1
|
Pampanella L, Petrocelli G, Abruzzo PM, Zucchini C, Canaider S, Ventura C, Facchin F. Cytochalasins as Modulators of Stem Cell Differentiation. Cells 2024; 13:400. [PMID: 38474364 DOI: 10.3390/cells13050400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Regenerative medicine aims to identify new research strategies for the repair and restoration of tissues damaged by pathological or accidental events. Mesenchymal stem cells (MSCs) play a key role in regenerative medicine approaches due to their specific properties, such as the high rate of proliferation, the ability to differentiate into several cell lineages, the immunomodulatory potential, and their easy isolation with minimal ethical issues. One of the main goals of regenerative medicine is to modulate, both in vitro and in vivo, the differentiation potential of MSCs to improve their use in the repair of damaged tissues. Over the years, much evidence has been collected about the ability of cytochalasins, a large family of 60 metabolites isolated mainly from fungi, to modulate multiple properties of stem cells (SCs), such as proliferation, migration, and differentiation, by altering the organization of the cyto- and the nucleo-skeleton. In this review, we discussed the ability of two different cytochalasins, cytochalasins D and B, to influence specific SC differentiation programs modulated by several agents (chemical or physical) or intra- and extra-cellular factors, with particular attention to human MSCs (hMSCs).
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Cinzia Zucchini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
2
|
Bryniarska-Kubiak N, Basta-Kaim A, Kubiak A. Mechanobiology of Dental Pulp Cells. Cells 2024; 13:375. [PMID: 38474339 DOI: 10.3390/cells13050375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
The dental pulp is the inner part of the tooth responsible for properly functioning during its lifespan. Apart from the very big biological heterogeneity of dental cells, tooth microenvironments differ a lot in the context of mechanical properties-ranging from 5.5 kPa for dental pulp to around 100 GPa for dentin and enamel. This physical heterogeneity and complexity plays a key role in tooth physiology and in turn, is a great target for a variety of therapeutic approaches. First of all, physical mechanisms are crucial for the pain propagation process from the tooth surface to the nerves inside the dental pulp. On the other hand, the modulation of the physical environment affects the functioning of dental pulp cells and thus is important for regenerative medicine. In the present review, we describe the physiological significance of biomechanical processes in the physiology and pathology of dental pulp. Moreover, we couple those phenomena with recent advances in the fields of bioengineering and pharmacology aiming to control the functioning of dental pulp cells, reduce pain, and enhance the differentiation of dental cells into desired lineages. The reviewed literature shows great progress in the topic of bioengineering of dental pulp-although mainly in vitro. Apart from a few positions, it leaves a gap for necessary filling with studies providing the mechanisms of the mechanical control of dental pulp functioning in vivo.
Collapse
Affiliation(s)
- Natalia Bryniarska-Kubiak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Andrzej Kubiak
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387 Kraków, Poland
| |
Collapse
|
3
|
Pasiewicz R, Valverde Y, Narayanan R, Kim JH, Irfan M, Lee NS, George A, Cooper LF, Alapati SB, Chung S. C5a complement receptor modulates odontogenic dental pulp stem cell differentiation under hypoxia. Connect Tissue Res 2022; 63:339-348. [PMID: 34030523 PMCID: PMC8611100 DOI: 10.1080/03008207.2021.1924696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM Alterations in the microenvironment change the phenotypes of dental pulp stem cells (DPSCs). The role of complement component C5a in the differentiation of DPSCs is unknown, especially under oxygen-deprived conditions. The aim of this study was to determine the effect of C5a on the odontogenic differentiation of DPSCs under normoxia and hypoxia. MATERIAL AND METHODS Human DPSCs were subjected to odontogenic differentiation in osteogenic media and treated with the C5a receptor antagonist-W54011 under normal and hypoxic conditions (2% oxygen). Immunochemistry, western blot, and PCR analysis for the various odontogenic differentiation genes/proteins were performed. RESULTS Our results demonstrated that C5a plays a positive role in the odontogenic differentiation of DPSCs. C5a receptor inhibition resulted in a significant decrease in odontogenic differentiation genes, such as DMP1, ON, RUNX2, DSPP compared with the control. This observation was further supported by the Western blot data for DSPP and DMP1 and immunohistochemical analysis. The hypoxic condition reversed this effect. CONCLUSIONS Our results demonstrate that C5a regulates the odontogenic DPSC differentiation under normoxia. Under hypoxia, C5a exerts a reversed function for DPSC differentiation. Taken together, we identified that C5a and oxygen levels are key initial signals during pulp inflammation to control the odontogenic differentiation of DPSCs, thereby, providing a mechanism for potential therapeutic interventions for dentin repair and vital tooth preservation.
