1
|
Panotopoulos GP, Haidar ZS. Thermal Load and Heat Transfer in Dental Titanium Implants: An Ex Vivo-Based Exact Analytical/Numerical Solution to the ‘Heat Equation’. Dent J (Basel) 2022; 10:dj10030043. [PMID: 35323245 PMCID: PMC8946864 DOI: 10.3390/dj10030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/25/2023] Open
Abstract
Introduction: Heat is a kinetic process whereby energy flows from between two systems, hot-to-cold objects. In oro-dental implantology, conductive heat transfer/(or thermal stress) is a complex physical phenomenon to analyze and consider in treatment planning. Hence, ample research has attempted to measure heat-production to avoid over-heating during bone-cutting and drilling for titanium (Ti) implant-site preparation and insertion, thereby preventing/minimizing early (as well as delayed) implant-related complications and failure. Objective: Given the low bone–thermal conductivity whereby heat generated by osteotomies is not effectively dissipated and tends to remain within the surrounding tissue (peri-implant), increasing the possibility of thermal-injury, this work attempts to obtain an exact analytical solution of the heat equation under exponential thermal-stress, modeling transient heat transfer and temperature changes in Ti implants (fixtures) upon hot-liquid oral intake. Materials and Methods: We, via an ex vivo-based model, investigated the impact of the (a) material, (b) location point along implant length, and (c) exposure time of the thermal load on localized temperature changes. Results: Despite its simplicity, the presented solution contains all the physics and reproduces the key features obtained in previous numerical analyses studies. To the best of our knowledge, this is the first introduction of the intrinsic time, a “proper” time that characterizes the geometry of the dental implant fixture, where we show, mathematically and graphically, how the interplay between “proper” time and exposure time influences temperature changes in Ti implants, under the suitable initial and boundary conditions. This fills the current gap in the literature by obtaining a simplified yet exact analytical solution, assuming an exponential thermal load model relevant to cold/hot beverage or food intake. Conclusions: This work aspires to accurately complement the overall clinical diagnostic and treatment plan for enhanced bone–implant interface, implant stability, and success rates, whether for immediate or delayed loading strategies.
Collapse
Affiliation(s)
- Grigorios P. Panotopoulos
- Departamento de Ciencias Físicas, Universidad de la Frontera, Temuco 4811186, Chile;
- BioMAT’X I+D+i (Haidar Lab), Universidad de los Andes, Santiago 7550000, Chile
| | - Ziyad S. Haidar
- BioMAT’X I+D+i (Haidar Lab), Universidad de los Andes, Santiago 7550000, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7550000, Chile
- Programa de Doctorado en BioMedicina, Facultad de Medicina, Universidad de los Andes, Santiago 7550000, Chile
- Facultad de Odontología, Universidad de los Andes, Santiago 7550000, Chile
- Correspondence: or ; Tel.: +56-2-2618-1372; Fax: +56-2-2214-9468
| |
Collapse
|
2
|
HAN W, KIM JH, KWON HB, PARK JK, SEO DG. Effect of cyclic thermal stress on the fatigue life of teeth restored with gold inlay. Dent Mater J 2022; 41:567-572. [DOI: 10.4012/dmj.2021-306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Jae-Hoon KIM
- Department of Dental Education, Dental and Life Science Institute, School of Dentistry, Pusan National University, Dental Research Institute
| | - Ho-Beom KWON
- Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University
| | - Jeong-Kil PARK
- Department of Conservative Dentistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Dental Research Institute
| | - Deog-Gyu SEO
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University
| |
Collapse
|
3
|
Xi X, Ma Y, Xu Y, Ogbuehi AC, Liu X, Deng Y, Xi J, Pan H, Lin Q, Li B, Ning W, Jiang X, Li H, Li S, Hu X. The Genetic and Epigenetic Mechanisms Involved in Irreversible Pulp Neural Inflammation. DISEASE MARKERS 2021; 2021:8831948. [PMID: 33777260 PMCID: PMC7968449 DOI: 10.1155/2021/8831948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
