tissue under hyperglycaemia.
Collapse
Affiliation(s)
- A Milosavljević
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Lj DJukić
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - B Toljić
- Department of Physiology and Biochemistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - J Milašin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - B DŽeletović
- Department of Restorative Odontology and Endodontics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - B Brković
- Department of Oral Surgery, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - J Roganović
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Abstract
Summary
Diabetes mellitus is one of the most common chronic diseases which continue to increase in number and significance. It presents the third most prevalent condition among medically compromised patients referring for dental treatment. Diabetes mellitus has been defined as a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Hyperglycemia leads to widespread multisystem damage which has an effect on oral tissue. The present article summarizes current knowledge regarding the association between diabetes mellitus and oral and dental health.
Collapse
|
9
|
Ferreira LL, Gomes-Filho JE, Benetti F, Carminatti M, Ervolino E, Briso ALF, Cintra LTA. The effect of dental bleaching on pulpal tissue response in a diabetic animal model: a study of immunoregulatory cytokines. Int Endod J 2017; 51:347-356. [PMID: 28857196 DOI: 10.1111/iej.12852] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
Abstract
AIM To evaluate the influence of tooth bleaching on immunoregulatory cytokines production (IL-6, Tumour necrosis factor (TNF)-α and IL-17) in the pulp tissue of normoglycaemic and diabetic rats. METHODOLOGY Twenty-eight rats were divided into normoglycaemic and diabetic rats (n = 14). Diabetes mellitus (DM) was induced with a single dose of alloxan diluted in citrate buffer via intramuscular injection. After DM confirmation, all rats were sedated and tooth bleaching was performed using 35% hydrogen peroxide on the right maxillary molars for 30 min. Left molars were used as controls. Bleaching resulted in four hemimaxillae groups: normoglycaemic (N), N-bleached (NBle), diabetic (D) and D-bleached (DBle). After 2 and 30 days, rats were euthanized and hemimaxillae processed for analysis by haematoxylin and eosin and immunohistochemistry. Results within and between animals were submitted to Wilcoxon signed-rank and Mann-Whitney tests (P < 0.05). RESULTS At 2 days, the NBle group had mild, and the DBle had severe inflammatory infiltration in the pulpal tissue (P < 0.05). TNF-α and IL-6 cytokines were associated with increased immunolabelling in the bleached groups compared to nonbleached (P < 0.05). However, IL-17 had increased immunolabelling in the NBle compared to the N and DBle group (P < 0.05). At 30 days, reactionary dentine was observed in the coronal pulp of all bleached teeth and no inflammation was present (P > 0.05). TNF-α cytokines had increased immunolabelling in the DBle group compared to the D group (P < 0.05). However, for IL-6 and IL-17, no difference was observed in this period (P > 0.05). CONCLUSIONS Tooth bleaching increased IL-6 and TNF-α in the pulp tissue regardless of diabetes mellitus; however, diabetic rats had higher TNF-α levels for longer periods. Tooth bleaching influenced the increase in IL-17 in the early periods in normoglycaemic rats.
Collapse
Affiliation(s)
- L L Ferreira
- Departments of Endodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - J E Gomes-Filho
- Departments of Endodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - F Benetti
- Departments of Endodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - M Carminatti
- Departments of Endodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - E Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - A L F Briso
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - L T A Cintra
- Departments of Endodontics, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| |
Collapse
|
10
|
Cintra LTA, Ferreira LL, Benetti F, Gastélum AA, Gomes-Filho JE, Ervolino E, Briso ALF. The effect of dental bleaching on pulpal tissue response in a diabetic animal model. Int Endod J 2016; 50:790-798. [PMID: 27614116 DOI: 10.1111/iej.12692] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/07/2016] [Indexed: 02/06/2023]
Abstract
AIM To evaluate pulpal tissue response after dental bleaching in normal and alloxan-induced diabetic rats. METHODOLOGY Twenty-eight rats were divided into two groups of normoglycaemic and diabetic rats (n = 14). Diabetes mellitus (DM) was induced with alloxan. After DM confirmation, all rats were anaesthetized and dental bleaching was performed with 35% hydrogen peroxide (H2 O2 ) on the right maxillary molars for 30 min. Left molars were used as controls. Bleaching resulted in four hemimaxillae groups: normoglycaemic (N), N-bleached (NBle), diabetic (D) and D-bleached (DBle). After 2 or 30 days, the animals were euthanized and the hemimaxillae were removed, processed for histopathological analysis and stained with haematoxylin-eosin (HE), Masson's trichrome (MT) and picrosirius red (PSR). Results obtained within animals (normoglycaemic or diabetic rats) were submitted to Wilcoxon or paired t-tests, and between animal (normoglycaemic and diabetic rats), to Mann-Whitney test or t-tests. RESULTS At 2 days, the NBle group had a mild inflammatory infiltration in the pulpal tissue, whilst the DBle had severe inflammation or necrosis (P < 0.05). At 30 days, no inflammation was present. However, a significant difference in pulp chamber area reduction by reactionary dentine deposition was found between the NBle and DBle groups (P < 0.05). At 2 days, fewer immature collagen fibres and more mature collagen fibres were noted in the NBle, D and DBle groups; this was significantly different when compared to the N group (P < 0.05). At 30 days, significantly fewer immature collagen fibres and more mature collagen fibres were noted in NBle compared with DBle group (P < 0.05). CONCLUSIONS The inflammatory tissue response in rats' teeth after dental bleaching was greater in diabetic rats. Additionally, the increase in reactionary dentine deposition and mature collagen fibres observed in diabetic rats needs further evaluation to confirm the present results.
