1
|
Dudás C, Bardocz-Veres Z, Gyulai AI, Pop SI, Székely M, Kerekes-Máthé B, Kovács M. Comparative in Vitro Study on the Antimicrobial Efficacy of Endodontic Sealers Against Common Oral Pathogens. Dent J (Basel) 2024; 13:17. [PMID: 39851593 PMCID: PMC11763927 DOI: 10.3390/dj13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Microorganisms are the leading cause of infections in the root canal system, contributing to the failure of endodontic treatments. This in vitro study aimed to compare the antimicrobial effects of four different endodontic sealers: Endomethasone N (Septodont, Saint Maur-des-Fossés, France), Sealapex (Kerr Corporation, Orange, CA, USA), AH Plus Jet (Dentsply DeTrey GmbH, Konstanz, Germany), and MTA Fillapex (Angelus, Londrina, Brazil). Methods: The sealers were tested against common oral pathogens, including Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Candida albicans, and Streptococcus mutans, using the agar diffusion method. Inhibition zones were measured at 24, 48, and 72 h to assess antimicrobial efficacy. Results: The results showed that Endomethasone was the most effective sealer against all tested microorganisms, demonstrating consistent inhibition across all time intervals. MTA Fillapex also exhibited a significant antimicrobial effect, particularly against Streptococcus mutans, with its efficacy increasing over time. AH Plus Jet displayed limited effectiveness, showing significant results only against Staphylococcus aureus. Conclusions: Overall, this study confirms the superior antimicrobial performance of Endomethasone, while the other materials, particularly MTA Fillapex and Sealapex, also showed notable effects in experimental conditions. The antimicrobial activity of all materials, except AH Plus Jet, increased over the 72-h period.
Collapse
Affiliation(s)
- Csaba Dudás
- Faculty of Dentistry, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540139 Târgu Mureș, Romania; (C.D.); (A.I.G.)
| | - Zsuzsanna Bardocz-Veres
- Department of Oral Rehabilitation and Occlusology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540139 Târgu Mureș, Romania;
| | - Anita Iulia Gyulai
- Faculty of Dentistry, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540139 Târgu Mureș, Romania; (C.D.); (A.I.G.)
| | - Silvia Izabella Pop
- Department of Orthodontics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540139 Târgu Mureș, Romania
| | - Melinda Székely
- Department of Tooth and Dental Arch Morphology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540139 Târgu Mureș, Romania; (M.S.); (B.K.-M.)
| | - Bernadette Kerekes-Máthé
- Department of Tooth and Dental Arch Morphology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540139 Târgu Mureș, Romania; (M.S.); (B.K.-M.)
| | - Mónika Kovács
- Department of Odontology and Oral Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540139 Târgu Mureș, Romania;
| |
Collapse
|
2
|
Xiao S, Sun G, Huang S, Lin C, Li Y. Nanoarchitectonics-Based Materials as a Promising Strategy in the Treatment of Endodontic Infections. Pharmaceutics 2024; 16:759. [PMID: 38931881 PMCID: PMC11207628 DOI: 10.3390/pharmaceutics16060759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Endodontic infections arise from the interactive activities of microbial communities colonizing in the intricate root canal system. The present study aims to update the latest knowledge of nanomaterials, their antimicrobial mechanisms, and their applications in endodontics. A detailed literature review of the current knowledge of nanomaterials used in endodontic applications was performed using the PubMed database. Antimicrobial nanomaterials with a small size, large specific surface area, and high chemical activity are introduced to act as irrigants, photosensitizer delivery systems, and medicaments, or to modify sealers. The application of nanomaterials in the endodontic field could enhance antimicrobial efficiency, increase dentin tubule penetration, and improve treatment outcomes. This study supports the potential of nanomaterials as a promising strategy in treating endodontic infections.
