1
|
Meng X, Mao H, Wan M, Lu L, Chen Z, Zhang L. Mitochondrial homeostasis in odontoblast: Physiology, pathogenesis and targeting strategies. Life Sci 2024; 352:122797. [PMID: 38917871 DOI: 10.1016/j.lfs.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Caries and pulpitis remain a major global disease burden and affect the quality of life of patients. Odontoblasts are key players in the progression of caries and pulpitis, not only secreting and mineralizing to form dentin, but also acting as a wall of defense to initiate immune defenses. Mitochondrion is an information processor for numerous cellular activities, and dysregulation of mitochondrion homeostasis not only affects cellular metabolism but also triggers a wide range of diseases. Elucidating mitochondrial homeostasis in odontoblasts can help deepen scholars' understanding of odontoblast-associated diseases. Articles on mitochondrial homeostasis in odontoblasts were evaluated for information pertinent to include in this narrative review. This narrative review focused on understanding the complex interplay between mitochondrial homeostasis in odontoblasts under physiological and pathological conditions. Furthermore, mitochondria-centered therapeutic strategies (including mitochondrial base editing, targeting platforms, and mitochondrial transplantation) were emphasized by resolving key genes that regulate mitochondrial function. Mitochondria are involved in odontoblast differentiation and function, and act as mitochondrial danger-associated molecular patterns (mtDAMPs) to mediate odontoblast pathological progression. Novel mitochondria-centered therapeutic strategies are particularly attractive as emerging therapeutic approaches for the maintenance of mitochondrial homeostasis. It is expected to probe key events of odontoblast differentiation and advance the clinical resolution of dentin formation and mineralization disorders and odontoblast-related diseases.
Collapse
Affiliation(s)
- Xiang Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hanqing Mao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Minting Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Linxin Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| |
Collapse
|
2
|
Xie Z, Jiang W, Liu H, Chen L, Xuan C, Wang Z, Shi X, Lin Z, Gao X. Antimicrobial Peptide- and Dentin Matrix-Functionalized Hydrogel for Vital Pulp Therapy via Synergistic Bacteriostasis, Immunomodulation, and Dentinogenesis. Adv Healthc Mater 2024; 13:e2303709. [PMID: 38431770 DOI: 10.1002/adhm.202303709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The preservation of vital pulps is crucial for maintaining the physiological functions of teeth; however, vital pulp therapy (VPT) of pulpitis teeth remains a substantial challenge due to uncontrolled infection, excessive inflammation, and limited regenerative potential. Current pulp capping agents have restricted effects in the infectious and inflammatory microenvironment. To address this, a multifunctional hydrogel (TGH/DM) with antibacterial, immunomodulatory, and mineralization-promoting effects is designed. The antimicrobial peptide (AMP) and demineralized dentin matrix are incorporated into the hydrogel, achieving sustainable delivery of AMP and a cocktail of growth factors. In vitro results show that TGH/DM could kill endodontic microbiota, ameliorate inflammatory responses of human dental pulp stem cells (hDPSCs), and prompt odontogenic differentiation of inflammatory hDPSCs via activation of peroxisome proliferator-activated receptor gamma. In vivo results suggest that TGH/DM is capable of inducing M2 phenotype transformation of macrophages in mice and fostering the regeneration of the dentin-pulp complex in inflamed pulps of beagle dogs. Overall, this study first proposes the synergistic regulation of AMP and tissue-specific extracellular matrix for the treatment of pulpitis, and the advanced hydrogel provides a facile and effective way for VPT.
Collapse
Affiliation(s)
- Zhuo Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Wentao Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Hui Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Lingling Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Chengkai Xuan
- School of Biomedical Science and Engineering, National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhenxing Wang
- School of Biomedical Science and Engineering, National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xuetao Shi
- School of Biomedical Science and Engineering, National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| | - Xianling Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, P. R. China
| |
Collapse
|
3
|
Batista LAS, dos Reis-Prado AH, Chaves HGDS, de Arantes LC, Morgan LFSA, André CB, Suzuki TY, Benetti F. Can different agents reduce the damage caused by bleaching gel to pulp tissue? A systematic review of basic research. Restor Dent Endod 2023; 48:e39. [PMID: 38053785 PMCID: PMC10695728 DOI: 10.5395/rde.2023.48.e39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 12/07/2023] Open
Abstract
Objectives This study aimed to investigate the effectiveness of different topical/systemic agents in reducing the damage caused by bleaching gel to pulp tissue or cells. Materials and Methods Electronic searches were performed in July 2023. In vivo and in vitro studies evaluating the effects of different topical or systemic agents on pulp inflammation or cytotoxicity after exposure to bleaching agents were included. The risk of bias was assessed. Results Out of 1,112 articles, 27 were included. Nine animal studies evaluated remineralizing/anti-inflammatories agents in rat molars subjected to bleaching with 35%-38% hydrogen peroxide (HP). Five of these studies demonstrated a significant reduction in inflammation caused by HP when combined with bioglass or MI Paste Plus (GC America), or following KF-desensitizing or Otosporin treatment (n = 3). However, orally administered drugs did not reduce pulp inflammation (n = 4). Cytotoxicity (n = 17) was primarily assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on human dental pulp cells and mouse dental papilla Cell-23 cells. Certain substances, including sodium ascorbate, butein, manganese chloride, and peroxidase, were found to reduce cytotoxicity, particularly when applied prior to bleaching. The risk of bias was high in animal studies and low in laboratory studies. Conclusions Few in vivo studies have evaluated agents to reduce the damage caused by bleaching gel to pulp tissue. Within the limitations of these studies, it was found that topical agents were effective in reducing pulp inflammation in animals and cytotoxicity. Further analyses with human pulp are required to substantiate these findings. Trial Registration PROSPERO Identifier: CRD42022337192.
Collapse
Affiliation(s)
- Letícia Aparecida Silva Batista
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| | | | | | - Lara Cancella de Arantes
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| | | | - Carolina Bosso André
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| | - Thaís Yumi Suzuki
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| | - Francine Benetti
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Luo N, Deng YW, Wen J, Xu XC, Jiang RX, Zhan JY, Zhang Y, Lu BQ, Chen F, Chen X. Wnt3a-Loaded Hydroxyapatite Nanowire@Mesoporous Silica Core-Shell Nanocomposite Promotes the Regeneration of Dentin-Pulp Complex via Angiogenesis, Oxidative Stress Resistance, and Odontogenic Induction of Stem Cells. Adv Healthc Mater 2023; 12:e2300229. [PMID: 37186211 DOI: 10.1002/adhm.202300229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Pulp exposure often leads to pulp necrosis, root fractures, and ultimate tooth loss. The repair of the exposure site with pulp capping treatment is of great significance to preserving pulp vitality, but its efficacy is impaired by the low bioactivity of capping materials and cell injuries from the local accumulation of oxidative stress. This study develops a Wnt3a-loaded hydroxyapatite nanowire@mesoporous silica (Wnt3a-HANW@MpSi) core-shell nanocomposite for pulp capping treatments. The ultralong and highly flexible hydroxyapatite nanowires provide the framework for the composites, and the mesoporous silica shell endows the composite with the capacity of efficiently loading/releasing Wnt3a and Si ions. Under in vitro investigation, Wnt3a-HANW@MpSi not only promotes the oxidative stress resistance of dental pulp stem cells (DPSCs), enhances their migration and odontogenic differentiation, but also exhibits superior properties of angiogenesis in vitro. Revealed by the transcriptome analysis, the underlying mechanisms of odontogenic enhancement by Wnt3a-HANW@MpSi are closely related to multiple biological processes and signaling pathways toward pulp/dentin regeneration. Furthermore, an animal model of subcutaneous transplantation demonstrates the significant reinforcement of the formation of dentin-pulp complex-like tissues and blood vessels by Wnt3a-HANW@MpSi in vivo. These results indicate the promising potential of Wnt3a-HANW@MpSi in treatments of dental pulp exposure.
