1
|
Kaur K, Varghese E, Eswara U, Goh Pei En J. Histologic and radiological observations of a human immature premolar with pulp necrosis treated with regenerative endodontic procedure - A case report of a four-year follow-up. Saudi Dent J 2023; 35:869-875. [PMID: 38025601 PMCID: PMC10658369 DOI: 10.1016/j.sdentj.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 12/01/2023] Open
Abstract
Background Reports are found on long-term radiographic follow-up of teeth treated with regenerative endodontic techniques, but scarce literature is observed regarding the tissue formed in the root canal. A four-year radiographic follow-up with histologic findings in an immature mandibular premolar with dens evaginatus that underwent a regenerative endodontic procedure (REP) is presented here. After four years following REP, the tooth was extracted for orthodontic purposes thereby presenting an opportunity to report the histologic findings. Summary The radiographic changes included a slight root lengthening and thickening and apex closure. Histologic evaluation revealed a fibrous connective tissue with an inflammatory infiltrate in the canal space. In the apical region, cementum-like irregular mineralization developed toward the center, giving the appearance of a closed apex. Root thickening, increase in length, and radiographic closure of the apex occurred due to cemental hyperplasia. Conclusion After 4 years following REP in an immature mandibular premolar with apical periodontitis, granulation tissue had formed in the root canal, indicating repair and not regeneration.
Collapse
Affiliation(s)
- Kanwardeep Kaur
- Faculty of Dentistry, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia
| | - Eby Varghese
- Department of Pediatric Dentistry, Faculty of Dentistry, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia
| | - Uma Eswara
- Department of Pediatric Dentistry, Faculty of Dentistry, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia
| | - Joanne Goh Pei En
- Department of Oral and Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Malaysia
| |
Collapse
|
2
|
Li J, Cheng J, Yang F, Yu J, Song G. Treatment outcomes of immature permanent necrotic evaginated teeth: A retrospective study comparing regenerative endodontic procedures with apexification. Int J Paediatr Dent 2023; 33:595-606. [PMID: 37158340 DOI: 10.1111/ipd.13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Few studies have compared the outcomes of regenerative endodontic procedures (REPs) and calcium hydroxide apexification focusing on necrotic teeth with dens evaginatus. AIM To qualitatively and quantitatively compare the treatment outcomes of REPs and calcium hydroxide apexification in teeth with dens evaginatus. DESIGN Immature permanent necrotic evaginated teeth treated with REPs or calcium hydroxide apexification for a follow-up period of at least 12 months were included. Tooth success and survival rates were analyzed. Changes in radiographic root length, apical diameter, and radiographic root area (RRA) were quantified. Prognostic factors that might influence RRA were identified via multivariate linear regression analysis. RESULTS A total of 112 teeth (50 REP cases and 62 apexification cases) with a median follow-up period of 26.5 months were included. Regenerative endodontic procedures and calcium hydroxide apexification exhibited similar satisfactory success and survival rates (p > .05). Additionally, 88 teeth were quantitatively analyzed. The REP group presented a significantly greater percentage increase in RRA and less decrease in apical diameter than the calcium hydroxide apexification group (p < .05). Teeth treated with REPs and with Stages 7 and 8 of root development showed a better gain in RRA (p < .05). CONCLUSION While REP and calcium hydroxide apexification had similar success and survival rates, teeth with REPs showed an increase in RRA, indicating that REP is the preferred choice.
Collapse
Affiliation(s)
- Jiahui Li
- Department of Paediatric Dentistry, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Cheng
- Department of Paediatric Dentistry, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fengjiao Yang
- Department of Paediatric Dentistry, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Yu
- Department of Paediatric Dentistry, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangtai Song
- Department of Paediatric Dentistry, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Widbiller M, Knüttel H, Meschi N, Durán-Sindreu Terol F. Effectiveness of endodontic tissue engineering in treatment of apical periodontitis: A systematic review. Int Endod J 2023; 56 Suppl 3:533-548. [PMID: 35699668 DOI: 10.1111/iej.13784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Regenerative endodontics has evolved in recent years with tissue engineering concepts in particular appearing promising. Endodontic tissue engineering (ETE) describes the various approaches based on the orthograde introduction of scaffolds or biomaterials (with or without cells) into the root canal to achieve pulp tissue regeneration. There are currently no systematic reviews investigating whether ETE is a suitable method for the treatment of endodontic disease in both mature and immature permanent teeth. OBJECTIVES The purpose of this systematic review was to determine the effectiveness of ETE in permanent teeth with pulp necrosis in comparison with conventional endodontic treatment. METHODS We searched MEDLINE, Embase and the Cochrane Library for published reports as well as Google Scholar for grey literature up to November 2021. Included were studies of patients with permanent immature or mature teeth and pulp necrosis with or without signs of apical periodontitis (P) comparing ETE (I) with calcium hydroxide apexification, apical plug and root canal treatment (C) in terms of tooth survival, pain, tenderness, swelling, need for medication (analgesics and antibiotics), radiographic evidence of reduction in apical lesion size, radiographic evidence of normal periodontal ligament space, function (fracture and restoration longevity), the need for further intervention, adverse effects (including exacerbation, restoration integrity, allergy and discolouration), oral health-related quality of life (OHRQoL), presence of sinus tract and response to sensibility testing (O). An observation period of at least 12 months was mandatory (T) and the number of patients in human experimental studies or longitudinal observational studies had to be at least 20 (10 in each arm) at the end (S). Risk of bias was appraised using the Cochrane risk-of-bias (RoB 2) tool. Two authors independently screened the records, assessed full texts for eligibility and evaluated risk of bias. Heterogeneity