AIM To identify the critical genetic and epigenetic biomarkers by constructing the long noncoding RNA- (lncRNA-) related competing endogenous RNA (ceRNA) network involved in irreversible pulp neural inflammation (pulpitis). MATERIALS AND METHODS The public datasets regarding irreversible pulpitis were downloaded from the gene expression omnibus (GEO) database. The differential expression analysis was performed to identify the differentially expressed genes (DEGs) and DElncRNAs. Functional enrichment analysis was performed to explore the biological processes and signaling pathways enriched by DEGs. By performing a weighted gene coexpression network analysis (WGCNA), the significant gene modules in each dataset were identified. Most importantly, DElncRNA-DEmRNA regulatory network and DElncRNA-associated ceRNA network were constructed. A transcription factor- (TF-) DEmRNA network was built to identify the critical TFs involved in pulpitis. RESULT Two datasets (GSE92681 and GSE77459) were selected for analysis. DEGs involved in pulpitis were significantly enriched in seven signaling pathways (i.e., NOD-like receptor (NLR), Toll-like receptor (TLR), NF-kappa B, tumor necrosis factor (TNF), cell adhesion molecules (CAMs), chemokine, and cytokine-cytokine receptor interaction pathways). The ceRNA regulatory relationships were established consisting of three genes (i.e., LCP1, EZH2, and NR4A1), five miRNAs (i.e., miR-340-5p, miR-4731-5p, miR-27a-3p, miR-34a-5p, and miR-766-5p), and three lncRNAs (i.e., XIST, MIR155HG, and LINC00630). Six transcription factors (i.e., GATA2, ETS1, FOXP3, STAT1, FOS, and JUN) were identified to play pivotal roles in pulpitis. CONCLUSION This paper demonstrates the genetic and epigenetic mechanisms of irreversible pulpitis by revealing the ceRNA network. The biomarkers identified could provide research direction for the application of genetically modified stem cells in endodontic regeneration.
Collapse
Affiliation(s)
- Xiaoxi Xi
- Department of Stomatology, Northeast Petroleum University Affiliated Hospital, Fazhan Road, High Tech District, 163000 Daqing City, Heilongjiang Province, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuzhen Xu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | | | - Xiangqiong Liu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Yupei Deng
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Junming Xi
- Department of Stomatology, Northeast Petroleum University Affiliated Hospital, Fazhan Road, High Tech District, 163000 Daqing City, Heilongjiang Province, China
| | - Haitong Pan
- Department of Stomatology, Daqing Oilfield General Hospital, Zhongkang Street No. 9, Saertu District, 163000 Daqing City, Heilongjiang Province, China
| | - Qian Lin
- Department of Prosthetics, School of Stomatology, Second Affiliated Dental Hospital of Jiamusi University, Hongqi Street No. 522, Jiamusi City, Heilongjiang Province, China
| | - Bo Li
- Department of Stomatology, South District Hospital, Daqing Oilfield General Hospital Group, Tuqiang Fourth Street No. 14, Hong Gang District, Daqing City, Heilongjiang Province, China
| | - Wanchen Ning
- Department of Conservative Dentistry and Periodontology, Ludwig-Maximilians-University of Munich, Goethestrasse 70, 80336 Munich, Germany
| | - Xiao Jiang
- Stomatological Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Hanluo Li
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Simin Li
- Stomatological Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Xianda Hu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| |
Collapse
|
4
|
Vasil'ev YL, Rabinovich SA, Dydykin SS, Beketov VD, Chilikov VV. [Evaluation of the effectiveness of the compression method for infiltration anesthesia of the mandibular molars]. STOMATOLOGIIA 2021; 100:60-66. [PMID: 33528958 DOI: 10.17116/stomat202110001160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AIM To study the depth of analgesia and the electrical excitability dynamics of the pulp of the tooth under local anesthesia without and with compression on the depot of local anesthetics. MATERIALS AND METHODS 87 men and 93 women took part in the study, the average age of men was 36.8±5.02 and the average age of women was 30.43±2.14. According to the indications, local anesthesia of infiltration type with and without compression at the depot of local anesthetics was performed. The injection was carried out with a solution of 4% articaine with epinephrine1:100000 or 1:200000. Patients were divided