Collapse
Affiliation(s)
- Nan Luo
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Yu-Wei Deng
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Jin Wen
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Xiao-Chen Xu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Rui-Xue Jiang
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Jing-Yu Zhan
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Yu Zhang
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Bing-Qiang Lu
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Feng Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Xi Chen
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| |
Collapse
|
5
|
Watanabe M, Okamoto M, Komichi S, Huang H, Matsumoto S, Moriyama K, Ohshima J, Abe S, Morita M, Ali M, Takebe K, Kozaki I, Fujimoto A, Kanie K, Kato R, Uto K, Ebara M, Yamawaki-Ogata A, Narita Y, Takahashi Y, Hayashi M. Novel Functional Peptide for Next-Generation Vital Pulp Therapy. J Dent Res 2023; 102:322-330. [PMID: 36415061 PMCID: PMC9989233 DOI: 10.1177/00220345221135766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although vital pulp therapy should be performed by promoting the wound-healing capacity of dental pulp, existing pulp-capping materials were not developed with a focus on the pulpal repair process. In previous investigations of wound healing in dental pulp, we found that organic dentin matrix components (DMCs) were degraded by matrix metalloproteinase-20, and DMC degradation products containing protein S100A7 (S100A7) and protein S100A8 (S100A8) promoted the pulpal wound-healing process. However, the direct use of recombinant proteins as pulp-capping materials may cause clinical problems or lead to high medical costs. Thus, we hypothesized that functional peptides derived from recombinant proteins could solve the problems associated with direct use of such proteins. In this study, we identified functional peptides derived from the protein S100 family and investigated their effects on dental pulp tissue. We first performed amino acid sequence alignments of protein S100 family members from several mammalian sources, then identified candidate peptides. Next, we used a peptide array method that involved human dental pulp stem cells (hDPSCs) to evaluate the mineralization-inducing ability of each peptide. Our results supported the selection of 4 candidate functional peptides derived from proteins S100A8 and S100A9. Direct pulp-capping experiments in a rat model demonstrated that 1 S100A8-derived peptide induced greater tertiary dentin formation compared with the other peptides. To investigate the mechanism underlying this induction effect, we performed liquid chromatography-tandem mass spectrometry analysis using hDPSCs and the S100A8-derived peptide; the results suggested that this peptide promotes tertiary dentin formation by inhibiting inflammatory responses. In addition, this peptide was located in a hairpin region on the surface of S100A8 and could function by direct interaction with other molecules. In summary, this study demonstrated that a S100A8-derived functional peptide promoted wound healing in dental pulp; our findings provide insights for the development of next-generation biological vital pulp therapies.
Collapse
Affiliation(s)
- M Watanabe
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Okamoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Komichi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - H Huang
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Matsumoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - K Moriyama
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - J Ohshima
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Abe
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Morita
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Ali
- Department of Restorative Dentistry, Faculty of Dentistry, University of Khartoum, Khartoum, Sudan
| | - K Takebe
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - I Kozaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Aichi, Japan
| | - A Fujimoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
| | - K Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan.,Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Hiroshima, Japan
| | - R Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
| | - K Uto
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - M Ebara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - A Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Y Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Y Takahashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
6
|
Jin J, Mangal U, Seo JY, Kim JY, Ryu JH, Lee YH, Lugtu C, Hwang G, Cha JY, Lee KJ, Yu HS, Kim KM, Jang S, Kwon JS, Choi SH. Cerium oxide nanozymes confer a cytoprotective and bio-friendly surface micro-environment to methacrylate based oro-facial prostheses. Biomaterials 2023; 296:122063. [PMID: 36848780 DOI: 10.1016/j.biomaterials.2023.122063] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Poly-(methyl methacrylate) (PMMA) is the preferred biomaterial for orofacial prostheses used for the rehabilitation of naso-palatal defects. However, conventional PMMA has limitations determined by the complexity of the local microbiota and the friability of oral mucosa adjacent to these defects. Our purpose was to develop a new type of PMMA, i-PMMA, with good biocompatibility and better biological effects such as higher resistance to microbial adhesion of multiple species and enhanced antioxidant effect. The addition of cerium oxide nanoparticles to PMMA using a mesoporous nano-silica carrier and polybetaine conditioning, resulted in an increased release of cerium ions and enzyme mimetic activity, without tangible loss of mechanical properties. Ex vivo experiments confirmed these observations. In stressed human gingival fibroblasts, i-PMMA reduced the levels of reactive oxygen species and increased the expression of homeostasis-related proteins (PPARg, ATG5, LCI/III). Furthermore, i-PMMA increased the levels of expression of superoxide dismutase and mitogen-activated protein kinases (ERK and Akt), and cellular migration. Lastly, we demonstrated the biosafety of i-PMMA using two in vivo models: skin sensitization assay and oral mucosa irritation test, respectively. Therefore, i-PMMA offers a cytoprotective interface that prevents microbial adhesion and attenuates oxidative stress, thus supporting physiological recovery of the oral mucosa.
Collapse
Affiliation(s)
- Jie Jin
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young-Hee Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, 54907, Republic of Korea
| | - Cerjay Lugtu
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyung-Seog Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, 54907, Republic of Korea.
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Shirawachi S, Takeda K, Naruse T, Takahasi Y, Nakanishi J, Shindo S, Shiba H. Oxidative stress impairs the calcification ability of human dental pulp cells. BMC Oral Health 2022; 22:437. [PMID: 36192671 PMCID: PMC9531526 DOI: 10.1186/s12903-022-02467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background The relationship between internal root resorption and oxidative stress has not yet been reported. This study aimed to add molecular insight into internal root resorption. The present study was conducted to investigate the effect of hydrogen peroxide (H2O2) as an inducer of oxidative stress on the calcification ability of human dental pulp cells (hDPCs) and the involvement of inositol 1, 4, 5-trisphosphate (IP3). Material and methods hDPCs (Lonza, Basel, Switzerland) were exposed to H2O2. Cell viability and reactive oxygen species (ROS) production were then evaluated. To investigate the effect of H2O2 on the calcification ability of hDPCs, real-time PCR for alkaline phosphatase (ALP) mRNA expression, ALP staining, and Alizarin red staining were performed. Data were compared with those of hDPCs pretreated with 2-aminoethyldiphenylborate (2-APB), which is an IP3 receptor inhibitor. Results H2O2 at concentrations above 250 µM significantly reduced cell viability (P < 0.01). More ROS production occurred in 100 µM H2O2-treated hDPCs than in control cells (P < 0.01). 2-APB significantly decreased the production (P < 0.05). H2O2-treated hDPCs showed significant reductions in ALP mRNA expression (P < 0.01), ALP activity (P < 0.01), and mineralized nodule deposition compared with negative control cells (P < 0.01). 2-APB significantly inhibited these reductions (P < 0.01, P < 0.05 and P < 0.01, respectively). Data are representative of three independent experiments with three replicates for each treatment and values are expressed as means ± SD. Conclusion To the best of our knowledge, this is the first study documenting the involvement of IP3 signaling in the calcification ability of human dental pulp cells impaired by H2O2.
Collapse
Affiliation(s)
- Satomi Shirawachi
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Katsuhiro Takeda
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.
| | - Tomoya Naruse
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Yohei Takahasi
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Jun Nakanishi
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Satoru Shindo
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| |
Collapse
|
8
|
Abstract
The development and repair of dentin are strictly regulated by hundreds of genes. Abnormal dentin development is directly caused by gene mutations and dysregulation. Understanding and mastering this signal network is of great significance to the study of tooth development, tissue regeneration, aging, and repair and the treatment of dental diseases. It is necessary to understand the formation and repair mechanism of dentin in order to better treat the dentin lesions caused by various abnormal properties, whether it is to explore the reasons for the formation of dentin defects or to develop clinical drugs to strengthen the method of repairing dentin. Molecular biology of genes related to dentin development and repair are the most important basis for future research.