of outcomes and limited body of evidence did not allow for meta-analysis. RESULTS Two randomized clinical trials investigating cell transplantation approaches with a total of 76 participants (40 treated immature teeth and 36 treated mature teeth) were included for qualitative analysis. Both studies had moderate concerns in terms of risk of bias. Due to the lack of homogeneity a meta-analysis was not possible. Tooth survival for ETE, root canal treatment and apexification was 100% after 12 months. Teeth treated with ETE showed a higher number of cases with positive pulpal responses to sensitivity tests and with blood perfusion compared with root canal treatment or apexification. DISCUSSION This systematic review highlights that there is limited evidence for ETE approaches. Even though the results of this review suggest a high survival with ETE in mature and immature teeth, there is a moderate risk of bias due to methodological limitations in the included studies, so the overall results should be interpreted with caution. Lack of a robust control group was a common problem during literature screening, and outcomes besides dental survival were reported inconsistently. Future clinical trials need to address methodical as well as assessment concerns and report long-term results. CONCLUSION The benefits and high survival rates reported for ETE techniques suggest that this procedure might be an alternative to conventional procedures for permanent teeth with pulpal necrosis. However, more appropriate studies are needed to derive clinical recommendations. REGISTRATION PROSPERO (CRD42021266350).
Collapse
Affiliation(s)
- Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Helge Knüttel
- University Library, University of Regensburg, Regensburg, Germany
| | - Nastaran Meschi
- Department of Oral Health Sciences, BIOMAT - Biomaterials Research Group, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
4
|
EzEldeen M, Pedano De Piero MNS, Xu L, Driesen RB, Wyatt J, Van Gorp G, Meschi N, Van Meerbeek B, Lambrichts I, Jacobs R. Multimodal Imaging of Dental Pulp Healing Patterns following Tooth Autotransplantation And Regenerative Endodontic Treatment. J Endod 2023:S0099-2399(23)00324-2. [PMID: 37315781 DOI: 10.1016/j.joen.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Understanding the healing process of dental pulp after tooth autotransplantation (TAT) and regenerative endodontic treatment (RET) of immature teeth is important both clinically and scientifically. This study aimed to characterize the pattern of dental pulp healing in human teeth that underwent TAT and RET using state-of-the-art imaging techniques. MATERIALS AND METHODS This study examined four human teeth, two premolars that underwent TAT and two central incisors that received RET. The premolars were extracted after one year (case 1) and two years (case 2) due to ankylosis, while the central incisors were extracted after three years (cases 3 and 4) for orthodontic reasons. Nanofocus x-ray computed tomography was used to image the samples before being processed for histological and immunohistochemical analysis. Laser scanning confocal second harmonic generation imaging (SHG) was used to examine the patterns of collagen deposition. A maturity-matched premolar was included as a negative control for the histological and SHG analysis. RESULTS Analysis of the four cases revealed different patterns of dental pulp healing. Similarities were observed in the progressive obliteration of the root canal space. However, a striking loss of typical pulpal architecture was observed in the TAT cases, while a pulp-like tissue was observed in one of the RET cases. Odontoblast-like cells were observed in cases 1 and 3. CONCLUSION This study provided insights into the patterns of dental pulp healing after TAT and RET. The SHG imaging sheds light on the patterns of collagen deposition during reparative dentin formation.
Collapse
Affiliation(s)
- Mostafa EzEldeen
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; KU Leuven (University of Leuven), Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium.
| | - Mariano N Simon Pedano De Piero
- KU Leuven (University of Leuven), Department of Oral Health Sciences, Endodontology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Lianyi Xu
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ronald B Driesen
- Biomedical Research Institute, Hasselt University, Campus Diepenbeek, Agoralaan Building C, B-3590 Diepenbeek, Belgium
| | - Jan Wyatt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Gertrude Van Gorp
- KU Leuven (University of Leuven), Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Nastaran Meschi
- Section of Endodontology, Department of Oral Health Sciences, Ghent University, C. Heymanslaan 10/P8, 9000 Ghent, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT - Biomaterials Research group & UZ Leuven, University Hospitals Leuven, Dentistry, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute, Hasselt University, Campus Diepenbeek, Agoralaan Building C, B-3590 Diepenbeek, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Kwon SK, Kyeong M, Adasooriya D, Cho SW, Jung IY. Histologic and Electron Microscopic Characterization of a Human Immature Permanent Premolar with Chronic Apical Abscess 16 years after Regenerative Endodontic Procedures. J Endod 2023:S0099-2399(23)00289-3. [PMID: 37268290 DOI: 10.1016/j.joen.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Previous studies have reported successful clinical outcomes after regenerative endodontic procedures (REPs) for immature permanent teeth with pulpal infection. However, it remains unclear whether the procedures promote true regeneration or repair. This case report describes the histologic and electron microscopic characteristics of a human immature permanent premolar with a chronic apical abscess that was treated with an REP. Tooth #20 of a 9-year-old girl underwent an REP. At the 6-year follow-up, the patient was asymptomatic, and closure of the apex and thickening of the dentinal walls were observed. However, 16 years after the procedure, apical periodontitis recurred, necessitating apical surgery. The resected root fragments were obtained during the surgery and analyzed using micro-computed tomography, light microscopy, and scanning electron microscopy. Distinct dentinal tubules and interglobular dentin were observed in the regenerated hard tissue. Cementum-like tissue and a root canal were also observed in the apical fragment. The regenerated root tissue in this case exhibited a structure similar to the native root structure. Therefore, we believe that cell-free REPs possess regenerative potential for teeth diagnosed with pulp necrosis and chronic apical abscess.