Collapse
Affiliation(s)
- Ryan Pasiewicz
- Department of Endodontics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Yessenia Valverde
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Raghuvaran Narayanan
- Department of Endodontics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Ji-Hyun Kim
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Muhammad Irfan
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Nam-Seob Lee
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Anne George
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Lyndon F Cooper
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Satish B Alapati
- Department of Endodontics, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Seung Chung
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
4
|
Effects of mechanical force on proliferation and apoptosis of stem cells from human exfoliated deciduous teeth. Clin Oral Investig 2022; 26:5205-5213. [PMID: 35441898 DOI: 10.1007/s00784-022-04488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/08/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This study was designed to explore the effects of mechanical force on the proliferation, apoptosis, and morphology of stem cells from human exfoliated deciduous tooth pulp (SHEDs). MATERIALS AND METHODS Caries-free stranded deciduous teeth were extracted, and SHEDs were isolated through enzymatic digestion. The cultured SHEDs were subjected to different levels of mechanical stimuli (0, 100, 200, and 300 g) for 7 days (30 min/day) using external centrifugal force. Cell proliferation was evaluated with the CCK-8 assay, and the cell cycle and apoptosis were assessed by flow cytometry. The cell morphology was examined using transmission electron microscopy. RESULTS Cell proliferation assay showed no differences between the three stimulation groups and the control group in day 1 to day 3. From the 4th day, cell proliferation was significantly lower in the mechanical force groups than in the control group, but no significant difference was observed among the three mechanical force groups. Besides, there was no significant difference in cell apoptosis among the four groups for 7 days. On day 7 after stimulation, the SHEDs were shrunken, with significantly increased isochromosome in the nucleus and an increase in lysosomes. CONCLUSIONS Mechanical force can inhibit the proliferation and affect morphology of SHEDs, but it has no effect on cell apoptosis. CLINICAL RELEVANCE Mechanical force stimulation significantly inhibited cell proliferation of SHEDs. Mechanical force stimulation had no significant effect on cell apoptosis of SHEDs. The morphology and ultrastructure of SHEDs changed after mechanical force stimulation.
Collapse
|
5
|
Sabbagh J, Ghassibe-Sabbagh M, Fayyad-Kazan M, Al-Nemer F, Fahed JC, Berberi A, Badran B. Differences in osteogenic and odontogenic differentiation potential of DPSCs and SHED. J Dent 2020; 101:103413. [PMID: 32585262 DOI: 10.1016/j.jdent.2020.103413] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) are types of human dental tissue-derived mesenchymal stem cells (MSCs) that have emerged as an interesting and promising source of stem cells in the field of tissue engineering. The aim of this work is to isolate stem cells from DPSCs and SHED, cultivate them in vitro and compare their odontogenic differentiation potential. METHODS DPSCs and SHED were extracted from molars, premolars and canines of six healthy subjects aged 5-29 years. The cells were characterized, using flow cytometry, for mesenchymal stem cell surface markers. MTT colorimetric assay was applied to assess cell viability. Alizarin red staining, alkaline phosphatase (ALP) activity, quantitative real-time PCR (qRT-PCR) and western blot were carried out to determine DPSCs and SHED osteogenic/odontogenic differentiation. RESULTS DPSCs express higher STRO-1 and CD44 levels compared to SHED. Moreover, the cells differentiate and acquire columnar shape with a level of calcium deposition and mineralization that is the same between DPSCs and SHED. ALP activity, ALP, COLI, DMP-1, DSPP, OC, and RUNX2 (osteogenic/odontogenic differentiation markers) expression levels were higher in DPSCs. CONCLUSIONS DPSCs and SHED express MSCs markers. Although both cell types had calcium deposits, DPSCs presented a higher ALP activity level. In addition, DPSCs showed higher levels of osteogenic and odontogenic differentiation markers such as COLI, DSPP, OC, RUNX2, and DMP-1. These results suggest that DPSCs are closer to the phenotype of odontoblasts than SHED and may improve the efficacy of human dental tissue-derived mesenchymal stem cells therapeutic protocols. 'CLINICAL SIGNIFICANCE' DPSCs are closer than t SHED to the phenotype of odontoblasts. This would be helpful to enable better therapeutic decisions when applying MSCs-based therapy in the field of dentistry.