Collapse
Affiliation(s)
- Shuang Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China.,Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Han Xie
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shuai Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Xiaoling Wei
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China.,Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
9
|
Effects of rice fermented extracts, "Sake Lees", on the functional activity of odontoblast-like cells (KN-3 cells). Odontology 2021; 110:254-261. [PMID: 34498157 DOI: 10.1007/s10266-021-00654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
This study was designed to investigate the effects of Sake Lees extracts (SLE, Sake Kasu) on the functional activity of odontoblastic cells and tooth pulp of the rats. For in vitro studies, a rat clonal odontoblast-like cell line, KN-3 cells were cultured. SLE significantly decreased KN-3 cell proliferation, but showed no significant cytotoxicity. SLE effects on several protein productions of KN-3 cells were compared with PBS. SLE and PBS increased alkaline phosphatase (ALP), dentin sialoprotein (DSP), and osterix in a day-course dependent manner, while SLE increased the induction of ALP on day 9-21 and DSP on day 15-21. SLE also increased Runx2 expression on day 3 and 9 compared to PBS. Alizarin Red stainings revealed that SLE showed a subtle increase in mineralization of KN-3 cells on day 15 and 21. A histological investigation was conducted to assess if SLE induced reparative dentin formation after direct capping at the exposed tooth pulp in rats, suggesting that SLE could increase the reparative dentin formation more than PBS. These findings suggest that Sake Lees could have functional roles in the alterations of odontoblastic activity, which might influence the physiology of the tooth pulp.
Collapse
|
10
|
Reis-Prado AHD, Grossi IR, Chaves HGDS, André CB, Morgan LFDSA, Briso ALF, Cintra LTA, Benetti F. Influence of Hydrogen Peroxide on Mineralization in Dental Pulp Cells: A Systematic Review. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.689537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Dental bleaching agents show the ability to permeate through dental hard tissues, which may lead to pulp tissue changes. This systematic review (PROSPERO register: CRD42020213767) is aimed at understanding the effects of bleaching agents on the process of mineralization of the pulp tissue.Methods: Only in vitro studies evaluating the influence of hydrogen peroxide (HP) on mineralization in dental pulp cells were included. Studies without a non-bleached control group or cells after co-treatment with a bleaching agent other than HP and/or carbamide peroxide were excluded. The primary outcomes evaluated were alkaline phosphatase (ALP) activity and mineralized nodule deposition. The mineralization markers analysis in dental pulp cells and the cell viability were considered secondary outcomes. Two independent authors conducted a systematic search (PubMed/MEDLINE, Scopus, Embase, Cochrane Library, and OpenGrey until January 2021) with no language restrictions and performed data extraction. The quality assessment was appraised according to a modified Joanna Briggs Institute critical appraisal checklist.Results: The search resulted in 473 studies, and 11 were considered eligible. Overall, a reduction in the process of mineralization was observed among pulp cells after bleaching. A reduction in the ALP activity was reported in the mostly bleached groups using different protocols and analysis periods of nine studies. Regarding mineralized nodule deposition, 6 studies reported a significant reduction from 7 to 21 days among bleached groups. Of those three studies that investigated other mineralization markers, two found a reduction in the expression of dentin matrix acidic phosphoprotein (DMP)-1, dentin sialophosphoprotein (DSPP), and matrix extracellular phosphoglycoprotein (MEPE) among some bleaching gel concentrations. In contrast, one study showed a greater expression of osteopontin (OPN) and osteocalcin (OCN) in 100 μmol/L HP after 5 or 10 min of exposure, and another study showed significant induction of DSPP in concentrations of up to 0.5 mmol/L HP.Conclusion: Especially, high concentrations of bleaching gel reduce the potential of mineralization in pulp cells in in vitro studies; however, different HP concentrations, bleaching protocols, and analysis periods can influence this outcome.
Collapse
|
11
|
PER2-mediated ameloblast differentiation via PPARγ/AKT1/β-catenin axis. Int J Oral Sci 2021; 13:16. [PMID: 34011974 PMCID: PMC8134554 DOI: 10.1038/s41368-021-00123-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 01/11/2023] Open
Abstract
Circadian rhythm is involved in the development and diseases of many tissues. However, as an essential environmental regulating factor, its effect on amelogenesis has not been fully elucidated. The present study aims to investigate the correlation between circadian rhythm and ameloblast differentiation and to explore the mechanism by which circadian genes regulate ameloblast differentiation. Circadian disruption models were constructed in mice for in vivo experiments. An ameloblast-lineage cell (ALC) line was used for in vitro studies. As essential molecules of the circadian system, Bmal1 and Per2 exhibited circadian expression in ALCs. Circadian disruption mice showed reduced amelogenin (AMELX) expression and enamel matrix secretion and downregulated expression of BMAL1, PER2, PPARγ, phosphorylated AKT1 and β-catenin, cytokeratin-14 and F-actin in ameloblasts. According to previous findings and our study, BMAL1 positively regulated PER2. Therefore, the present study focused on PER2-mediated ameloblast differentiation and enamel formation. Per2 knockdown decreased the expression of AMELX, PPARγ, phosphorylated AKT1 and β-catenin, promoted nuclear β-catenin accumulation, inhibited mineralization and altered the subcellular localization of E-cadherin in ALCs. Overexpression of PPARγ partially reversed the above results in Per2-knockdown ALCs. Furthermore, in in vivo experiments, the length of incisor eruption was significantly decreased in the circadian disturbance group compared to that in the control group, which was rescued by using a PPARγ agonist in circadian disturbance mice. In conclusion, through regulation of the PPARγ/AKT1/β-catenin signalling axis, PER2 played roles in amelogenin expression, cell junctions and arrangement, enamel matrix secretion and mineralization during ameloblast differentiation, which exert effects on enamel formation.
Collapse
|
12
|
Maeda H. Aging and Senescence of Dental Pulp and Hard Tissues of the Tooth. Front Cell Dev Biol 2020; 8:605996. [PMID: 33330507 PMCID: PMC7734349 DOI: 10.3389/fcell.2020.605996] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to consume a meal using one's own teeth influences an individual's quality of life. In today's global aging society, studying the biological changes in aging teeth is important to address this issue. A tooth includes three hard tissues (enamel, dentin, and cementum) and a soft tissue (dental pulp). With advancing age, these tissues become senescent; each tissue exhibits a unique senescent pattern. This review discusses the structural alterations of hard tissues, as well as the molecular and physiological changes in dental pulp cells and dental pulp stem cells during human aging. The significance of senescence in these cells remains unclear. Thus, there is a need to define the regulatory mechanisms of aging and senescence in these cells to aid in preservation of dental health.