Collapse
Affiliation(s)
- Seung-Kyung Kwon
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | - Minjae Kyeong
- Division of Anatomy and Developmental Biology, Department of Oral biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Dinuka Adasooriya
- Division of Anatomy and Developmental Biology, Department of Oral biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Il-Young Jung
- Professor, Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
6
|
EzEldeen M, Moroni L, Nejad ZM, Jacobs R, Mota C. Biofabrication of engineered dento-alveolar tissue. BIOMATERIALS ADVANCES 2023; 148:213371. [PMID: 36931083 DOI: 10.1016/j.bioadv.2023.213371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/19/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Oral health is essential for a good overall health. Dento-alveolar conditions have a high prevalence, ranging from tooth decay periodontitis to alveolar bone resorption. However, oral tissues exhibit a limited regenerative capacity, and full recovery is challenging. Therefore, regenerative therapies for dento-alveolar tissue (e.g., alveolar bone, periodontal membrane, dentin-pulp complex) have gained much attention, and novel approaches have been proposed in recent decades. This review focuses on the cells, biomaterials and the biofabrication methods used to develop therapies for tooth root bioengineering. Examples of the techniques covered are the multitude of additive manufacturing techniques and bioprinting approaches used to create scaffolds or tissue constructs. Furthermore, biomaterials and stem cells utilized during biofabrication will also be described for different target tissues. As these new therapies gradually become a reality in the lab, the translation to the clinic is still minute, with a further need to overcome multiple challenges and broaden the clinical application of these alternatives.
Collapse
Affiliation(s)
- Mostafa EzEldeen
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Lorenzo Moroni
- Institute for Technology-inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands
| | - Zohre Mousavi Nejad
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Biomaterials Research Group, Department of Nanotechnology and Advance Materials, Materials and Energy Research Center, P.O. Box: 31787-316, Karaj, Alborz, Iran
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Carlos Mota
- Institute for Technology-inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Neural Regeneration in Regenerative Endodontic Treatment: An Overview and Current Trends. Int J Mol Sci 2022; 23:ijms232415492. [PMID: 36555133 PMCID: PMC9779866 DOI: 10.3390/ijms232415492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases are the most common dental diseases. The traditional treatment is root canal therapy, which achieves satisfactory therapeutic outcomes-especially for mature permanent teeth. Apexification, pulpotomy, and pulp revascularization are common techniques used for immature permanent teeth to accelerate the development of the root. However, there are obstacles to achieving functional pulp regeneration. Recently, two methods have been proposed based on tissue engineering: stem cell transplantation, and cell homing. One of the goals of functional pulp regeneration is to achieve innervation. Nerves play a vital role in dentin formation, nutrition, sensation, and defense in the pulp. Successful neural regeneration faces tough challenges in both animal studies and clinical trials. Investigation of the regeneration and repair of the nerves in the pulp has become a serious undertaking. In this review, we summarize the current understanding of the key stem cells, signaling molecules, and biomaterials that could promote neural regeneration as part of pulp regeneration. We also discuss the challenges in preclinical or clinical neural regeneration applications to guide deep research in the future.
Collapse
|
8
|
Expert consensus on regenerative endodontic procedures. Int J Oral Sci 2022; 14:55. [PMID: 36450715 PMCID: PMC9712432 DOI: 10.1038/s41368-022-00206-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
Regenerative endodontic procedures (REPs) is a biologic-based treatment modality for immature permanent teeth diagnosed with pulp necrosis. The ultimate objective of REPs is to regenerate the pulp-dentin complex, extend the tooth longevity and restore the normal function. Scientific evidence has demonstrated the efficacy of REPs in promotion of root development through case reports, case series, cohort studies, and randomized controlled studies. However, variations in clinical protocols for REPs exist due to the empirical nature of the original protocols and rapid advancements in the research field of regenerative endodontics. The heterogeneity in protocols may cause confusion among dental practitioners, thus guidelines and considerations of REPs should be explicated. This expert consensus mainly discusses the biological foundation, the available clinical protocols and current status of REPs in treating immature teeth with pulp necrosis, as well as the main complications of this treatment, aiming at refining the clinical management of REPs in accordance with the progress of basic researches and clinical studies, suggesting REPs may become a more consistently evidence-based option in dental treatment.