Collapse
Affiliation(s)
- Suli Xiao
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361003, China;
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361003, China
| | - Guanwen Sun
- Department of Stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen 361018, China;
| | - Shan Huang
- Department of Stomatology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361005, China;
| | - Chen Lin
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361003, China;
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361003, China
| | - Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen 361003, China;
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361003, China
| |
Collapse
|
3
|
Afkhami F, Chen Y, Walsh LJ, Peters OA, Xu C. Application of Nanomaterials in Endodontics. BME FRONTIERS 2024; 5:0043. [PMID: 38711803 PMCID: PMC11070857 DOI: 10.34133/bmef.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/20/2024] [Indexed: 05/08/2024] Open
Abstract
Recent advancements in nanotechnology have introduced a myriad of potential applications in dentistry, with nanomaterials playing an increasing role in endodontics. These nanomaterials exhibit distinctive mechanical and chemical properties, rendering them suitable for various dental applications in endodontics, including obturating materials, sealers, retro-filling agents, and root-repair materials. Certain nanomaterials demonstrate versatile functionalities in endodontics, such as antimicrobial properties that bolster the eradication of bacteria within root canals during endodontic procedures. Moreover, they offer promise in drug delivery, facilitating targeted and controlled release of therapeutic agents to enhance tissue regeneration and repair, which can be used for endodontic tissue repair or regeneration. This review outlines the diverse applications of nanomaterials in endodontics, encompassing endodontic medicaments, irrigants, obturating materials, sealers, retro-filling agents, root-repair materials, as well as pulpal repair and regeneration. The integration of nanomaterials into endodontics stands poised to revolutionize treatment methodologies, presenting substantial potential advancements in the field. Our review aims to provide guidance for the effective translation of nanotechnologies into endodontic practice, serving as an invaluable resource for researchers, clinicians, and professionals in the fields of materials science and dentistry.
Collapse
Affiliation(s)
- Farzaneh Afkhami
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Yuan Chen
- Sydney Dental School, Faculty of Medicine and Health,
The University of Sydney, Camperdown, NSW 2006, Australia
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Laurence J. Walsh
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Ove A. Peters
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
| | - Chun Xu
- School of Dentistry,
The University of Queensland, Brisbane,QLD4006, Australia
- Sydney Dental School, Faculty of Medicine and Health,
The University of Sydney, Camperdown, NSW 2006, Australia
- Charles Perkins Centre,
The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
4
|
|
5
|
Nanomaterials Application in Endodontics. MATERIALS 2021; 14:ma14185296. [PMID: 34576522 PMCID: PMC8464804 DOI: 10.3390/ma14185296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
In recent years, nanomaterials have become increasingly present in medicine, especially in dentistry. Their characteristics are proving to be very useful in clinical cases. Due to the intense research in the field of biomaterials and nanotechnology, the efficacy and possibilities of dental procedures have immensely expanded over the years. The nano size of materials allows them to exhibit properties not present in their larger-in-scale counterparts. The medical procedures in endodontics are time-consuming and mostly require several visits to be able to achieve the proper result. In this field of dentistry, there are still major issues about the removal of the mostly bacterial infection from the dental root canals. It has been confirmed that nanoparticles are much more efficient than traditional materials and appear to have superior properties when it comes to surface chemistry and bonding. Their unique antibacterial properties are also promising features in every medical procedure, especially in endodontics. High versatility of use of nanomaterials makes them a powerful tool in dental clinics, in a plethora of endodontic procedures, including pulp regeneration, drug delivery, root repair, disinfection, obturation and canal filling. This study focuses on summing up the current knowledge about the utility of nanomaterials in endodontics, their characteristics, advantages, disadvantages, and provides a number of reasons why research in this field should be continued.
Collapse
|
6
|
Assessment of Root Canal Sealers Loaded with Drug-Silica Coassembled Particles Using an In Vitro Tooth Model. J Endod 2021; 47:1775-1782. [PMID: 34425150 DOI: 10.1016/j.joen.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The purpose of this study was to assess the antimicrobial activity of root canal sealers modified with novel highly loaded antimicrobial drug-silica coassembled particles (DSPs) on Enterococcus faecalis-infected root canal dentin. METHODS DSPs were synthesized through coassembly of silica and octenidine dihydrochloride (OCT) surfactant drug (35% w/w OCT). DSPs (1% wt of the total mass of the sealer) were mixed homogenously with either epoxy resin sealer (AH Plus [AH]; Dentsply Sirona, Tulsa, OK) or calcium silicate-based sealer (EndoSequence BC Sealer [BC]; Brasseler, Savannah, GA). To assess the antimicrobial activity of DSP-loaded sealers, the apical third of single-rooted teeth was obtained and infected with E. faecalis for 3 weeks followed by the application of experimental (DSP-loaded) sealers or corresponding controls for up to 28 days. Microbiological analysis and laser scanning confocal and scanning electron microscopy were used to determine the colony-forming unit (CFU)/mL, the percentage of live bacteria, and the intratubular bacterial and sealer penetrations. Factorial analysis of variance and Tukey post hoc tests were used to assess the antimicrobial effect of DSPs on different sealers. RESULTS All experimental groups showed significant reductions in CFUs at all-time points compared with positive controls (P < .05). The addition of DSPs to BC significantly reduced the CFUs (2.11 ± 0.13, 2.22 ± 0.19, and 2.25 ± 0.17 at 1, 7, and 28 days, respectively) compared with the unmodified sealer (3.21 ± 0.11, 4.3 ± 0.15, and 4.2 ± 0.2 at 0, 7, and 28 days). DSPs enhanced the antimicrobial performance of AH only at 1 day (4.21 ± 0.17 vs 5.19 ± 0.12, P < .05). AH and AH + DSPs showed higher bacterial viability compared with BC and BC + DSPs at all incubation periods (P < .05). CONCLUSIONS Loading endodontic sealers with DSPs had a material-dependent effect on the antimicrobial properties and could reduce the incidence of secondary infections.