Collapse
Affiliation(s)
- Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Kyushu University, Fukuoka, Japan.,Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
13
|
Kim JE, Kim TG, Lee YH, Yi HK. Phelligridin D maintains the function of periodontal ligament cells through autophagy in glucose-induced oxidative stress. J Periodontal Implant Sci 2020; 50:291-302. [PMID: 33124207 PMCID: PMC7606896 DOI: 10.5051/jpis.1903560178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 05/19/2020] [Accepted: 06/24/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose The objective of this study was to investigate whether phelligridin D could reduce glucose-induced oxidative stress, attenuate the resulting inflammatory response, and restore the function of human periodontal ligament cells (HPDLCs). Methods Primary HPDLCs were isolated from healthy human teeth and cultured. To investigate the effect of phelligridin D on glucose-induced oxidative stress, HPDLCs were treated with phelligridin D, various concentrations of glucose, and glucose oxidase. Glucose-induced oxidative stress, inflammatory molecules, osteoblast differentiation, and mineralization of the HPDLCs were measured by hydrogen peroxide (H2O2) generation, cellular viability, alkaline phosphatase (ALP) activity, alizarin red staining, and western blot analyses. Results Glucose-induced oxidative stress led to increased production of H2O2, with negative impacts on cellular viability, ALP activity, and calcium deposition in HPDLCs. Furthermore, HPDLCs under glucose-induced oxidative stress showed induction of inflammatory molecules (intercellular adhesion molecule-1, vascular cell adhesion protein-1, tumor necrosis factor-alpha, interleukin-1-beta) and disturbances of osteogenic differentiation (bone morphogenetic protein-2, and -7, runt-related transcription factor-2), cementogenesis (cementum protein-1), and autophagy-related molecules (autophagy related 5, light chain 3 I/II, beclin-1). Phelligridin D restored all these molecules and maintained the function of HPDLCs even under glucose-induced oxidative stress. Conclusions This study suggests that phelligridin D reduces the inflammation that results from glucose-induced oxidative stress and restores the function of HPDLCs (e.g., osteoblast differentiation) by upregulating autophagy.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju, Korea
| | - Tae Gun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju, Korea
| | - Young Hee Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju, Korea
| | - Ho Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju, Korea.
| |
Collapse
|
14
|
de Oliveira Duque CC, Soares DG, Briso ALF, Ortecho-Zuta U, de Oliveira Ribeiro RA, Hebling J, de Souza Costa CA. Influence of Tooth Pigmentation on H2O2 Diffusion and Its Cytotoxicity After In-office Tooth Bleaching. Oper Dent 2020; 45:632-642. [DOI: 10.2341/19-013-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 11/23/2022]
Abstract
Clinical Relevance
Pigments in tooth structures affect the diffusion of H2O2 through enamel and dentin. The bleaching methodology can be impacted.
SUMMARY
Objective: The aim of this study was to evaluate the influence of the presence of pigments in tooth structures on the trans-enamel and trans-dentin diffusion of hydrogen peroxide (H2O2) and its cytotoxicity after carrying out an in-office bleaching therapy.
Methods and Materials: A bleaching gel with 35% H2O2 was applied for 45 minutes (three times for 15 minutes) on enamel and dentin discs (n=6), either previously submitted to the intrinsic pigmentation protocol with a concentrated solution of black tea, or not, defining the following groups: G1, unbleached untreated discs (control 1); G2, unbleached pigmented discs (control 2); G3, bleached untreated discs; G4, bleached pigmented discs. The discs were adapted to artificial pulp chambers, which were placed in wells of 24-well plates containing 1 mL culture medium (Dulbecco’s modified Eagle’s medium [DMEM]). After applying the bleaching gel on enamel, the extracts (DMEM + components of bleaching gel that diffused through the discs) were collected and then applied on the cultured MDPC-23 odontoblast-like cells. Cell viability (methyl tetrazolium assay and Live & Dead, Calcein AM, and ethidium homodimer-1 [EthD-1] probes), the amount of H2O2 that diffused through enamel and dentin (leuco-crystal violet product), and the H2O2-mediated oxidative cell stress (SOx) and components of degradation were assessed (analysis of variance/Tukey; α=0.05).
Results: There was no significant difference between the groups G1 and G2 for all the parameters tested (p>0.05). Reduction in the trans-enamel and trans-dentin diffusion of H2O2 occurred for G4 in comparison with G3. Significantly lower cell viability associated with greater oxidative stress was observed for G3 (p<0.05). Therefore, in-office tooth bleaching therapy performed in pigmented samples caused lower cytotoxic effects compared with untreated samples submitted to the same esthetic procedure (p<0.05).
Conclusion: According to the methodology used in this investigation, the authors concluded that the presence of pigments in hard tooth structures decreases the trans-enamel and trans-dentin diffusion of H2O2 and the toxicity to pulp cells of an in-office bleaching gel with 35% H2O2.
Collapse
|
15
|
Cbfα1 hinders autophagy by DSPP upregulation in odontoblast differentiation. Int J Biochem Cell Biol 2019; 115:105578. [DOI: 10.1016/j.biocel.2019.105578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/28/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
|
16
|
Kim JS, Takanche JS, Kim JE, Jeong SH, Han SH, Yi HK. Schisandra chinensis extract ameliorates age-related muscle wasting and bone loss in ovariectomized rats. Phytother Res 2019; 33:1865-1877. [PMID: 31074579 DOI: 10.1002/ptr.6375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022]
Abstract
Exercise and healthy diet consumption support healthy aging. Schisandra chinensis (Turcz.) also known as "Baill." has anti-inflammatory and antioxidant properties. However, the role of S. chinensis as an antiaging compound has yet to be demonstrated. This study elucidated the antiaging effect of S. chinensis ethanol-hexane extract (C1) and the effect of C1 treatment on muscle and bone following physical exercise in ovariectomized (OVX) rats. RAW 264.7, human diploid fibroblasts (HDFs), C2C12 myoblasts, bone marrow macrophages, and MC3T3-E1 cells were used for in vitro, and muscle and bone of OVX rats were used for in vivo study to demonstrate the effect of C1. The C1 significantly inhibited the expression of inflammatory molecules, β-galactosidase activity, and improved antioxidant activity via down-regulation of reactive oxygen species in RAW 264.7 and aged HDF cells. The C1 with exercise improved muscle regeneration in skeletal muscle of OVX rats by promoting mitochondrial biogenesis and autophagy. C1 induced osteoblast differentiation, and C1 + exercise modulated the bone formation and bone resorption in OVX rats. C1 exhibited anti-inflammatory, antioxidant, myogenic, and osteogenic effects. C1 with exercise improved age-related muscle wasting and bone loss. Therefore, S. chinensis may be a potential prevent agent for age-related diseases such as sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Jeong-Seok Kim
- Department of Physical Education, College of Education, Jeonju, South Korea.,Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Jyoti Shrestha Takanche
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Ji-Eun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Seon-Hwa Jeong
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Sin-Hee Han
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, South Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
17
|
Kim JE, Takanche JS, Kim JS, Lee MH, Jeon JG, Park IS, Yi HK. Phelligridin D-loaded oral nanotube titanium implant enhances osseointegration and prevents osteolysis in rat mandible. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:397-407. [DOI: 10.1080/21691401.2018.1458033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ji-Eun Kim
- Departments of Oral Biochemistry, Chonbuk National University, Jeonju, South Korea
| | | | - Jeong-Seok Kim
- Departments of Oral Biochemistry, Chonbuk National University, Jeonju, South Korea
| | - Min-Ho Lee
- Departments of Dental Materials, Chonbuk National University, Jeonju, South Korea
| | - Jae-Gyu Jeon
- Departments of Preventive Dentistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Il-Song Park
- Division of Advanced Materials Engineering, Chonbuk National University, Jeonju, South Korea
| | - Ho-Keun Yi
- Departments of Oral Biochemistry, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
18
|
Soares DG, Zhang Z, Mohamed F, Eyster TW, de Souza Costa CA, Ma PX. Simvastatin and nanofibrous poly(l-lactic acid) scaffolds to promote the odontogenic potential of dental pulp cells in an inflammatory environment. Acta Biomater 2018; 68:190-203. [PMID: 29294374 DOI: 10.1016/j.actbio.2017.12.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022]
Abstract