Collapse
|
9
|
The Four Pillars for Successful Regenerative Therapy in Endodontics: Stem Cells, Biomaterials, Growth Factors, and Their Synergistic Interactions. Stem Cells Int 2022; 2022:1580842. [PMID: 36193253 PMCID: PMC9526564 DOI: 10.1155/2022/1580842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
Endodontics has made significant progress in regenerative approaches in recent years, thanks to advances in biologically based procedures or regenerative endodontic therapy (RET). In recent years, our profession has witnessed a clear conceptual shift in this therapy. RET was initially based on a blood clot induced by apical bleeding without harvesting the patient’s cells or cell-free RET. Later, the RET encompassed the three principles of tissue engineering, stromal/stem cells, scaffolds, and growth factors, aiming for the regeneration of a functional dentin pulp complex. The regenerated dental pulp will recover the protective mechanisms including innate immunity, tertiary dentin formation, and pain sensitivity. This comprehensive review covers the basic knowledge and practical information for translational applications of stem cell-based RET and tissue engineering procedures for the regeneration of dental pulp. It will also provide overall information on the emerging technologies in biological and synthetic matrices, biomaterials, and signaling molecules, recent advances in stem cell therapy, and updated experimental results. This review brings useful and timely clinical evidence for practitioners to understand the challenges faced for a successful cell-based RET and the importance of preserving or reestablishing tooth vitality. The clinical translation of these current bioengineering approaches will undoubtedly be beneficial to the future practice of endodontics.
Collapse
|
10
|
Zeng Q, Zhang J, Guo J, Liu S, Yang M, Lin J. Preoperative factors analysis on root development after regenerative endodontic procedures: a retrospective study. BMC Oral Health 2022; 22:374. [PMID: 36058906 PMCID: PMC9442966 DOI: 10.1186/s12903-022-02412-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/26/2022] [Indexed: 12/22/2022] Open
Abstract
Background Regenerative endodontic procedures (REPs) have achieved clinical success on the immature permanent teeth with pulp necrosis, and can promote root development. However, preoperative factors and their effects on root development of REPs have not been definitely concluded. The aim of this study was to investigate the preoperative factors that may influence the root development of REPs. Methods A total of 116 teeth in 110 patients treated with REPs in the Paediatric Dentistry Department and Endodontics Department from 2013 to 2017 were included in this study. Preoperative factors including aetiology, age, diagnosis and initial root morphology were collected retrospectively, and the associations between these factors and root development after REPs were analysed by Fisher's exact test and multivariate logistic regression model. Results The overall rate of root development after REPs was 89.7%. The dens evaginatus group showed a higher rate (98.8%) in root development than the trauma group (67.6%) (P < 0.01). There was no significant difference among the different age groups (7–13 years old) or among different diagnoses groups (P > 0.05). And it showed in the trauma group that the teeth with apical foramen sizes larger than 3 mm significantly promoted root development than those smaller than 3 mm (P < 0.01). Multivariate logistic regression indicated that aetiology was significantly correlated with root development of REPs (OR: 0.07, 95% CI 0.007, 0.627, P < 0.05). Conclusions The REPs promoted more root developments in the dens evaginatus group than the trauma group, indicating that aetiology may be correlated with the root development of REPs. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02412-x.
Collapse
Affiliation(s)
- Qian Zeng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jianying Zhang
- Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Hunan Key Laboratory of Oral Health Research, Changsha, Hunan, China
| | - Jiang Guo
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shuya Liu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Maobin Yang
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA.
| | - Jiacheng Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| |
Collapse
|
11
|
Iranmanesh P, Torabinejad M, Saatchi M, Toghraie D, Razavi SM, Khademi A. Effect of Duration of Root Canal Infection on the Ability of Dentin-Pulp Complex Regeneration of Immature Permanent Teeth: An Animal Study. J Endod 2022; 48:1301-1307.e2. [PMID: 35933045 DOI: 10.1016/j.joen.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Persistent infection is always considered the most important reason for the failure of dentin-pulp complex regeneration. The present study aims to evaluate the effect of the duration of root canal infection (from one to twelve weeks) on the ability of dentin-pulp complex regeneration. METHODS In this animal study, 64 roots of immature premolar teeth of four dogs were randomly divided into four groups. Positive control group; eight root canals treated with regenerative endodontic procedure (REP), negative control group; 12 infected root canals, intervention groups; 36 root canals infected with supragingival plaque (one, three, six, and 12 weeks) and treated with REP, an additional positive control group; eight normal roots. After three months, the teeth were investigated by radiographic images and immunohistochemical staining (CD31, CD34, S100 markers). In addition, DSPP gene expression was assessed using a real-time PCR technique. The results were analyzed at a significance level of 0.05. RESULTS Based on radiological evaluation among the intervention groups, the highest root canal development (length and width) occurred in the intervention group of one week, and the lowest radiological results were in the intervention groups of six and 12 weeks (One-way ANOVA, P <0.05). There was a significant difference between the groups in terms of CD31, CD34, S100 and, DSPP expression percentage (One-way ANOVA, P <0.05), in which the highest and lowest expression percentages belonged to the one- and 12 weeks groups, respectively, among the intervention groups. CONCLUSION This study demonstrated that long root canal infection decreased the ability of the body to regenerate dentin-pulp complex.