Collapse
Affiliation(s)
- L T A Cintra
- Departments of Endodontics, Araçatuba Dental School, Unesp - Univ Estadual Paulista, Araçatuba, SP, Brazil
| | - L L Ferreira
- Departments of Endodontics, Araçatuba Dental School, Unesp - Univ Estadual Paulista, Araçatuba, SP, Brazil
| | - F Benetti
- Departments of Endodontics, Araçatuba Dental School, Unesp - Univ Estadual Paulista, Araçatuba, SP, Brazil
| | - A A Gastélum
- Centro de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, México
| | - J E Gomes-Filho
- Departments of Endodontics, Araçatuba Dental School, Unesp - Univ Estadual Paulista, Araçatuba, SP, Brazil
| | - E Ervolino
- Department of Basic Science, Araçatuba Dental School, Unesp - Univ Estadual Paulista, Araçatuba, SP, Brazil
| | - A L F Briso
- Department of Restorative Dentistry, Araçatuba Dental School, Unesp - Univ Estadual Paulista, Araçatuba, SP, Brazil
| |
Collapse
|
11
|
Chung CJ, Kim E, Song M, Park JW, Shin SJ. Effects of two fast-setting calcium-silicate cements on cell viability and angiogenic factor release in human pulp-derived cells. Odontology 2015; 104:143-51. [DOI: 10.1007/s10266-015-0194-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/25/2014] [Indexed: 01/09/2023]
|
12
|
Limjeerajarus CN, Osathanon T, Manokawinchoke J, Pavasant P. Iloprost up-regulates vascular endothelial growth factor expression in human dental pulp cells in vitro and enhances pulpal blood flow in vivo. J Endod 2014; 40:925-30. [PMID: 24935537 DOI: 10.1016/j.joen.2013.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/08/2013] [Accepted: 10/18/2013] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Prostacyclin (PGI2) is a biomolecule capable of enhancing angiogenesis and cellular proliferation. METHODS We investigated the influence of a PGI2 analogue (iloprost) on dental pulp revascularization in vitro and in vivo by using human dental pulp cells (HDPCs) and a rat tooth injury model, respectively. Iloprost stimulated the human dental pulp cell mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor (PDGF) in a significant dose-dependent manner. This mRNA up-regulation was significantly inhibited by pretreatment with a PGI2 receptor antagonist and forskolin (a protein kinase A activator). In contrast, a protein kinase A inhibitor significantly enhanced the iloprost-induced mRNA expression of VEGF, FGF-2, and PDGF. Pretreatment with a fibroblast growth factor receptor inhibitor attenuated the VEGF, FGF-2, and PDGF mRNA expression, indicating opposing regulatory mechanisms. RESULTS The effect of iloprost on the dental pulp was investigated in vivo by using a rat molar pulp injury model. The iloprost-treated group exhibited a significant increase in pulpal blood flow at 72 hours compared with control. CONCLUSIONS The present study indicates that iloprost may be a candidate agent to promote neovascularization in dental pulp tissue, suggesting the potential clinical use of iloprost in vital pulp therapy.
Collapse
Affiliation(s)
- Chalida Nakalekha Limjeerajarus
- Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Thanaphum Osathanon
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Wolle CFB, Zollmann LA, Bairros PO, Etges A, Leite CE, Morrone FB, Campos MM. Outcome of periapical lesions in a rat model of type 2 diabetes: refractoriness to systemic antioxidant therapy. J Endod 2013; 39:643-7. [PMID: 23611383 DOI: 10.1016/j.joen.2012.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/13/2012] [Accepted: 12/30/2012] [Indexed: 02/06/2023]
Abstract
INTRODUCTION This study evaluated the development of periapical lesions in a rat model of type 2 diabetes and assessed the potential actions of the antioxidant agent tempol in this model. METHODS Male Wistar rats were used; they received tap water (N = 5) or a 20% glucose solution (N = 15) during a period of 9 weeks. At the sixth week, periapical lesions were induced on the first mandibular molars, and the animals were subdivided into 4 groups. The subgroup 1 was composed of nondiabetic rats orally receiving saline solution (10 mL/kg). Chronically glucose-fed rats were divided into the following subgroups: (2) saline-treated animals (10 mL/kg by oral route), and animals treated with tempol by gavage at doses of (3) 50 mg/kg or (4) 100 mg/kg. The body weight was monitored thoroughly. After 21 days of apical periodontitis induction, the animals were killed, and the mandibles were collected and submitted to radiographic and histologic analysis. The livers were collected to determine free radicals, and the blood plasma was used to measure insulin levels. RESULTS Type 2 diabetic rats displayed a significant decrease of body weight gain and a slight increase of insulin levels, which were allied to reduced levels of the antioxidant components catalase and reduced glutathione; these alterations were reversed by tempol. Concerning the periapical lesions, neither radiographic nor histologic analysis revealed any significant difference between control and type 2 diabetic rats. In diabetic rats, the apical periodontitis was refractory to tempol treatment. CONCLUSIONS The extent and cellularity of periapical lesions in glucose-fed type 2 diabetic rats were similar to those seen in control rats. Despite affecting other parameters related to diabetes, tempol failed to improve the outcome of endodontic lesions in type 2 diabetic animals.
Collapse
Affiliation(s)
- Carlos Frederico B Wolle
- Postgraduate Program of Dental College, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Partenon, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|