In this study, we investigated the anti-inflammatory, odontogenic and pro-angiogenic effects of integrating simvastatin and nanofibrous poly(l-lactic acid) (NF-PLLA) scaffolds on dental pulp cells (DPCs). Highly porous NF-PLLA scaffolds that mimic the nanofibrous architecture of extracellular matrix were first fabricated, then seeded with human DPCs and cultured with 0.1 μM simvastatin and/or 10 μg/mL pro-inflammatory stimulator lipopolysaccharide (LPS). The gene expression of pro-inflammatory mediators (TNF-α, IL-1β and MMP-9 mRNA) and odontoblastic markers (ALP activity, calcium content, DSPP, DMP-1 and BMP-2 mRNA) were quantified after long-term culture in vitro. In addition, we evaluated the scaffold's pro-angiogenic potential after 24 h of in vitro co-culture with endothelial cells. Finally, we assessed the combined effects of simvastatin and NF-PLLA scaffolds in vivo using a subcutaneous implantation mouse model. The in vitro studies demonstrated that, compared with the DPC/NF-PLLA scaffold constructs cultured only with pro-inflammatory stimulator LPS, adding simvastatin significantly repress the expression of pro-inflammatory mediators. Treating LPS+ DPC/NF-PLLA constructs with simvastatin also reverted the negative effects of LPS on expression of odontoblastic markers in vitro and in vivo. Western blot analysis demonstrated that these effects were related to a reduction in NFkBp65 phosphorylation and up-regulation of PPARγ expression, as well as to increased phosphorylation of pERK1/2 and pSmad1, mediated by simvastatin on LPS-stimulated DPCs. The DPC/NF-PLLA constructs treated with LPS/simvastatin also led to an increase in vessel-like structures, correlated with increased VEGF expression in both DPSCs and endothelial cells. Therefore, the combination of low dosage simvastatin and NF-PLLA scaffolds appears to be a promising strategy for dentin regeneration with inflamed dental pulp tissue, by minimizing the inflammatory reaction and increasing the regenerative potential of resident stem cells. STATEMENT OF SIGNIFICANCE The regeneration potential of stem cells is dependent on their microenvironment. In this study, we investigated the effect of the microenvironment of dental pulp stem cells (DPSCs), including 3D structure of a macroporous and nanofibrous scaffold, the inflammatory stimulus lipopolysaccharide (LPS) and a biological molecule simvastatin, on their regenerative potential of mineralized dentin tissue. The results demonstrated that LPS upregulated inflammatory mediators and suppressed the odontogenic potential of DPSCs. Known as a lipid-lowing agent, simvastatin was excitingly found to repress the expression of pro-inflammatory mediators, up-regulate odontoblastic markers, and exert a pro-angiogenic effect on endothelial cells, resulting in enhanced vascularization and mineralized dentin tissue regeneration in a biomimetic 3D tissue engineering scaffold. This novel finding is significant for the fields of stem cells, inflammation and dental tissue regeneration.
Collapse
|
19
|
Bykova NI, Sirak SV, Kobylkina TL, Odolsky AV, Bykov IM, Arutyunov AV. [Optimization of reparative dentinogenesis in experimental osteoporosis]. STOMATOLOGII︠A︡ 2017; 96:4-8. [PMID: 29260756 DOI: 10.17116/stomat20179664-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to assess histochemical changes of the dental pulp in direct pulp capping/experimental osteoporosis animal model. The study was performed on 20 two-year sheep with simulated acute pulpitis divided in 2 groups: main (15 animals/120 teeth) and control (5 animals/40 teeth). Direct pulp capping in the main group included tissue-engineered structure composed of a hydrogel PuraMatrix/3DM with ectomesenchymal stem cells immobilized on collagen sponge. In the control group collagen sponges with hydrocortisone furatsilin, chondroitin sulfate, аnaesthesinum were used for the same purpose. Dentinal bridge formation was much slower in controls than in the main group. Developed tissue-engineered design optimizes each stage of the healing process by protecting the pulp from infection, reduction of exudation, hemostatic effect and in long term contributes to a significant acceleration of the formation of the dentinal bridge.
Collapse
Affiliation(s)
- N I Bykova
- Kuban State Medical University, Krasnodar, Russia
| | - S V Sirak
- Stavropol State Medical University, Stavropol, Russia
| | - T L Kobylkina
- Stavropol State Medical University, Stavropol, Russia
| | - A V Odolsky
- Stavropol State Medical University, Stavropol, Russia
| | - I M Bykov
- Kuban State Medical University, Krasnodar, Russia
| | | |
Collapse
|
20
|
Takanche JS, Lee YH, Kim JS, Kim JE, Han SH, Lee SW, Yi HK. Anti-inflammatory and antioxidant properties of Schisandrin C promote mitochondrial biogenesis in human dental pulp cells. Int Endod J 2017; 51:438-447. [PMID: 28898431 DOI: 10.1111/iej.12861] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/07/2017] [Indexed: 01/30/2023]
Abstract
AIM To examine the properties of Schisandrin C as an anti-inflammatory and antioxidant compound, and whether its characteristics promote mitochondrial biogenesis in human dental pulp cells (HDPCs). METHODOLOGY HDPCs were extracted from fresh third molars and cultured for experiments. Reactive oxidative stress (ROS) and nitric oxide (NO) formation were analysed by a Muse cell analyser. Western blotting and gelatin zymography were used to identify the presence of antioxidants, as well as anti-inflammatory and mitochondrial biogenesis with specific antibody. An unpaired Student's t-test was used for statistical analysis. RESULTS Schisandrin C inhibited lipopolysaccharide-stimulated inflammatory molecules; interleukin 1 beta, tumour necrosis factor alpha, intracellular adhesion molecule-1, vascular cell adhesion molecule-1, matrix metalloproteinase-2 and -9, NO production, ROS formation, nuclear factor kappa B translocation (P < 0.05) through the mitogen-activated protein kinase pathway. Schisandrin C increased the expression of superoxide dismutase enzymes as well as haem oxygenase-1 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha through the phosphorylated-protein kinase B (p-Akt) and nuclear factor erythroid 2-related factor-2 pathways (P < 0.05). The anti-inflammatory and antioxidant properties of Schisandrin C promoted mitochondrial biogenesis. CONCLUSIONS Schisandrin C has the potential to reduce inflammation and oxidation and to promote mitochondrial biogenesis. Therefore, Schisandrin C may be considered for use as an anti-inflammatory compound for oral inflammation through mitochondrial biogenesis.
Collapse
Affiliation(s)
- J S Takanche
- BK21 Program, Department of Oral Biochemistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Y-H Lee
- BK21 Program, Department of Oral Biochemistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - J-S Kim
- BK21 Program, Department of Oral Biochemistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - J-E Kim
- BK21 Program, Department of Oral Biochemistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - S-H Han
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Eumsung, Korea
| | - S-W Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Eumsung, Korea
| | - H-K Yi
- BK21 Program, Department of Oral Biochemistry and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
21
|
Nanoparticle mediated PPARγ gene delivery on dental implants improves osseointegration via mitochondrial biogenesis in diabetes mellitus rat model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1821-1832. [DOI: 10.1016/j.nano.2017.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/15/2017] [Accepted: 02/25/2017] [Indexed: 01/28/2023]
|
22
|
Influence of enamel/dentin thickness on the toxic and esthetic effects of experimental in-office bleaching protocols. Clin Oral Investig 2017; 21:2509-2520. [PMID: 28091877 DOI: 10.1007/s00784-017-2049-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVES This paper aims to assess the whitening effectiveness and toxicity of tooth-bleaching protocols applied to enamel/dentin disks simulating mandibular incisors (ICs) and premolars (PMs). MATERIALS AND METHODS A 10% hydrogen peroxide (H2O2) gel was applied for 3 × 15, 1 × 15, or 1 × 5 min to enamel/dentin disks simulating mandibular ICs and PMs, and the trans-enamel and trans-dentinal diffusion products were applied to human dental pulp cells (1 h). Professional therapy (35% H2O2-3 × 15 min) was used as positive control, and non-bleached samples were used as negative control. Cell viability and morphology, oxidative stress generation, and odontoblastic marker expression were assessed. The H2O2 diffusion and enamel color change (ΔE) were also analyzed. RESULTS The 10% H2O2 gel induced significant cell viability reduction only when applied 3 × 15 min, with the intensity of oxidative stress and down-regulation of odontoblastic markers being higher in the IC group. The other experimental bleaching protocols caused slight alterations regarding the cell parameters evaluated, with intensity being related to enamel/dentin thickness. These effects were also correlated with higher H2O2 diffusion in the IC group. ΔE values similar as positive control were found for the 10% 3 × 15 and 1 × 15 protocols on IC group, after 4 and 6 sessions. CONCLUSION Application of a 10% H2O2 bleaching gel for 15 or 45 min to thin dental substrate significantly minimizes cell toxicity in comparison with highly concentrated gels associated with similar esthetic outcomes by increasing the number of bleaching sessions. CLINICAL RELEVANCE Bleaching gels with 10% H2O2 applied in small teeth for short periods may be an interesting alternative to obtain whitening effectiveness without causing toxicity to pulp cells, which may be able to reduce the tooth hypersensitivity claimed by patients.