Collapse
|
7
|
Carvalho NK, Barbosa AFA, Coelho BDP, Gonçalves LDS, Sassone LM, Silva EJNL. Antibacterial, biological, and physicochemical properties of root canal sealers containing chlorhexidine-hexametaphosphate nanoparticles. Dent Mater 2021; 37:863-874. [PMID: 33648745 DOI: 10.1016/j.dental.2021.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the influence of the incorporation of chlorhexidine-hexametaphosphate nanoparticles (CHX-HMP NPs) on antibacterial, cytotoxic and physicochemical properties of AH Plus (AH), MTA Fillapex (MTA) and Pulp Canal Sealer (PCS). METHODS The NPs were synthesized and characterized by Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), zeta potential, Atomic Force Microscopy (AFM) and Energy-Dispersive X-ray Spectroscopy (EDS). The incorporation was made by weight, 2% and 5% of NPs. The antimicrobial activity, cytotoxicity, flow, radiopacity, setting time, solubility and pH were evaluated. The statistical analysis was performed by two-way analysis of variance test and Tukey post hoc test (P < 0.05). RESULTS SEM analysis showed the tendency for CHX-HMP NPs to cluster, the effective mean diameter measured by DLS: 169.39 nm and the zeta potential: -10.18 mV. The NPs were individually measured by AFM: 22.99-52.75 nm. EDS analysis identified the presence of C, N, O, Na, P, Cl. After incorporation: The Direct Contact Test showed an increase in the antimicrobial action of AH, PCS and MTA; the sealers showed a decrease in flow and at 24 h of immersion also an increase in solubility, but did not affect the radiopacity of the samples; AH setting time increased and MTA did not reach setting under any of the conditions tested. All samples showed a decrease in pH value as the immersion time progressed. SIGNIFICANCE The incorporation of NPs can improve the antimicrobial performance of endodontic sealers without impairing other biological and physicochemical properties.
Collapse
Affiliation(s)
- Nancy Kudsy Carvalho
- Department of Endodontics, School of Dentistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Ana Flávia Almeida Barbosa
- Department of Endodontics, School of Dentistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Bárbara de Paula Coelho
- Department of Endodontics, School of Dentistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | | | - Luciana Moura Sassone
- Department of Endodontics, School of Dentistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Emmanuel João Nogueira Leal Silva
- Department of Endodontics, School of Dentistry, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil; Department of Endodontics, School of Dentistry, Grande Rio University (UNIGRANRIO), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Marashdeh M, Stewart C, Kishen A, Levesque C, Finer Y. Drug-Silica Coassembled Particles Improve Antimicrobial Properties of Endodontic Sealers. J Endod 2021; 47:793-799. [PMID: 33582178 DOI: 10.1016/j.joen.2021.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The purpose of this study was to assess the antimicrobial activity and flow of root canal sealers after incorporating novel highly loaded antimicrobial drug-silica coassembled particles (DSPs). METHODS DSPs were synthesized through coassembly of silica and octenidine dihydrochloride (OCT) antimicrobial surfactant. DSPs were loaded (1% and 2% wt) into epoxy resin sealer (AH Plus [AH]; Dentsply DeTrey GmbH, Konstanz, Germany) or calcium silicate-based sealer (EndoSequence Bioceramic Sealer (BC); Brasseler, Savannah, GA). OCT release from DSP-modified sealers was determined using liquid chromatography. Antimicrobial activity of sealers against planktonic or biofilm form Enterococcus faecalis was assessed using direct contact and membrane restricted tests. Sealer flow was tested according to ISO6876:2012. RESULTS OCT release from BC + 1% or 2% DSPs was above the minimum inhibitory concentration following 2 days throughout the 30-day experiment, whereas OCT release from AH + 1% or 2% DSP was significantly below the minimum inhibitory concentration against E. faecalis (4 μg/mL) over the whole 30-day experimental period. All materials (with or without DSPs) killed planktonic bacteria initially. AH ± 1% or 2% DSPs had no antimicrobial activity after 7 days. BC + 1% or 2% DSPs maintained antibacterial activity over the 30-day period. Both modified and unmodified sealers completely inhibited the growth of E. faecalis biofilms after 24 hours of contact. DSPs decreased the flow of AH and BC sealers; for AH, the reduction was proportional to the amount of DSPs added. All modified and unmodified sealers, except for AH + 2% DSPs, were within the acceptable limits of ISO 6876 flow tests. CONCLUSIONS DSPs enhanced the antimicrobial performance of BC but not AH, whereas the material's flow remained compliant with ISO 6876 standards. Depending on the sealer, DSPs may enhance antimicrobial efficacy in root canal treatment and potentially improve treatment outcome.