Collapse
Affiliation(s)
- Joseph Sabbagh
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon.
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon; Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| | - Fatima Al-Nemer
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| | - Jean Claude Fahed
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon.
| | - Antoine Berberi
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon.
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| |
Collapse
|
6
|
Li C, Jiang H. Altered expression of circular RNA in human dental pulp cells during odontogenic differentiation. Mol Med Rep 2019; 20:871-878. [PMID: 31173232 PMCID: PMC6625184 DOI: 10.3892/mmr.2019.10359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
The alterations in expression and function of circular RNA (circRNA) in human dental pulp cells (hDPCs) during odontogenic differentiation were investigated. To induce odontogenic differentiation, hDPCs (passage 3) were cultured for 14 days in odontogenic induction medium. circRNA high-throughput sequencing was performed using Illumina HiSeqseq™ 2000. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to evaluate the bio-functions of the identified circRNAs. To validate the results of circRNA sequencing, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed for two selected differentially expressed circRNAs. The RNA sequencing results revealed that 1,314 and 1,780 circRNAs were upregulated and downregulated, respectively, during odontogenic induction. Their predicted target miRNAs and genes are involved in several biological functions and signaling pathways, including the mitogen-associated protein kinase signaling pathway. The RT-qPCR results of the two selected circRNAs (hsa_circ_0015260 and hsa_circ_0006984) were consistent with the expression trend obtained using high-throughput sequencing. The results of the present study add to the current understanding of the regulatory mechanisms underlying hDPCs differentiation.
Collapse
Affiliation(s)
- Chen Li
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwei Jiang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
7
|
Temporal-controlled bioactive molecules releasing core-shell nano-system for tissue engineering strategies in endodontics. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:11-20. [PMID: 30844574 DOI: 10.1016/j.nano.2019.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 01/09/2023]
Abstract
Temporal-controlled release of bioactive molecules is of key importance in the clinical translation of tissue engineering techniques. We engineered a core-shell nano-system (TD-NS) that sequentially released transforming growth factor-β1 (TGF-β1), a chemotactic/proliferating growth factor and dexamethasone (Dex), an osteo/odontogenic agent in a temporal-controlled manner. In stage-1, there was a rapid release of TGF-β1, reaching a concentration of 2 ng/mL of TGF-β1 in 7 days to 14 days, which tapers subsequently. In stage-2, Dex was released linearly from 9 days to 28 days. The TD-NS group showed a significantly higher (P < 0.05) osteo/odontogenic differentiation compared to the control and free TGF-β1 group (Free-TD) that was further corroborated with animal models/histochemical examination. The findings from this study highlighted the potential of temporal-controlled delivery of TGF-β1 and Dex from a single nano-carrier to direct spatial and temporal-control for a cell-free tissue engineering strategy in the treatment of apical periodontitis.
Collapse
|
8
|
Castellanos G, Nasim S, Almora DM, Rath S, Ramaswamy S. Stem Cell Cytoskeletal Responses to Pulsatile Flow in Heart Valve Tissue Engineering Studies. Front Cardiovasc Med 2018; 5:58. [PMID: 29922678 PMCID: PMC5996090 DOI: 10.3389/fcvm.2018.00058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/15/2018] [Indexed: 01/12/2023] Open
Abstract
Heart valve replacement options remain exceedingly limited for pediatric patients because they cannot accommodate somatic growth. To overcome this shortcoming, heart valve tissue engineering using human bone marrow stem cells (HBMSCs) has been considered a potential solution to the treatment of critical congenital valvular defects. The mechanical environments during in vitro culture are key regulators of progenitor cell fate. Here, we report on alterations in HBMSCs, specifically in their actin cytoskeleton and their nucleus under fluid-induced shear stresses of relevance to heart valves. HBMSCs were seeded in microfluidic channels and were exposed to the following conditions: pulsatile shear stress (PSS), steady shear stress (SS), and no flow controls (n = 4/group). Changes to the actin filament structure were monitored and subsequent gene expression was evaluated. A significant increase (p < 0.05) in the number of actin filaments, filament density and angle (between 30° and 84°), and conversely a significant decrease (p < 0.05) in the length of the filaments were observed when the HBMSCs were exposed to PSS for 48 h compared to SS and no flow conditions. No significant differences in nuclear shape were observed among the groups (p > 0.05). Of particular relevance to valvulogenesis, klf2a, a critical gene in valve development, was significantly expressed only by the PSS group (p < 0.05). We conclude that HBMSCs respond to PSS by alterations to their actin filament structure that are distinct from SS and no flow conditions. These changes coupled with the subsequent gene expression findings suggest that at the cellular level, the immediate effect of PSS is to initiate a unique set of quantifiable cytoskeletal events (increased actin filament number, density and angle, but decrease in filament length) in stem cells, which could be useful in the fine-tuning of in vitro protocols in heart valve tissue engineering.