Collapse
|
23
|
PPARγ regulates inflammatory reaction by inhibiting the MAPK/NF-κB pathway in C2C12 skeletal muscle cells. J Physiol Biochem 2016; 73:49-57. [DOI: 10.1007/s13105-016-0523-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/21/2016] [Indexed: 11/26/2022]
|
24
|
Virlan MJR, Miricescu D, Radulescu R, Sabliov CM, Totan A, Calenic B, Greabu M. Organic Nanomaterials and Their Applications in the Treatment of Oral Diseases. Molecules 2016; 21:E207. [PMID: 26867191 PMCID: PMC6273611 DOI: 10.3390/molecules21020207] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
There is a growing interest in the development of organic nanomaterials for biomedical applications. An increasing number of studies focus on the uses of nanomaterials with organic structure for regeneration of bone, cartilage, skin or dental tissues. Solid evidence has been found for several advantages of using natural or synthetic organic nanostructures in a wide variety of dental fields, from implantology, endodontics, and periodontics, to regenerative dentistry and wound healing. Most of the research is concentrated on nanoforms of chitosan, silk fibroin, synthetic polymers or their combinations, but new nanocomposites are constantly being developed. The present work reviews in detail current research on organic nanoparticles and their potential applications in the dental field.
Collapse
Affiliation(s)
- Maria Justina Roxana Virlan
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Radu Radulescu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Cristina M Sabliov
- Agricultural and Biological Engineering Department, Louisiana State University and LSU Ag Center, 149 EB Doran Building, Baton Rouge, LA 70803, USA.
| | - Alexandra Totan
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| |
Collapse
|
25
|
Soares DG, Marcomini N, Basso FG, Pansani TN, Hebling J, de Souza Costa CA. Influence of Restoration Type on the Cytotoxicity of a 35% Hydrogen Peroxide Bleaching Gel. Oper Dent 2015; 41:293-304. [PMID: 26652021 DOI: 10.2341/14-325-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The tooth/restoration interface may act as a pathway for hydrogen peroxide (H2O2) diffusion into the pulp chamber. Therefore, the influence of resin-modified glass ionomer cement (RMGIC) and resin composite simulated restorations on the cytotoxicity of an in-office bleaching gel was assessed in vitro. MATERIALS AND METHODS Cavities in enamel/dentin discs restored with RMGIC Vitremer (3M ESPE) or Single Bond/Filtek Z350 (3M ESPE) resin composite (RC) were subjected or not subjected to hydrolytic degradation (HD). A 35%-H2O2 bleaching gel was applied to simulated restored and nonrestored enamel surfaces, and culture medium in contact with the dentin substrate (extract) was collected and applied to MDPC-23 cells. Nonrestored discs subjected or not subjected to bleaching were used as positive and negative controls, respectively. Cell viability, oxidative stress, interleukin (IL)-1β expression, alkaline phosphatase (ALP) activity, and mineralized nodule deposition were evaluated. The H2O2 in the extracts was quantified. Data were subjected to statistical analysis. RESULTS Higher oxidative stress associated with reduced cell viability, ALP activity, and mineralized nodule deposition was observed for all bleached groups compared with the negative control group. The RMGIC/HD group, which presented the highest H2O2 diffusion, had the lowest values of cell viability, ALP activity, and mineralized nodule deposition, as well as significantly increased IL-1β expression. CONCLUSIONS Dental cavities restored with the RMGIC subjected to hydrolytic degradation allowed for more intense diffusion of H2O2 into the pulp chamber, intensifying the toxicity of a 35%-H2O2 bleaching gel to pulp cells.
Collapse
|
26
|
Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:196-206. [DOI: 10.1016/j.msec.2015.05.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/29/2015] [Accepted: 05/04/2015] [Indexed: 01/10/2023]
|
27
|
Soares DG, Basso FG, Scheffel DS, Hebling J, de Souza Costa CA. Responses of human dental pulp cells after application of a low-concentration bleaching gel to enamel. Arch Oral Biol 2015; 60:1428-36. [DOI: 10.1016/j.archoralbio.2015.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/28/2015] [Accepted: 06/14/2015] [Indexed: 01/17/2023]
|
28
|
de Lima CL, Coelho MS, Royer C, Resende AP, Borges GA, Rodrigues da Silva J, Amato AA, Guerra E, Neves FDAR, Acevedo AC. Rosiglitazone Inhibits Proliferation and Induces Osteopontin Gene Expression in Human Dental Pulp Cells. J Endod 2015; 41:1486-91. [DOI: 10.1016/j.joen.2015.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/15/2015] [Accepted: 05/21/2015] [Indexed: 11/29/2022]
|
29
|
Qi S, Wu Q, Ma J, Li J, Chen F, Xu Y, Pan Q, Wang R. Effects of neurotrophin receptor-mediated MAGE homology on proliferation and odontoblastic differentiation of mouse dental pulp cells. Cell Prolif 2015; 48:221-30. [PMID: 25736627 DOI: 10.1111/cpr.12171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES This study aimed to investigate effects of neurotrophin receptor-mediated melanoma antigen-encoding gene homology (NRAGE) on proliferation and odontoblastic differentiation of mouse dental pulp cells (mDPCs). MATERIALS AND METHODS Mouse dental pulp cells were infected with recombinant lentivirus to stably knockdown expression of NRAGE, and biological effects of NRAGE on the cells were detected. Proliferation and odontoblastic differentiation of mDPCs were observed. Simultaneously, mRNA and protein levels of NRAGE and nuclear factor-κB (NF-κB) protein expression were detected. Immunofluorescence assay was used to detect expression and location of NRAGE and NF-κB. RESULTS NRAGE mRNA and protein levels reduced significantly after mDPC odontoblastic induction. Knockdown of NRAGE inhibited the proliferation of mDPCs. However, knockdown of NRAGE enhanced their odontoblastic differentiation with up-regulated ALPase activity. It also promoted mineral nodule formation as well as mRNA and protein expressions of ALP, DSPP and DMP1. Protein levels of NF-κB/p50 significantly increased, whereas NF-κB/p105 protein expression decreased in the mDPC/shNRG group. Immunofluorescence revealed that relocation of NF-κB was similar to that of NRAGE during odontoblastic induction, in which NF-κB translocated from the cytoplasm to the nucleus. CONCLUSION NRAGE is a potent regulator of proliferation and odontoblastic differentiation of mDPCs, which might be via the NF-κB signalling pathway.