Collapse
Affiliation(s)
- Muna Marashdeh
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Cameron Stewart
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Celine Levesque
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yoav Finer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Meng Y, Zhang D, Jia X, Xiao K, Lin X, Yang Y, Xu D, Wang Q. Antimicrobial Activity of Nano-Magnesium Hydroxide Against Oral Bacteria and Application in Root Canal Sealer. Med Sci Monit 2020; 26:e922920. [PMID: 32503962 PMCID: PMC7297022 DOI: 10.12659/msm.922920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The goal of the present work was to assess the antibacterial activity of nano-magnesium hydroxide (NMH) against Streptococcus mutans (S. mutans) and to explore the antimicrobial function of AH Plus™ sealer incorporating NMH. MATERIAL AND METHODS The antimicrobial behavior of NMH against S. mutans was evaluated with bactericidal tests. A modified direct contact test was used to assess the antimicrobial activity of unset AH Plus containing NMH after 5 minutes, 20 minutes, and 60 minutes of contact with bacteria. The antimicrobial effects and the amount of surface-adhering bacteria of the solidified materials were explored by SEM and confocal laser scanning microscopy, respectively. RESULTS NMH powder presented excellent antimicrobial activity against S. mutans. Mg²⁺ and OH⁻ were not the main factors resulting in bacterial death. Approximately 93.1% and 98% of the S. mutans were killed in the AH Plus+7% NMH group after incubation for 5 minutes and 20 minutes, respectively. AH Plus with 5% or 7% NMH were more potent against S. mutans compared with AH Plus alone (P<0.05). Moreover, the antibacterial function of AH Plus was lost after setting. NMH enabled the solidified AH Plus to still have antibacterial properties on the seventh day. CONCLUSIONS NMH can be used to modify AH Plus sealer to eradicate residual bacteria and prevent reinfection.
Collapse
Affiliation(s)
- Yingying Meng
- School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, P.R. China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, P.R. China
| | - Dan Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, P.R. China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, P.R. China
| | - Xingya Jia
- School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, P.R. China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, P.R. China
| | - Keshen Xiao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, P.R. China
| | - Xiao Lin
- Orthopaedic Institute and Department of Orthopaedics, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Yi Yang
- Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang, Liaoning, P.R. China
| | - Dake Xu
- Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang, Liaoning, P.R. China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, P.R. China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, P.R. China
| |
Collapse
|
10
|
Wang C, Makvandi P, Zare EN, Tay FR, Niu L. Advances in Antimicrobial Organic and Inorganic Nanocompounds in Biomedicine. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000024] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chen‐yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Prosthodontics, School of StomatologyThe Fourth Military Medical University Xi'an Shaanxi 710000 China
| | - Pooyan Makvandi
- Chemistry Department, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz 6153753843 Iran
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR) Naples 80125 Italy
| | | | - Franklin R. Tay
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Prosthodontics, School of StomatologyThe Fourth Military Medical University Xi'an Shaanxi 710000 China
- College of Graduate StudiesAugusta University Augusta GA 30912 USA
| | - Li‐na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologyDepartment of Prosthodontics, School of StomatologyThe Fourth Military Medical University Xi'an Shaanxi 710000 China
- College of Graduate StudiesAugusta University Augusta GA 30912 USA
| |
Collapse
|
11
|
Brezhnev A, Neelakantan P, Tanaka R, Brezhnev S, Fokas G, Matinlinna JP. Antibacterial Additives in Epoxy Resin-Based Root Canal Sealers: A Focused Review. Dent J (Basel) 2019; 7:E72. [PMID: 31266165 PMCID: PMC6784478 DOI: 10.3390/dj7030072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/16/2023] Open
Abstract
Dental materials used in root canal treatment have undergone substantial improvements over the past decade. However, one area that still remains to be addressed is the ability of root canal fillings to effectively entomb, kill bacteria, and prevent the formation of a biofilm, all of which will prevent reinfection of the root canal system. Thus far, no published review has analysed the literature on antimicrobial additives to root canal sealers and their influence on physicochemical properties. The aim of this paper was to systematically review the current literature on antimicrobial additives in root canal sealers, their anti-fouling effects, and influence on physicochemical properties. A systematic search was performed in two databases (PubMed and Scopus) to identify studies that investigated the effect of antimicrobial additives in epoxy resin-based root canal sealers. The nature of additives, their antimicrobial effects, methods of antimicrobial testing are critically discussed. The effects on sealer properties have also been reviewed. A total of 31 research papers were reviewed in this work. A variety of antimicrobial agents have been evaluated as additives to epoxy resin-based sealers, including quaternary ammonium compounds, chlorhexidine, calcium hydroxide, iodoform, natural extracts, antibiotics, antifungal drugs, and antimicrobial agent-functionalised nanoparticles. Antimicrobial additives generally improved the antimicrobial effect of epoxy resin-based sealers mainly without deteriorating the physicochemical properties, which mostly remained in accordance with ISO and ANSI/ADA specifications.