Collapse
Affiliation(s)
- Pedram Iranmanesh
- Department of Endodontics, Dental Research Center, School of Dentistry, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Masoud Saatchi
- Department of Endodontics, Dental Research Center, School of Dentistry, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran.
| | - Sayed Mohammad Razavi
- Department of Oral and Maxillofacial Pathology and Dental Implants Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Khademi
- Department of Endodontics, Dental Research Center, School of Dentistry, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
12
|
Orthodontic Loads in Teeth after Regenerative Endodontics: A Finite Element Analysis of the Biomechanical Performance of the Periodontal Ligament. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to analyse the stress distribution in the periodontal ligament and tooth structure of a cementum-reinforced tooth, a dentine-reinforced tooth and an immature tooth during orthodontic loads using a finite element analysis. A finite element model of a maxillary incisor and its supporting tissues was developed. The root was segmented into two parts: a part that represented a root in an immature state and an apical part that represented the tissue formed after regenerative endodontics. The apical part was given the mechanical properties of dentine or cementum. The three models underwent simulation of mesial load, palatal inclination and rotation. The mean stress values and stress distribution patterns of the periodontal ligament of the dentine- and cementum-reinforced teeth were similar in all scenarios. The maturation of the root, with either dentine or cementum, was beneficial for all scenarios, since the periodontal ligament of the immature tooth showed the highest mean stress values. Under the condition of this computational study, orthodontic loads can be applied in teeth previously treated with regenerative endodontics, since the distribution of stress is similar to those of physiologically mature teeth. In vivo studies should be performed to validate these results.
Collapse
|
13
|
Komada T, Mitomo K, Ikarashi T, Shimono M, Jung HS, Muramatsu T. Periodontal Ligament Cells Are Involved in the Formation of Intracanal Cementum-Like Tissue After Regenerative Endodontic Procedures: A Mouse in situ Model. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.864406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regenerative endodontic cell-homing procedures are frequently performed on injured immature teeth diagnosed with pulp necrosis and/or apical periodontitis. The representative histological finding after those procedures is cementum-like tissues filling in the root canal but details of the healing process remain unknown. We investigated that healing process histologically using a mouse in situ model. Regenerative endodontic procedures were experimentally performed on noninfected maxillary first molars of 6-week-old male C57BL/6 mice, after which the healing process was investigated using histology and immunohistochemistry. Immediately after the regenerative endodontic cell-homing procedures, blood clots were seen in the root canals that disappeared over time. On day 7, the blot clot in the root canal was replaced by granulation tissue. From day 14 onward, cementum-like tissues were filled in the root canals, while the amount of fibrous tissue was reduced. Immunohistochemically, positive reactions for periostin were seen in the fibrous tissue in the root canal, the apex, and periodontal ligament cells. On the other hand, positive reactions for nestin were not detected in the root canal. CD31-positive cells with a luminal structure were also observed in the fibrous tissue around the apex and around the newly formed cementum-like tissues in the root canal. Thus, in this study, we have established an in situ mouse model of regenerative endodontic procedures. The results of this study suggest that periodontal ligament cells and vascular endothelial cells grow into the root canals from the apex, replace the blood clots, and participate in the formation of cementum-like tissues with angiogenesis during the healing process of regenerative endodontic procedures.
Collapse
|
14
|
Revascularization of an Immature Permanent Tooth with Periapical Periodontitis Using Concentrated Growth Factor Assisted by Erbium Laser (2940 nm) Irrigation: A Case Report. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Revascularization has been incorporated into endodontic practice and become a viable treatment alternative for immature teeth with pulp necrosis. Thorough disinfection of the root canal is a key factor for successful revascularization. An erbium: yttrium–aluminium–garnet (Er: YAG) laser has been proved advantageous for efficient root canal disinfection. This article reports one case of periapical periodontitis caused by a fractured occlusal tubercle. Revascularization assisted by Er: YAG laser irrigation was carried out with long-term follow up. During the process of treatment, we opened drainage to relieve the acute symptoms first. The necrotic pulp was removed, and then the root canal was rinsed with 0.5% sodium hypochlorite (NaOCl) solution assisted by Er: YAG laser irrigation, dried, and filled with a triple-antibiotic paste. After two weeks, the intracanal medication was removed, and 9 mL of whole vein blood was taken from the patient to prepare concentrated growth factor (CGF) after failing to induce enough blood into the canal system by over-instrumenting. The newly prepared CGF was transferred into the root canal. A 3 mm mineral trioxide aggregate (MTA) was placed directly on the thrombus of the CGF and then restored with glass-ionomer cement (GIC). The case was followed up for more than four years to record the clinical symptoms and imaging manifestations. Er: YAG irrigation is an efficient root canal disinfection protocol with the advantages of easy operation and minimal risk, which might be applicable to the revascularization of necrotic immature permanent teeth.