Collapse
Affiliation(s)
- S Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lee Y, Lee H, Kim T, Lee N, Yu M, Yi H. PPARγ Maintains Homeostasis through Autophagy Regulation in Dental Pulp. J Dent Res 2015; 94:729-37. [DOI: 10.1177/0022034515573833] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study investigated the relevance between pulp vitality and autophagy in aged human dental pulp cells (HDPCs) and whether peroxisome proliferator-activated receptor gamma (PPARγ) affects autophagy regulation for homeostasis in the aging progress. In vivo experiments were used in human and Sprague-Dawley rat teeth obtained from young and adult individuals. Aging- and autophagy-related molecules were determined by immunohistochemistry and hematoxylin and eosin staining. HDPCs were serially subcultured until spontaneously arrested for in vitro aging, and the replication deficiency adenovirus was introduced for PPARγ overexpression. Subsequently, the effect of PPARγ on regulation of autophagy molecules, mitochondria activity, and cell viability was assessed using Western blotting, confocal microscopy, and the MTT assay, respectively. In adult pulp tissue, autophagy molecules (autophagy protein 5, microtubule-associated protein 1A/1B light chain, and Beclin-1) were increased, but aging-related (PPARγ and heme oxygenase 1 [HO-1]) and dentinogenesis (dentin sialophosphoprotein and dentin matrix acidic phosphoprotein) molecules were decreased. In aged HDPCs, autophagy and intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 were increased, while PPARγ and HO-1 were decreased. Under stimulation with lipopolysaccharide, autophagy- and aging-related molecules were differentially expressed between young and aged cells. PPARγ induced HO-1 and autophagy molecules but reduced inflammatory molecules in aged cells. In addition, PPARγ activated strong mitochondrial activity and cell viability in aging cells. Inhibition of HO-1 by tin protoporphyrin IX exacerbated autophagy and mitochondrial activity as well as cell viability in young cells. This study indicates that PPARγ maintains pulp homeostasis through the regulation of autophagy molecules during the life span of HDPCs.
Collapse
Affiliation(s)
- Y.H. Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - H.Y. Lee
- Department of Conservative Dentistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - T.G. Kim
- Department of Conservative Dentistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - N.H. Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - M.K. Yu
- Department of Conservative Dentistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - H.K. Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
31
|
Soares DG, Marcomini N, Basso FG, Pansani TN, Hebling J, de Souza Costa CA. Indirect cytocompatibility of a low-concentration hydrogen peroxide bleaching gel to odontoblast-like cells. Int Endod J 2015; 49:26-36. [PMID: 25557717 DOI: 10.1111/iej.12426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/23/2014] [Indexed: 12/27/2022]
Abstract
AIM To assess the initial cytotoxicity and the late phenotype marker expression of odontoblast-like cells (MDPC-23) subjected to less aggressive in-office bleaching therapies. METHODOLOGY A 17.5% hydrogen peroxide (H2O2) gel was applied for 45, 15 or 5 min to enamel/dentine discs adapted to trans-wells positioned over cultured MDPC-23 cells. No treatment was performed on the negative control. Immediately after bleaching, the cell viability, gene expression of inflammatory mediators and quantification of H2O2 diffusion were evaluated. The ALP activity, DSPP and DMP-1 gene expression and mineralized nodule deposition (MND) were assessed at 7, 14 or 21 days post-bleaching and analysed statistically with Mann-Whitney U-tests (α = 5%). RESULTS H2O2 diffusion, proportional to treatment time, was observed in all bleached groups. Reductions of approximately 31%, 21% and 13% in cell viability were observed for the 45-, 15- and 5-min groups, respectively. This reduction was significant (P < 0.05) for the 45- and 15-min groups, which also presented significant (P < 0.05) over-expression of inflammatory mediators. The 45-min group was associated with significant (P < 0.05) reductions in DMP-1/DSPP expression at all periods, relative to control. The ALP activity and MND were reduced only in initial periods. The 15-min group had less intense reduction of all markers, with no difference to control at 21 days. CONCLUSIONS The 17.5% H2O2 applied to tooth specimens for 5 min caused no alteration in the odontoblast-like cells. When this gel was applied for 45 or 15 min, a slight cytotoxicity, associated with alterations in phenotypic markers, was observed. However, cells were able to recover their functions up to 21 days post-bleaching.
Collapse
Affiliation(s)
- D G Soares
- Department of Physiology and Pathology, Araraquara School of Dentistry, University of Estadual Paulista (UNESP), Araraquara, Brazil
| | - N Marcomini
- Department of Physiology and Pathology, Araraquara School of Dentistry, University of Estadual Paulista (UNESP), Araraquara, Brazil
| | - F G Basso
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, University of Estadual Paulista (UNESP), Araraquara, Brazil
| | - T N Pansani
- Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, University of Estadual Paulista (UNESP), Araraquara, Brazil
| | - J Hebling
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, University of Estadual Paulista (UNESP), Araraquara, Brazil
| | - C A de Souza Costa
- Department of Physiology and Pathology, Araraquara School of Dentistry, University of Estadual Paulista (UNESP), Araraquara, Brazil
| |
Collapse
|
32
|
Effect of hydrogen-peroxide-mediated oxidative stress on human dental pulp cells. J Dent 2014; 43:750-6. [PMID: 25527247 DOI: 10.1016/j.jdent.2014.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES To evaluate the effect of the oxidative stress on human dental pulp cells (HDPCs) promoted by toxic concentrations of hydrogen peroxide (H2O2) on its odontoblastic differentiation capability through time. METHODS HDPCs were exposed to two different concentrations of H2O2 (0.1 and 0.3μg/ml) for 30min. Thereafter, cell viability (MTT assay) and oxidative stress generation (H2DCFDA fluorescence assay) were immediately evaluated. Data were compared with those for alkaline phosphatase (ALP) activity (thymolphthalein assay) and mineralized nodule deposition (alizarin red) by HDPCs cultured for 7 days in osteogenic medium. RESULTS A significant reduction in cell viability and oxidative stress generation occurred in the H2O2-treated cells when compared with negative controls (no treatment), in a concentration-dependent fashion. Seven days after H2O2 treatment, the cells showed significant reduction in ALP activity compared with negative control and no mineralized nodule deposition. CONCLUSION Both concentrations of H2O2 were toxic to the cells, causing intense cellular oxidative stress, which interfered with the odontogenic differentiation capability of the HDPCs. CLINICAL SIGNIFICANCE The intense oxidative stress on HDPCs mediated by H2O2 at toxic concentrations promotes intense reduction on odontoblastic differentiation capability in a 7-day evaluation period, which may alter the initial pulp healing capability in the in vivo situation.
Collapse
|
33
|
Yang G, Li X, Yuan G, Liu P, Fan M. The effects of osterix on the proliferation and odontoblastic differentiation of human dental papilla cells. J Endod 2014; 40:1771-7. [PMID: 25258338 DOI: 10.1016/j.joen.2014.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 03/07/2014] [Accepted: 04/25/2014] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Dental papilla cells (DPCs) are precursors of odontoblasts and have the potential to differentiate into odontoblasts. Osteoblasts and odontoblasts have many common characteristics. Osterix (Osx) is essential for osteoblast differentiation. However, no information is available for the effects of Osx on the odontoblastic differentiation of DPCs. The purpose of this study was to investigate the effects of Osx on the proliferation and odontoblastic differentiation of DPCs. METHODS An immortalized human dental papilla cell (hDPC) line was used. Osx was stably overexpressed or knocked down in hDPCs with infection of lentiviral particles to determine its biological effects on hDPCs. The proliferation of cells was measured by the 5-ethynyl-2'-deoxyuridine incorporation assay and direct cell counting. Expressions of dentin sialophosphoprotein, nestin, dentin matrix protein 1, and alkaline phosphatase were detected by real-time polymerase chain reaction to determine the odontoblastic differentiation of cells. The mineralization ability of cells was evaluated by von Kossa staining and alkaline phosphatase activity assay. RESULTS Overexpression of Osx retarded the proliferation of hDPCs, whereas knockdown of Osx increased the cell proliferation. Overexpression of Osx promoted the odontoblastic differentiation of hDPCs by up-regulating odontoblastic differentiation genes and increased the mineralization ability of hDPCs. Knockdown of Osx down-regulated odontoblastic differentiation genes and decreased the mineralization ability of hDPCs. CONCLUSIONS Osx might function as a potential regulator for the proliferation and odontoblastic differentiation of hDPCs.