Collapse
Affiliation(s)
- Alexander Brezhnev
- Applied Oral Sciences-Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Prasanna Neelakantan
- Discipline of Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Ray Tanaka
- Applied Oral Sciences-Oral and Maxillofacial Radiology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Sergey Brezhnev
- Discipline of Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - George Fokas
- Department of Prosthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jukka P Matinlinna
- Applied Oral Sciences-Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
John CN, Abrantes PMDS, Prusty BK, Ablashi DV, Africa CWJ. K21 Compound, a Potent Antifungal Agent: Implications for the Treatment of Fluconazole-Resistant HIV-Associated Candida Species. Front Microbiol 2019; 10:1021. [PMID: 31231313 PMCID: PMC6558409 DOI: 10.3389/fmicb.2019.01021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Background/Objectives: With mucocutaneous candidiasis being highly prevalent in HIV patients, the emergence of fluconazole-resistant Candida species forms a major challenge in treating and eradicating these infections. The objective of this study was to establish the antifungal activity of K21, a membrane-rupturing antimicrobial compound derived from a silica quaternary ammonium compound (SiQAC) with tetraethoxysilane (TEOS). Methods: The study sample included 81 Candida species of which 9 were type strains and 72 were clinical isolates. Minimum inhibitory concentrations, synergy, fractional inhibitory concentration index (FICI), and time kill assays were determined by broth microdilution. Electron microscopy (EM) was used to determine the qualitative changes brought about after treatment with K21. Results: K21 inhibited the growth of all fluconazole-resistant and susceptible Candida strains with only 2 h of exposure required to effectively kill 99.9% of the inoculum, and a definite synergistic effect was observed with a combination of K21 and fluconazole. EM demonstrated the presence of two forms of extracellular vesicles indicative of biofilm formation and cell lysis. Conclusion: The study established the efficacy of K21 as an antifungal agent and with fluconazole-resistant candidiasis on the increase, the development of K21 can provide a promising alternative to combat acquired drug resistance.