into 2 groups depending on the used concentration of the vasoconstrictor with 4% articaine. The target area thermometry and electroodontometry (EOD) of the first mandibular molar were performed. The criterion for the onset of pulp analgesia was the value from 92 to 100 mA. RESULTS Dynamics of change in pulp electrical excitability of the first molar with the use of 4% articaine with epinephrine 1:200000 without a compress showed that in the latter case the reduction of pulp electrical excitability to 96.6 µA, which is optimal for painless treatment, was developed by the 5th minute of the study and remained at the limit of 92.2-92.1 µA for 20 minutes. When using 4% articaine 1:100 000 it was noted that also the compression technique allowed to reach the necessary reduction of EOD indices to 93.5 µA by the 5th minute of the study, and to 97.2 µA by the 10th minute. Increased hypothermia in the injection depot area was noted thermographically, especially when high concentrations of epinephrine were used. CONCLUSION Our own studies reflect the dynamics of change in the electrical excitability of the pulp of the first molar with the use of 4% articaine by compression method more intensively reduces the electrical reacrivity of the dental pulp depending on the concentration of the epinephrine: with the use of 1:100000, the advantage of the pressure technique is 19.3% and 1:200000 - 21.8%.
Collapse
Affiliation(s)
- Yu L Vasil'ev
- First Moscow State Medical University named after I.M. Sechenov (Sechenov University) of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
- Russian Peoples Friendship University, Moscow, Russia
| | - S A Rabinovich
- Moscow State Medical and Dental University named after A.I. Evdokimov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - S S Dydykin
- First Moscow State Medical University named after I.M. Sechenov (Sechenov University) of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - V D Beketov
- First Moscow State Medical University named after I.M. Sechenov (Sechenov University) of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - V V Chilikov
- First Moscow State Medical University named after I.M. Sechenov (Sechenov University) of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Güler MS, Şen S. THE EFFECT OF DIFFERENT FACTORS ON STRESS DISTRIBUTION IN A MOLAR TOOTH. CUMHURIYET DENTAL JOURNAL 2018. [DOI: 10.7126/cumudj.440789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Thermal analysis of the dentine tubule under hot and cold stimuli using fluid-structure interaction simulation. Biomech Model Mechanobiol 2018; 17:1599-1610. [PMID: 29956062 DOI: 10.1007/s10237-018-1046-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/24/2018] [Indexed: 12/14/2022]
Abstract
The objective of this study is to compare the thermal stress changes in the tooth microstructures and the hydrodynamic changes of the dental fluid under hot and cold stimuli. The dimension of the microstructures of eleven cats' teeth was measured by scanning electron microscopy, and the changes in thermal stress during cold and hot stimulation were calculated by 3D fluid-structure interaction modeling. Evaluation of results, following data validation, indicated that the maximum velocities in cold and hot stimuli were - 410.2 ± 17.6 and + 205.1 ± 8.7 µm/s, respectively. The corresponding data for maximum thermal stress were - 20.27 ± 0.79 and + 10.13 ± 0.24 cmHg, respectively. The thermal stress caused by cold stimulus could influence almost 2.9 times faster than that caused by hot stimulus, and the durability of the thermal stress caused by hot stimulus was 71% greater than that by cold stimulus under similar conditions. The maximum stress was on the tip of the odontoblast, while the stress in lateral walls of the odontoblast and terminal fibril was very weak. There is hence a higher possibility of pain transmission with activation of stress-sensitive ion channels at the tip of the odontoblast. The maximum thermal stress resulted from the cold stimulus is double that produced by the hot stimulus. There is a higher possibility of pain transmission in the lateral walls of the odontoblast and terminal fibril by releasing mediators during the cold stimulation than the hot stimulation. These two reasons can be associated with a greater pain sensation due to intake of cold liquids.