Collapse
Affiliation(s)
- Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan
| | - Xiaoyan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan; Department of Endodontics, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Shandong, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan
| | - Pingxian Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan
| | - Mingwen Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan.
| |
Collapse
|
34
|
Bhattarai G, Lee YH, Yi HK. Peroxisome proliferator activated receptor gamma loaded dental implant improves osteogenesis of rat mandible. J Biomed Mater Res B Appl Biomater 2014; 103:587-95. [PMID: 24962969 DOI: 10.1002/jbm.b.33207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/10/2014] [Accepted: 05/08/2014] [Indexed: 12/15/2022]
Abstract
Peroxisome proliferator activated receptor gamma (PPARγ) has been known for their anti-inflammatory effects. But the application of this molecule in implant-induced inflammation has not been clearly studied yet. Here, we determined in vivo anti-inflammatory and osteogenic effects of PPARγ coated dental implant in the rat mandible. We used chitosan gold nanoparticles (Ch-GNPs) as a non viral vector to carry PPARγ plasmid DNA. Ch-GNPs were conjugated with PPARγ plasmid DNA through a coacervation process. Conjugation was cast over titanium (Ti) implants (4.5 × 0.8 mm) by dipping, and implants were installed in rat mandibles. One, 2, 3, and 6 weeks post-implantation, mandibles were examined by microcomputed tomography (µCT), immunohistochemistry, hematoxylin & eosin, and tartrate resistance acid phosphatase (TRAP) staining. In vivo Ch-GNPs/PPARγcoated implants were associated with inhibition of implant induced inflammatory molecules interleukin-1β and receptor activator of nuclear factor kappa-B ligand and enhanced expression of osteogenic molecules like bone morphogenetic protein 2 and 7 (BMP-2/-7) by up-regulating anti-oxidant molecules heme oxygenase-1. µCT demonstrated that PPARγ overexpression increased the density and volume of newly formed bone surrounding the implants compared to control (n = 4; p < 0.05). Also, PPARγ reduced the number of TRAP positive cells. These results support the view that PPARγ overexpression diminishes inflammation and enhances osteogenesis around the dental implants. Thus, implant coated with anti-inflammatory molecules could have a significant utilization for the preparation of new biomaterials and may serve as prosthetic materials in patients suffering from inflammatory bone disease.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | | | | |
Collapse
|
35
|
Yang F, Xu N, Li D, Guan L, He Y, Zhang Y, Lu Q, Zhang X. A feedback loop between RUNX2 and the E3 ligase SMURF1 in regulation of differentiation of human dental pulp stem cells. J Endod 2014; 40:1579-86. [PMID: 25260729 DOI: 10.1016/j.joen.2014.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/19/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Runt-related transcription factor 2 (RUNX2) is a transcription factor that is indispensable for bone and tooth development. Smad ubiquitylation regulatory factor-1 (SMURF1) promotes RUNX2 degradation and negatively regulates osteoblast differentiation, whereas RUNX2 activates SMURF1 transcription in osteoblasts. However, the relationship between RUNX2 and SMURF1 in tooth development is unknown. This study aimed to evaluate the potential relationship between RUNX2 and SMURF1 in human dental pulp stem cells (hDPSCs). METHODS RUNX2 or SMURF1 expression was silenced in hDPSCs by lentiviral transduction of short hairpin RNA . The relationship between RUNX2 and SMURF1 expression was analyzed using quantitative polymerase chain reaction, Western blotting, dual luciferase reporter assays, and chromatin immunoprecipitation. The effect of the interplay between RUNX2 and SMURF1 on the odontoblastic differentiation of hDPSCs was examined in SMURF1-deficient hDPSCs. RESULTS The inhibition of SMURF1 in hDPSCs significantly increased RUNX2 at the protein level that was associated with decreased RUNX2 ubiquitination but did not affect RUNX2 messenger RNA expression. On the other hand, depletion of RUNX2 in hDPSCs decreased SMURF1 at both the protein and messenger RNA levels. A RUNX2-binding motif at -308 bp of the SMURF1 promoter functioned in RUNX2-mediated SMURF1 expression. Moreover, the expression levels of RUNX2 were associated with SMURF1 levels during odontoblastic differentiation. Significantly, the knockdown of SMURF1 up-regulated RUNX2 expression and down-regulated dentin sialophosphoprotein and dental matrix protein-1 expression in odontoblastic differentiation. CONCLUSIONS These results reveal the regulatory circuit between RUNX2 and SMURF1 controls RUNX2 expression and regulates odntoblastic differentiation in hDPSCs.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| | - Na Xu
- Department of Paediatric Dentistry, Tianjin Stomatological Hospital, Tianjin, China
| | - Dongmei Li
- State Key Laboratory of Military Stomatology, Department of VIP Dental Care, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Lina Guan
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ying He
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yaqing Zhang
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qun Lu
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xudong Zhang
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| |
Collapse
|
36
|
Han N, Zheng Y, Li R, Li X, Zhou M, Niu Y, Zhang Q. β-catenin enhances odontoblastic differentiation of dental pulp cells through activation of Runx2. PLoS One 2014; 9:e88890. [PMID: 24520423 PMCID: PMC3919828 DOI: 10.1371/journal.pone.0088890] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/13/2014] [Indexed: 01/01/2023] Open
Abstract
An intense stimulus can cause death of odontoblasts and initiate odontoblastic differentiation of stem/progenitor cell populations of dental pulp cells (DPCs), which is followed by reparative dentin formation. However, the mechanism of odontoblastic differentiation during reparative dentin formation remains unclear. This study was to determine the role of β-catenin, a key player in tooth development, in reparative dentin formation, especially in odontoblastic differentiation. We found that β-catenin was expressed in odontoblast-like cells and DPCs beneath the perforation site during reparative dentin formation after direct pulp capping. The expression of β-catenin was also significantly upregulated during odontoblastic differentiation of in vitro cultured DPCs. The expression pattern of runt-related transcription factor 2 (Runx2) was similar to that of β-catenin. Immunofluorescence staining indicated that Runx2 was also expressed in β-catenin–positive odontoblast-like cells and DPCs during reparative dentin formation. Knockdown of β-catenin disrupted odontoblastic differentiation, which was accompanied by a reduction in β-catenin binding to the Runx2 promoter and diminished expression of Runx2. In contrast, lithium chloride (LiCl) induced accumulation of β-catenin produced the opposite effect to that caused by β-catenin knockdown. In conclusion, it was reported in this study for the first time that β-catenin can enhance the odontoblastic differentiation of DPCs through activation of Runx2, which might be the mechanism involved in odontoblastic differentiation during reparative dentin formation.
Collapse
Affiliation(s)
- Nana Han
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Lab of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yong Zheng
- Department of Anatomy and Embryology, School of Medicine, Wuhan University, Wuhan, Hubei, China
| | - Ran Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Lab of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xianyu Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Lab of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Mi Zhou
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Lab of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yun Niu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Lab of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Qi Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Lab of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Endodontics, School of Stomatology, Tongji University, Shanghai, China
- * E-mail:
| |
Collapse
|
37
|
Sun L, Zhang J, Fang K, Ding Y, Zhang L, Zhang Y. Flavonoids from persimmon (Diospyros kaki) leaves (FPL) attenuate H2O2-induced apoptosis in MC3T3-E1 cells via the NF-κB pathway. Food Funct 2014; 5:471-9. [DOI: 10.1039/c3fo60522a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|