Collapse
Affiliation(s)
- Glenda Castellanos
- Tissue Engineered Mechanics Imaging and Materials Laboratory, Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Sana Nasim
- Tissue Engineered Mechanics Imaging and Materials Laboratory, Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Denise M Almora
- Tissue Engineered Mechanics Imaging and Materials Laboratory, Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Sasmita Rath
- Tissue Engineered Mechanics Imaging and Materials Laboratory, Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Sharan Ramaswamy
- Tissue Engineered Mechanics Imaging and Materials Laboratory, Biomedical Engineering, Florida International University, Miami, FL, United States
| |
Collapse
|
9
|
Valverde Y, Narayanan R, Alapati SB, Chmilewsky F, Huang CC, Ravindran S, Chung SH. Poly(Adenosine Phosphate Ribose) Polymerase 1 Inhibition Enhances Brain-derived Neurotrophic Factor Secretion in Dental Pulp Stem Cell-derived Odontoblastlike Cells. J Endod 2018; 44:1121-1125. [PMID: 29884339 DOI: 10.1016/j.joen.2018.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/23/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The nuclear enzyme poly(adenosine phosphate ribose) polymerase 1 (PARP-1) has been implicated in the maintenance and differentiation of several stem cells. The role of PARP-1 in dental pulp stem cell (DPSC) differentiation, especially in the context of its ability to modulate nerve regeneration factors, has not been investigated. Regeneration of neuronal components in pulp tissue is important for the assessment of tooth vitality. Brain-derived neurotrophic factor (BDNF) is known to play an integral signaling factor during nerve regeneration. In this study, we identified the role of PARP-1 in the modulation of BDNF in DPSC differentiation into odontoblastlike cells. METHODS Human DPSCs were prepared from healthy molars and cultured in regular and osteogenic media treated with PARP-1 antagonist and PARP-1 exogeneous protein. Polymerase chain reaction and immunohistochemistry analysis for BDNF and various differentiation markers were performed. RESULTS Our polymerase chain reaction results showed that differentiated cells show odontoblastlike properties because they express odontogenic markers such as dentin sialophosphoprotein and dentin matrix protein 1. Both PARP-1 inhibitor and protein did not affect odontogenic differentiation and proliferation because the number of the differentiated cells was unaffected, and the expression of dentin sialophosphoprotein and dentin matrix protein 1 was not significantly changed. There is the possibility that PARP-1 treatment induces DPSCs into the unique cell lineage. Some differentiated cells show a very unique morphology with large irregular cytoplasm and an oval nucleus. Moreover, PARP-1 inhibition significantly increased BDNF secretion in DPSC-derived odontoblastlike cells. This observation was also confirmed by immunohistochemistry. CONCLUSIONS Taken together, our results indicate PARP-1 as a negative regulator in BDNF secretion during odontogenic DPSC differentiation, showing its potential application for translational nerve regeneration strategies to improve dental pulp tissue vitality assessments.