Collapse
Affiliation(s)
- Cathy N. John
- Maternal Endogenous Infections Studies (MEnIS) Research Laboratories, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Pedro M. D. S. Abrantes
- Maternal Endogenous Infections Studies (MEnIS) Research Laboratories, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Bhupesh K. Prusty
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Charlene W. J. Africa
- Maternal Endogenous Infections Studies (MEnIS) Research Laboratories, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
13
|
Daood U, Yiu C. Transdentinal cytotoxicity and macrophage phenotype of a novel quaternary ammonium silane cavity disinfectant. Dent Mater 2019; 35:206-216. [DOI: 10.1016/j.dental.2018.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/01/2018] [Accepted: 11/14/2018] [Indexed: 02/08/2023]
|
14
|
Tiwari S, Murthy CS, Usha HL, Shivekshith AK, Kumar NN, Vijayalakshmi L. A comparative evaluation of antimicrobial efficacy and flow characteristics of two epoxy resin-based sealers-AH plus and Perma Evolution: An in vitro study. J Conserv Dent 2018; 21:676-680. [PMID: 30546218 PMCID: PMC6249942 DOI: 10.4103/jcd.jcd_305_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim of the Study Bacteria that persist at the time of obturation increase the possibility of persistent apical periodontitis. An ideal sealer should be able to kill these remaining bacteria that are present on the dentinal walls as well as inside the dentinal tubules. This could be possible if a sealer has antimicrobial properties with optimum flow characteristics. Hence, the aim of this in vitro study was to assess the antimicrobial efficacy of epoxy resin-based sealer: AH Plus and Perma Evolution against Enterococcus faecalis on the 1st, 3rd, 5th, and 7th day and also to compare the flow characteristics of both epoxy resin-based sealers. Materials and Methods E. faecalis ATCC 35550 strain was used to assess the antibacterial efficacy of sealers by agar-diffusion test (ADT) and direct-contact test (DCT). Flow characteristics of sealers were measured according to the ADA specification no. 57. Results In ADT, Perma Evolution sealer showed larger zone of inhibition than AH plus on the 1st, 3rd, 5th, and 7th day, and in DCT, both sealers were equally effective in inhibiting E. faecalis growth on the 1st, 3rd, 5th, and 7th day. Flow test showed no significant difference between Perma Evolution and AH Plus sealer. Conclusion Both the tested sealers were equally effective against E. faecalis up to 7 days of incubation period. Considering flow properties, both the tested sealers showed optimum flow as per the ADA specification no. 57.
Collapse
Affiliation(s)
- Shilpi Tiwari
- Department of Conservative Dentistry and Endodontics, Vokkaligara Sangha Dental College and Hospital, Bengaluru, Karnataka, India
| | - Chethana S Murthy
- Department of Conservative Dentistry and Endodontics, Vokkaligara Sangha Dental College and Hospital, Bengaluru, Karnataka, India
| | - H L Usha
- Department of Conservative Dentistry and Endodontics, Vokkaligara Sangha Dental College and Hospital, Bengaluru, Karnataka, India
| | - A K Shivekshith
- Department of Conservative Dentistry and Endodontics, Vokkaligara Sangha Dental College and Hospital, Bengaluru, Karnataka, India
| | - N Naveen Kumar
- Department of Conservative Dentistry and Endodontics, Vokkaligara Sangha Dental College and Hospital, Bengaluru, Karnataka, India
| | - L Vijayalakshmi
- Department of Conservative Dentistry and Endodontics, Vokkaligara Sangha Dental College and Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
15
|
ZHANG Y, CHEN Y, HU Y, HUANG F, XIAO Y. Quaternary ammonium compounds in dental restorative materials. Dent Mater J 2018; 37:183-191. [DOI: 10.4012/dmj.2017-096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yu ZHANG
- The Affiliated Stomatological Hospital of Kunming Medical University
| | - Yinyan CHEN
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University
- Kunming Municipal Stomatological Hospital
| | - Yuntong HU
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University
| | - Fang HUANG
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University
| | - Yuhong XIAO
- Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University
- Center for Dental Research, School of Dentistry, Loma Linda University
| |
Collapse
|
16
|
Dornelles NB, Collares FM, Genari B, de Souza Balbinot G, Samuel SMW, Arthur RA, Visioli F, Guterres SS, Leitune VCB. Influence of the addition of microsphere load amoxicillin in the physical, chemical and biological properties of an experimental endodontic sealer. J Dent 2018; 68:28-33. [DOI: 10.1016/j.jdent.2017.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/07/2023] Open
|
17
|
Gonçalves LP, Miñán A, Benítez G, de Mele MFL, Vela ME, Schilardi PL, Ferreira-Neto EP, Noveletto JC, Correr WR, Rodrigues-Filho UP. Self-sterilizing ormosils surfaces based on photo-synzthesized silver nanoparticles. Colloids Surf B Biointerfaces 2017; 164:144-154. [PMID: 29413591 DOI: 10.1016/j.colsurfb.2017.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/13/2022]
Abstract
Medical device-related infections represent a major healthcare complication, resulting in potential risks for the patient. Antimicrobial materials comprise an attractive strategy against bacterial colonization and biofilm proliferation. However, in most cases these materials are only bacteriostatic or bactericidal, and consequently they must be used in combination with other antimicrobials in order to reach the eradication condition (no viable microorganisms). In this study, a straightforward and robust antibacterial coating based on Phosphotungstate Ormosil doped with core-shell (SiO2@TiO2) was developed using sol-gel process, chemical tempering, and Ag nanoparticle photoassisted synthesis (POrs-CS-Ag). The coating was characterized by X-ray Fluorescence Spectroscopy (XRF), Field Emission Scanning Electron Microscopy (FE-SEM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Microscopy (XPS). The silver free coating displays low antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, in opposition to the silver loaded ones, which are able to completely eradicate these strains. Moreover, the antimicrobial activity of these substrates remains high until three reutilization cycles, which make them a promising strategy to develop self-sterilizing materials, such as POrs-CS-Ag-impregnated fabric, POrs-CS-Ag coated indwelling metals and polymers, among other materials.