Collapse
|
15
|
Galler KM, Akamp T, Knüttel H, Widbiller M. A critical analysis of clinical research methods to study regenerative endodontics. Int Endod J 2022; 55 Suppl 2:456-470. [PMID: 35338660 DOI: 10.1111/iej.13734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
Regenerative endodontic treatment such as revitalization provides a treatment option for immature teeth with pulp necrosis. The main difference to the alternative procedure, the apical plug, is the induction of a blood clot inside the canal as a scaffold for healing and new tissue formation. Due to the biology-based and minimally-invasive nature of the treatment, revitalization has raised considerable interest in recent years. Whereas the procedure is fairly new and recommendations from endodontic societies have been in place only for a few years, the treatment protocol has evolved over the past two decades. Evidence has been created, not only from laboratory and animal work, but also from clinical studies including case reports, cohort studies and eventually prospective randomized controlled clinical trials, systematic reviews and meta-analyses. However, the research methods and clinical studies with subsequent reports oftentimes present with methodical limitations, which makes it difficult to objectively assess the value of this treatment modality. Several open questions remain, including the need for a more differentiated indication of revitalization after different traumatic injuries, the long-term prognosis of treated teeth and the true benefits for the patient. Therefore, this review aims to identify and reflect on such limitations, scrutinizing study design, diagnostic tools, procedural details and outcome parameters. A core outcome set is also proposed in this context, which can be considered in future clinical investigations. These considerations may lead to a more detailed and stringent planning and execution of future studies in order to create high-quality evidence for the treatment modality of revitalization and thus provide more robust data, create a larger body of knowledge for clinicians and further specify current recommendations.
Collapse
Affiliation(s)
- K M Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | - T Akamp
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - H Knüttel
- University Library, University of Regensburg, Germany
| | - M Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Zhou C, Yuan Z, Xu H, Wu L, Xie C, Liu J. Regenerative Endodontic Procedures in Immature Permanent Teeth With Dental Trauma: Current Approaches and Challenges. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2021.767226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After dental trauma to immature permanent teeth (IPT), there can be pulpitis, necrotic, and periapical periodontitis, which will halt further root development. Traditional endodontic root canal treatments and apexification cannot revitalize the necrotic pulp to revitalize the tooth to promote further root development. As a consequence, IPT with thin dentinal walls can be prone to fracture and if a fracture occurs, the patient will likely suffer the loss of the tooth. In an attempt to save IPT, there has been a growing interest among dentists to use regenerative endodontic procedures (REPs) to revitalize a replace dental pulp to continue root development and strengthen the dentinal walls to help prevent a subsequent loss of the tooth. However, the effectiveness of REPs and the precise methods to successfully accomplish REPs are controversial. Therefore, the objective of this review is to compare the different approaches to REPs in case reports by highlighting their advantages and limitations.
Collapse
|
17
|
Markandey S, Das Adhikari H. Evaluation of blood clot, platelet-rich plasma, and platelet-rich fibrin–mediated regenerative endodontic procedures in teeth with periapical pathology: a CBCT study. Restor Dent Endod 2022; 47:e41. [DOI: 10.5395/rde.2022.47.e41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Swati Markandey
- Department of Conservative Dentistry and Endodontics, Dr. R. Ahmed Dental College and Hospital, Kolkata, India
| | - Haridas Das Adhikari
- Department of Conservative Dentistry and Endodontics, Dr. R. Ahmed Dental College and Hospital, Kolkata, India
| |
Collapse
|
18
|
Unpredictable Outcomes of a Regenerative Endodontic Treatment. Case Rep Dent 2021; 2021:2478310. [PMID: 34659840 PMCID: PMC8514905 DOI: 10.1155/2021/2478310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Regenerative endodontic treatment (RET) is a valuable treatment for necrotic immature teeth with many advantages such as increasing root length and thickness of root wall. The success of RETs is based on healthy stem cells, suitable scaffolds, and growth factors and takes place when bacterial contamination is well controlled. The aim of this article is to address controversy in a case with multiple success criteria. This paper reports a 9-year-old boy with a complicated crown fracture of the maxillary left central incisor about three years prior to referral with a diagnosis of intrusive luxation with spontaneous reeruption. The tooth had an underdeveloped root and a well-defined periapical radiolucent lesion around the root apex. RET was considered according to the stage of root development. Upon the three-week recall session, the clinical examination indicated that the patient was asymptomatic in the affected site. However, the patient returned two weeks later with a sinus tract pertaining to the apex of tooth #9. Therefore, debridement of the root canal space was repeated and the RET redone. On the second trial, the patient was symptom-free, but no more evidence of root maturation was observed on 18-month follow-up. The tooth was asymptomatic (without swelling, drainage, and pain) during this time, and esthetics was provided for the patient.