Collapse
|
7
|
Oskui IZ, Hashemi A, Jafarzadeh H, Kato A. Finite element investigation of human maxillary incisor under traumatic loading: Static vs dynamic analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 155:121-125. [PMID: 29512492 DOI: 10.1016/j.cmpb.2017.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 12/02/2017] [Accepted: 12/11/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Traumatic loading is the main form of injury sustained in dental injuries. In spite of the prevalence of dental trauma, little information is available on traumatic dental damage and the evaluation of tooth behavior under traumatic loading. Due to the short period of traumatic loading, at first sight, a dynamic analysis needs to be performed to investigate the dental trauma. However, it was hypothesized that dental traumatic loading could be regarded as quasi-static loading. Thus, the aim of the present study was to examine this hypothesis. METHODS Static and dynamic analyses of the human maxillary incisor were carried out under traumatic loading using a 3D finite element method. Also, modal analysis of the tooth model was performed in order to evaluate the assumption of the dental traumatic loading as a quasi-static one. RESULTS It was revealed that the static analysis of dental trauma is preferred to the dynamic analysis when investigating dental trauma, mainly due to its lower computational cost. In fact, it was shown that including the inertia of the tooth structure does not influence the results of the dental trauma simulation. Furthermore, according to the modal analysis of the tooth structure, it was found that the mechanical properties and geometry of the periodontal ligament play significant roles in the classification of dental traumatic loading as a quasi-static one, in addition to the time duration of the applied load. CONCLUSIONS This paper provides important biomechanical insights into the classification of dental loading as quasi-static, transient or impact loading in future dental studies.
Collapse
Affiliation(s)
- Iman Z Oskui
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ata Hashemi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Hamid Jafarzadeh
- Department of Endodontics, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akiko Kato
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
8
|
Niu L, Dong SJ, Kong TT, Wang R, Zou R, Liu QD. Heat Transfer Behavior across the Dentino-Enamel Junction in the Human Tooth. PLoS One 2016; 11:e0158233. [PMID: 27662186 PMCID: PMC5035055 DOI: 10.1371/journal.pone.0158233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022] Open
Abstract
During eating, the teeth usually endure the sharply temperature changes because of different foods. It is of importance to investigate the heat transfer and heat dissipation behavior of the dentino-enamel junction (DEJ) of human tooth since dentine and enamel have different thermophysical properties. The spatial and temporal temperature distributions on the enamel, dentine, and pulpal chamber of both the human tooth and its discontinuous boundaries, were measured using infrared thermography using a stepped temperature increase on the outer boundary of enamel crowns. The thermal diffusivities for enamel and dentine were deduced from the time dependent temperature change at the enamel and dentine layers. The thermal conductivities for enamel and dentine were calculated to be 0.81 Wm-1K-1 and 0.48 Wm-1K-1 respectively. The observed temperature discontinuities across the interfaces between enamel, dentine and pulp-chamber layers were due to the difference of thermal conductivities at interfaces rather than to the phase transformation. The temperature gradient distributes continuously across the enamel and dentine layers and their junction below a temperature of 42°C, whilst a negative thermal resistance is observed at interfaces above 42°C. These results suggest that the microstructure of the dentin-enamel junction (DEJ) junction play an important role in tooth heat transfer and protects the pulp from heat damage.