Collapse
Affiliation(s)
- Lidiane Patrícia Gonçalves
- Grupo de Química de Materiais Híbridos e Inorgânicos, Prédio de Química Ambiental, Instituto de Química de São Carlos, Universidade de São Paulo, 13563-120, São Carlos, SP, Brazil
| | - Alejandro Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP - CONICET, CC 16 Suc 4(1900) La Plata, Argentina
| | - Guillermo Benítez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP - CONICET, CC 16 Suc 4(1900) La Plata, Argentina
| | - Mónica Fernández Lorenzo de Mele
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP - CONICET, CC 16 Suc 4(1900) La Plata, Argentina
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP - CONICET, CC 16 Suc 4(1900) La Plata, Argentina
| | - Patricia L Schilardi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP - CONICET, CC 16 Suc 4(1900) La Plata, Argentina
| | - Elias Paiva Ferreira-Neto
- Grupo de Química de Materiais Híbridos e Inorgânicos, Prédio de Química Ambiental, Instituto de Química de São Carlos, Universidade de São Paulo, 13563-120, São Carlos, SP, Brazil
| | - Júlia Cristina Noveletto
- Grupo de Química de Materiais Híbridos e Inorgânicos, Prédio de Química Ambiental, Instituto de Química de São Carlos, Universidade de São Paulo, 13563-120, São Carlos, SP, Brazil
| | - Wagner Rafael Correr
- Centro de Tecnologia de Materiais Híbridos, Grupo Crescimento de Cristais e Materiais Cerâmicos, Instituto de Física de São Carlos e Escola de Engenharia de São Carlos, Universidade de São Paulo, 13563-120, São Carlos, SP, Brazil
| | - Ubirajara Pereira Rodrigues-Filho
- Grupo de Química de Materiais Híbridos e Inorgânicos, Prédio de Química Ambiental, Instituto de Química de São Carlos, Universidade de São Paulo, 13563-120, São Carlos, SP, Brazil.
| |
Collapse
|
18
|
Cytocompatibility, physical properties, and antibiofilm activity of endodontic sealers with amoxicillin. Microsc Res Tech 2017; 80:1036-1048. [DOI: 10.1002/jemt.22898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/09/2017] [Accepted: 05/06/2017] [Indexed: 01/02/2023]
|
19
|
Effect of a novel quaternary ammonium silane cavity disinfectant on durability of resin-dentine bond. J Dent 2017; 60:77-86. [PMID: 28315376 DOI: 10.1016/j.jdent.2017.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/26/2017] [Accepted: 03/05/2017] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The present study examined the effect of a quaternary ammonium silane (QAS) cavity disinfectant on the viability of human dental pulp cells, dentine bond durability and nanoleakage of simplified etch-and-rinse adhesives. METHODS Etched dentine surface of third molars were randomly divided into two adhesive groups, Adper™ Single Bond 2 and Prime & Bond® NT™. For each adhesive, the teeth were randomly assigned to five cavity disinfectant groups (N=6): Group 1: deionised water (control); Group 2: 2% chlorhexidine (CHX); Group 3: 2% QAS; Group 4: 5% QAS and Group 5: 10% QAS. The cavity disinfectants were applied on etched dentine surfaces for 20s, followed by adhesive application. The bonded teeth were sectioned for bond strength testing at 24h, 6 months and 12 months. Viability of human dental pulpal cells was examined using MTT assay. Bond strength data were analysed using 3-way ANOVA and Tukey test. Interfacial nanoleakage was evaluated after 24h and 12 months and analysed using Kruskal-Wallis test. RESULTS Significant differences in bond strength were observed for the factors disinfectants (p<0.001) and time (p<0.001); while the factor, adhesive, was not significantly different (p=0.203). The 2% QAS cavity disinfectant preserved bond strength of both adhesives and reduced interfacial nanoleakage after 12 months. Cell viability was the lowest for 2% CHX, followed by 2% QAS and the control. CONCLUSIONS The 2% QAS cavity disinfectant demonstrated greater cell viability compared to 2% CHX, with no adverse effect on immediate bond strength and preserved bond stability over time. CLINICAL SIGNIFICANCE Incorporation of 2% quaternary ammonium silane cavity disinfectant in the resin-dentine bonding protocol enhances the success rate of bonded restorations.