Collapse
|
19
|
Meschi N, EzEldeen M, Garcia AET, Lahoud P, Van Gorp G, Coucke W, Jacobs R, Vandamme K, Teughels W, Lambrechts P. Regenerative Endodontic Procedure of Immature Permanent Teeth with Leukocyte and Platelet-rich Fibrin: A Multicenter Controlled Clinical Trial. J Endod 2021; 47:1729-1750. [PMID: 34400199 DOI: 10.1016/j.joen.2021.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The aim of this nonrandomized, multicenter controlled clinical trial was to evaluate the impact of leukocyte-platelet-rich fibrin (LPRF) on regenerative endodontic procedures (REPs) of immature permanent teeth in terms of periapical bone healing (PBH) and further root development (RD). METHODS Healthy patients between 6-25 years with an inflamed or necrotic immature permanent tooth were included and divided between the test (= REP + LPRF) and control (= REP-LPRF) group depending on their compliance and the clinical setting (university hospital or private practice). After receiving REP ± LPRF, the patients were recalled after 3, 6, 12, 24, and 36 months. At each recall session, the teeth were clinically and radiographically (by means of a periapical radiograph [PR]) evaluated. A cone-beam computed tomographic (CBCT) imaging was taken preoperatively and 2 and 3 years postoperatively. PBH and RD were quantitatively and qualitatively assessed. RESULTS Twenty-nine teeth with a necrotic pulp were included, from which 23 (9 test and 14 control) were analyzed. Three teeth in the test group had a flare-up reaction in the first year after REP. Except for 2 no shows, all the analyzed teeth survived up to 3 years after REP, and, in case of failure, apexification preserved them. Complete PBH was obtained in 91.3% and 87% of the cases based on PR qualitative and quantitative evaluation, respectively, with no significant difference between the groups with respect to the baseline. The PR quantitative change in RD at the last recall session with respect to the baseline was not significant (all P values > .05) in both groups. The qualitative assessment of the type of REP root healing was nonuniform. In the test group, 55.6% of the teeth presented no RD and no apical closure. Only 50% of the 14 teeth assessed with CBCT imaging presented complete PBH. Regarding volumetric measurements on RD 3 years after REP for the change with respect to the baseline in root hard tissue volume, mean root hard tissue thickness, and apical area, the control group performed significantly in favor of RD than the test group (P = .03, .003, and 0.05 respectively). For the volumetric change 3 years after REP with respect to the baseline in root length and maximum root hard tissue thickness, no significant difference (P = .72 and .4, respectively) was found between the groups. The correlation between the PR and CBCT variables assessing RD was weak (root lengthening) to very weak (root thickening). CONCLUSIONS REP-LPRF seems to be a viable treatment option to obtain PBH and aid further RD of necrotic immature permanent teeth. Caution is needed when evaluating REP with PR.
Collapse
Affiliation(s)
- Nastaran Meschi
- Department of Oral Health Sciences, Endodontology, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium; Department of Oral Health Sciences, BIOMAT-Biomaterials Research Group, KU Leuven and Dentistry, Leuven, Belgium.
| | - Mostafa EzEldeen
- OMFS IMPATH-Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Andres Eduardo Torres Garcia
- Department of Oral Health Sciences, Endodontology, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium; OMFS IMPATH-Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Lahoud
- OMFS IMPATH-Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Gertrude Van Gorp
- Department of Oral Health Sciences, Endodontology, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Wim Coucke
- Freelance Statistical Consultant, Heverlee, Belgium
| | - Reinhilde Jacobs
- OMFS IMPATH-Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Department of Oral Health Sciences, Restorative Dentistry, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, Periodontology, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Paul Lambrechts
- Department of Oral Health Sciences, Endodontology, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium; Department of Oral Health Sciences, BIOMAT-Biomaterials Research Group, KU Leuven and Dentistry, Leuven, Belgium
| |
Collapse
|
20
|
Current Concepts of Dentinal Hypersensitivity. J Endod 2021; 47:1696-1702. [PMID: 34302871 DOI: 10.1016/j.joen.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Although many clinical studies have reported on the prevalence of dental pain, far fewer studies have focused on the mechanisms of dental pain. This is an important gap because increased understanding of dental pain mechanisms may lead to improved diagnostic tests or therapeutic interventions. The aim of this study was to comprehensively review the literature on the mechanisms of dentinal sensitivity. METHODS PubMed and Ovid were searched for articles that addressed dentinal pain and or pulpal sensitivity. Because of the breadth of research ranging from cellular/molecular studies to clinical trials, a narrative review on the mechanisms of dentinal sensitivity was constructed based on the literature. RESULTS Five various mechanisms for dentinal sensitivity have been proposed: (1) the classic hydrodynamic theory, (2) direct innervation of dentinal tubules, (3) neuroplasticity and sensitization of nociceptors, (4) odontoblasts serving as sensory receptors, and (5) algoneurons. CONCLUSIONS These theories are not mutually exclusive, and it is possible that several of them contribute to dentinal sensitivity. Moreover, pulpal responses to tissue injury may alter the relative contribution of these mechanisms. For example, pulpal inflammation may lead to neuronal sprouting and peripheral sensitization. Knowledge of these mechanisms may prompt the development of therapeutic drugs that aim to disrupt these mechanisms, leading to more effective treatments for pulpal pain.
Collapse
|
21
|
Cui D, Yu S, Zhou X, Liu Y, Gan L, Pan Y, Zheng L, Wan M. Roles of Dental Mesenchymal Stem Cells in the Management of Immature Necrotic Permanent Teeth. Front Cell Dev Biol 2021; 9:666186. [PMID: 34095133 PMCID: PMC8170050 DOI: 10.3389/fcell.2021.666186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Dental caries and trauma always lead to pulp necrosis and subsequent root development arrest of young permanent teeth. The traditional treatment, apexification, with the absence of further root formation, results in abnormal root morphology and compromises long-term prognosis. Regeneration endodontics procedures (REPs) have been developed and considered as an alternative strategy for management of immature permanent teeth with pulpal necrosis, including cell-free and cell-based REPs. Cell-free REPs, including revascularization and cell homing with molecules recruiting endogenous mesenchymal stem cells (MSCs), have been widely applied in clinical treatment, showing optimistic periapical lesion healing and continued root development. However, the regenerated pulp-dentin complex is still absent in these cases. Dental MSCs, as one of the essentials of tissue engineering, are vital seed cells in regenerative medicine. Dental MSC-based REPs have presented promising potential with pulp-dentin regeneration in large animal studies and clinical trials via cell transplantation. In the present review, we summarize current understanding of the biological basis of clinical treatments for immature necrotic permanent teeth and the roles of dental MSCs during this process and update the progress of MSC-based REPs in the administration of immature necrotic permanent teeth.