Collapse
Affiliation(s)
- Yessenia Valverde
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Satish B Alapati
- Department of Endodontics, University of Illinois at Chicago, Chicago, Illinois
| | - Fanny Chmilewsky
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Chun-Chieh Huang
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Sriram Ravindran
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Seung H Chung
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
10
|
Monteiro N, Yelick PC. Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 2017; 11:2443-2461. [PMID: 27151766 PMCID: PMC6625321 DOI: 10.1002/term.2134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nelson Monteiro
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| | - Pamela C. Yelick
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| |
Collapse
|
11
|
Cui CY, Wang SN, Ren HH, Li AL, Qiu D, Gan YH, Dong YM. Regeneration of dental–pulp complex-like tissue using phytic acid derived bioactive glasses. RSC Adv 2017. [DOI: 10.1039/c7ra01480e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phytic acid derived bioactive calcium phosphosilicate (PSC) glasses were synthesised by using phytic acid as a phosphorus precursor. PSC have superior biocompatibility for dental pulp cells and ability to regenerate dentin–pulp complex to 45S5.
Collapse
Affiliation(s)
- Cai-Yun Cui
- Department of Cariology and Endodontology
- Peking University School and Hospital of Stomatology
- Beijing 100081
- P. R. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology
| | - Sai-Nan Wang
- Department of Cariology and Endodontology
- Peking University School and Hospital of Stomatology
- Beijing 100081
- P. R. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology
| | - Hui-Hui Ren
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Ai-Ling Li
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Ye-Hua Gan
- National Engineering Laboratory for Digital and Material Technology of Stomatology
- Beijing Key Laboratory of Digital Stomatology
- Beijing 100081
- P. R. China
- Central Laboratory
| | - Yan-Mei Dong
- Department of Cariology and Endodontology
- Peking University School and Hospital of Stomatology
- Beijing 100081
- P. R. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology
| |
Collapse
|
12
|
Strojny C, Boyle M, Bartholomew A, Sundivakkam P, Alapati S. Interferon Gamma-treated Dental Pulp Stem Cells Promote Human Mesenchymal Stem Cell Migration In Vitro. J Endod 2015; 41:1259-64. [PMID: 26051078 DOI: 10.1016/j.joen.2015.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 01/15/2015] [Accepted: 02/14/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Chronic inflammation disrupts dental pulp regeneration by disintegrating the recruitment process of progenitors for repair. Bone marrow-derived mesenchymal stem cells (BM-MSCs) share the common features with dental pulp stem cells (DPSCs). The aim of the study was to investigate the migration of BM-MSCs toward DPSCs in response to inflammatory chemoattractants. Additionally, our studies also delineated the signaling mechanisms from BM-MSCs in mediating the proliferation and differentiation of DPSCs in vitro. METHODS Human DPSCs and BM-MSCs between passages 2 and 4 were used and were grown in odontogenic differentiation medium. Mineralization was determined by alizarin red staining analysis. Migration was assessed using crystal violet staining in cells grown in Boyden chamber Transwell inserts (Corning Inc Foundation, Tewksbury, MA). The mineralization potential of DPSCs was evaluated using alkaline phosphatase activity assay. Real-time polymerase chain reaction analysis was performed to assess the gene expression profile of chemokine (C-X-C motif) ligand (Cxcl) 3, 5, 6, 10, 11, 12, 14, and 16; stromal cell-derived factor (SDF) α; vascular endothelial growth factor; and fibroblast growth factor. RESULTS Interferon gamma (FN-γ) treatment significantly abrogated the differentiation potential of DPSCs as shown by using alizarin red and alkaline phosphatase activity analysis. An increase in the migration of BM-MSCs was documented when cocultured with IFN-γ-treated DPSCs. RNA expression studies showed an increase in the levels of Cxcl6 and Cxcl12 in BM-MSCs when cocultured with IFN-γ-treated DPSCs. Additionally, an up-regulation of proangiogenic factors vascular endothelial growth factor and fibroblast growth factor were observed in DPSCs exposed to IFN-γ. CONCLUSIONS Our findings indicate that inflamed IFN-γ-treated DPSCs release factors (presumably Cxcl6 and 12) that contribute to the homing of MSCs. This model might provide a potential research tool for studying MSC-DPSC cross talk and for future studies involving the recruitment and sustainability of progenitor stem cells sustaining the inflammatory cascade to treat pulp inflammation.
Collapse
Affiliation(s)
- Chelsee Strojny
- Department of Endodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Michael Boyle
- Department of Endodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Amelia Bartholomew
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Premanand Sundivakkam
- Department of Endodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Satish Alapati
- Department of Endodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|