Collapse
|
20
|
Jiao Y, Niu LN, Ma S, Li J, Tay FR, Chen JH. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci 2017; 71:53-90. [PMID: 32287485 PMCID: PMC7111226 DOI: 10.1016/j.progpolymsci.2017.03.001] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022]
Abstract
Microbial infections affect humans worldwide. Many quaternary ammonium compounds have been synthesized that are not only antibacterial, but also possess antifungal, antiviral and anti-matrix metalloproteinase capabilities. Incorporation of quaternary ammonium moieties into polymers represents one of the most promising strategies for preparation of antimicrobial biomaterials. Various polymerization techniques have been employed to prepare antimicrobial surfaces with quaternary ammonium functionalities; in particular, syntheses involving controlled radical polymerization techniques enable precise control over macromolecular structure, order and functionality. Although recent publications report exciting advances in the biomedical field, some of these technological developments have also been accompanied by potential toxicological and antimicrobial resistance challenges. Recent evidenced-based data on the biomedical applications of antimicrobial quaternary ammonium-containing biomaterials that are based on randomized human clinical trials, the golden standard in contemporary medicinal science, are included in the present review. This should help increase visibility, stimulate debates and spur conversations within a wider scientific community on the implications and plausibility for future developments of quaternary ammonium-based antimicrobial biomaterials.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Department of Stomatology, PLA Army General Hospital, 100700, Beijing, China
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Sai Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to the Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Franklin R. Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Corresponding authors.
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Corresponding authors.
| |
Collapse
|
21
|
Effect of a novel quaternary ammonium silane on dentin protease activities. J Dent 2017; 58:19-27. [DOI: 10.1016/j.jdent.2017.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/13/2022] Open
|
22
|
In Vitro Antimicrobial Effectiveness of Root Canal Sealers against Enterococcus faecalis: A Systematic Review. J Endod 2016; 42:1588-1597. [PMID: 27623499 DOI: 10.1016/j.joen.2016.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The purpose of this systematic review was to summarize the outcomes of in vitro studies of root canal sealers for their antimicrobial effectiveness against Enterococcus faecalis on the basis of direct contact test. METHODS An exhaustive literature search was performed by using MEDLINE, Scopus, TRIP, and OpenThesis databases, followed by an extensive hand search of references of identified articles. Two independent reviewers evaluated the studies for eligibility against inclusion and exclusion criteria and performed data abstraction and risk of bias evaluations. RESULTS A total of 31 articles were assessed for eligibility. Of these, 24 met the inclusion criteria and were included in the systematic review. A considerable heterogeneity was found in the methodologies of included studies. Therefore, it was not feasible to perform meta-analysis. Majority of the studies reported that different categories of freshly prepared sealers possessed some form of positive antimicrobial activity against E. faecalis for up to 24 hours. Antimicrobial efficacy was lost as the material set. Moderate evidence was found for no antimicrobial activity of aged (2-day to 7-day set) sealer samples across all categories. CONCLUSIONS The evidence indicated positive antimicrobial activity of freshly mixed sealers against E. faecalis. Antimicrobial efficacy was lost as the material set, with no bacterial growth inhibition by 2-day to 7-day set sealer samples. However, the studies included in this review presented medium to high risk of bias. This review identified the need for the development of standardized methods to evaluate antimicrobial activity of root canal sealers in in vitro studies.
Collapse
|
23
|
Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects. Trends Biotechnol 2015; 33:621-636. [PMID: 26493710 DOI: 10.1016/j.tibtech.2015.09.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/16/2015] [Accepted: 09/08/2015] [Indexed: 01/25/2023]
Abstract
Nanotechnology is currently driving the dental materials industry to substantial growth, thus reflecting on improvements in materials available for oral prevention and treatment. The present review discusses new developments in nanotechnology applied to dentistry, focusing on the use of nanomaterials for improving the quality of oral care, the perspectives of research in this arena, and discussions on safety concerns regarding the use of dental nanomaterials. Details are provided on the cutting-edge properties (morphological, antibacterial, mechanical, fluorescence, antitumoral, and remineralization and regeneration potential) of polymeric, metallic and inorganic nano-based materials, as well as their use as nanocluster fillers, in nanocomposites, mouthwashes, medicines, and biomimetic dental materials. Nanotoxicological aspects, clinical applications, and perspectives for these nanomaterials are also discussed.
Collapse
|