Collapse
Affiliation(s)
- Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi'an, Shaanxi, China
- Stomatology Hospital of Xi’an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Shao-Jie Dong
- Stomatology Hospital of Xi’an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Ting-Ting Kong
- Stomatology Hospital of Xi’an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Rong Wang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi'an, Shaanxi, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi'an, Shaanxi, China
- Stomatology Hospital of Xi’an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
- * E-mail: (RZ); (QDL)
| | - Qi-Da Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- * E-mail: (RZ); (QDL)
| |
Collapse
|
9
|
Rabbani Arshad S, Zoljanahi Oskui I, Hashemi A. Thermal Analysis of Dental Implants in Mandibular Premolar Region: 3D FEM Study. J Prosthodont 2016; 27:284-289. [PMID: 27078043 DOI: 10.1111/jopr.12486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 11/26/2022] Open
Abstract
PURPOSE The distribution of temperature in a dental implant following hot food and beverage consumption is essential for evaluating the hazard this process may have on bone health. The purpose of this study was to predict the temperature distribution in the dental implant with/without a crown and the bone crest in contact with it using the finite element method. MATERIALS AND METHODS A 3D model of the implant and the mandible was prepared by using computer-aided design software. Implants were investigated in three cases: without crown (BHI), with ceramic crown (MHIc), and with zirconia crown (MHIz). Subsequently, temperature distribution was numerically determined along the implant system for two heat loadings. RESULTS In loading type I, the maximum temperature of the surrounding bone at the cervical implant/bone interface was obtained in the BHI model (39.1°C), and the lowest was obtained in the MHIc model (37.6°C). The maximum temperature rise in loading type II also took place in the BHI model (41.7°C). Moreover, the BHI model showed a rapid rise to the maximum temperature followed by a fast recovery compared to its two counterparts (MHIc, MHIz). In both loading types, the maximum temperature at the first point of contact between the implant and bone, and apical implant/bone interface was slightly higher in the MHIz than that in the MHIc. The maximum temperature in all the models was higher when subjected to cyclic loading. The maximum temperatures reached in all the models were lower than threshold temperatures, so thermal loading alone does not harm the jawbone. Moreover, the BHI was more vulnerable than the MHIc and the MHIz. CONCLUSIONS The results of this study suggest that dental implants should be covered with crowns as soon as possible, and patients with dental implants should avoid consumption of hot food and beverages without allowing time for the heat to dissipate.
Collapse
Affiliation(s)
| | - Iman Zoljanahi Oskui
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ata Hashemi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
10
|
Çelik Köycü B, İmirzalıoğlu P. Heat Transfer and Thermal Stress Analysis of a Mandibular Molar Tooth Restored by Different Indirect Restorations Using a Three-Dimensional Finite Element Method. J Prosthodont 2015; 26:460-473. [PMID: 26618930 DOI: 10.1111/jopr.12397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2015] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Daily consumption of food and drink creates rapid temperature changes in the oral cavity. Heat transfer and thermal stress caused by temperature changes in restored teeth may damage the hard and soft tissue components, resulting in restoration failure. This study evaluates the temperature distribution and related thermal stress on mandibular molar teeth restored via three indirect restorations using three-dimensional (3D) finite element analysis (FEA). MATERIALS AND METHODS A 3D finite element model was constructed of a mandibular first molar and included enamel, dentin, pulp, surrounding bone, and indirect class 2 restorations of type 2 dental gold alloy, ceramic, and composite resin. A transient thermal FEA was performed to investigate the temperature distribution and the resulting thermal stress after simulated temperature changes from 36°C to 4 or 60°C for a 2-second time period. RESULTS The restoration models had similar temperature distributions at 2 seconds in both the thermal conditions. Compared with 60°C exposure, the 4°C condition resulted in thermal stress values of higher magnitudes. At 4ºC, the highest stress value observed was tensile stress (56 to 57 MPa), whereas at 60°C, the highest stress value observed was compressive stress (42 to 43 MPa). These stresses appeared at the cervical region of the lingual enamel. The thermal stress at the restoration surface and resin cement showed decreasing order of magnitude as follows: composite > gold > ceramic, in both thermal conditions. CONCLUSIONS The properties of the restorative materials do not affect temperature distribution at 2 seconds in restored teeth. The pulpal temperature is below the threshold for vital pulp tissue (42ºC). Temperature changes generate maximum thermal stress at the cervical region of the enamel. With the highest thermal expansion coefficient, composite resin restorations exhibit higher stress patterns than ceramic and gold restorations.
Collapse
Affiliation(s)
- Berrak Çelik Köycü
- Department of Prosthetic Dentistry, Faculty of Dentistry, Başkent University, Ankara, Turkey
| | - Pervin İmirzalıoğlu
- Department of Prosthetic Dentistry, Faculty of Dentistry, Başkent University, Ankara, Turkey
| |
Collapse
|