Collapse
Affiliation(s)
- Dixin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sihan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Tanaka S, Toriumi T, Ito T, Okuwa Y, Futenma T, Otake K, Akiyama Y, Kurita K, Nagao T, Honda M. Histological analysis of dental pulp response in immature or mature teeth after extra-oral subcutaneous transplantation into mice dorsum. J Oral Sci 2021; 63:184-190. [PMID: 33731506 DOI: 10.2334/josnusd.20-0611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE The aim of this study was to assess the response of dental pulp associated with donor or host cells in the pulp chamber and root canal after extra-oral transplantation. METHODS Wild type or green fluorescent protein (GFP) transgenic first molars from 3-week, 6-week, and 12-week mice were transplanted into the subcutaneous layer of GFP mice or wild type mice. The teeth were histologically and immunohistochemically examined at 5 weeks after transplantation. RESULTS Blood vessels present in the original coronal pulp had anastomosed with those from the recipient tissue that had invaded the root canal. Two distinct eosin-stained extracellular matrices were observed in the pulp chamber and root canal. Acellular matrix composed of nestin-positive, odontoblast-like cells invaded from the outside and was seen in the root canal of 3-week teeth. Cellular matrix comprising alkaline phosphatase (ALP)-positive fibroblast-like cells appeared in the original coronal pulp. In the root canal of the 6-week and 12-week teeth, cellular extracellular matrix consisting of ALP-positive fibroblast-like cells had invaded the recipient tissue. CONCLUSION Dental pulp from immature teeth might be able to regenerate dentin-like tissue. This model could be useful in the development of an optimized vitalization treatment.
Collapse
Affiliation(s)
- Sho Tanaka
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Taku Toriumi
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| | - Tatsuaki Ito
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Yuta Okuwa
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| | - Taku Futenma
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| | - Keita Otake
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Yasunori Akiyama
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| | - Kenichi Kurita
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Toru Nagao
- Department of Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
23
|
Chlorite oxidized oxyamylose differentially influences the microstructure of fibrin and self assembling peptide hydrogels as well as dental pulp stem cell behavior. Sci Rep 2021; 11:5687. [PMID: 33707502 PMCID: PMC7952722 DOI: 10.1038/s41598-021-84405-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/16/2021] [Indexed: 11/24/2022] Open
Abstract
Tailored hydrogels mimicking the native extracellular environment could help overcome the high variability in outcomes within regenerative endodontics. This study aimed to evaluate the effect of the chemokine-binding and antimicrobial polymer, chlorite-oxidized oxyamylose (COAM), on the microstructural properties of fibrin and self-assembling peptide (SAP) hydrogels. A further goal was to assess the influence of the microstructural differences between the hydrogels on the in vitro behavior of human dental pulp stem cells (hDPSCs). Structural and mechanical characterization of the hydrogels with and without COAM was performed by atomic force microscopy and scanning electron microscopy to characterize their microstructure (roughness and fiber length, diameter, straightness, and alignment) and by nanoindentation to measure their stiffness (elastic modulus). Then, hDPSCs were encapsulated in hydrogels with and without COAM. Cell viability and circularity were determined using confocal microscopy, and proliferation was determined using DNA quantification. Inclusion of COAM did not alter the microstructure of the fibrin hydrogels at the fiber level while affecting the SAP hydrogel microstructure (homogeneity), leading to fiber aggregation. The stiffness of the SAP hydrogels was sevenfold higher than the fibrin hydrogels. The viability and attachment of hDPSCs were significantly higher in fibrin hydrogels than in SAP hydrogels. The DNA content was significantly affected by the hydrogel type and the presence of COAM. The microstructural stability after COAM inclusion and the favorable hDPSCs' response observed in fibrin hydrogels suggest this system as a promising carrier for COAM and application in endodontic regeneration.
Collapse
|
24
|
Lin LM, Huang GTJ, Sigurdsson A, Kahler B. Clinical cell-based versus cell-free regenerative endodontics: clarification of concept and term. Int Endod J 2021; 54:887-901. [PMID: 33389773 DOI: 10.1111/iej.13471] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
There is no consensus on the true meaning of clinical regenerative endodontics, and there is confusion over the concept and the term. Commonly used terms include revitalization and revascularization. The clinical methods for endodontic revitalization procedures and the tissue engineering concept differ depending on whether there is exogenous delivery of cells - called cell therapy, or not. Here, in this review, the difference is clarified by emphasizing the correct terminology: cell-free versus cell-based regenerative endodontic therapy (CF-RET versus CB-RET). The revitalization procedures practised clinically do not fit into the modern tissue engineering concepts of pulp regeneration but can be categorized as CF-RET. The modern tissue engineering concept in pulp regeneration is a CB-RET, which so far is at the clinical trial stage. However, histological examination of teeth following regenerative endodontic treatments reveals healing with repair derived from stem cells that originate from the periodontal, bone and other tissues. The aim of regenerative endodontics is regeneration of the pulp-dentine complex. This review discusses why CF-RET is unlikely to regenerate a pulp-dentine complex with current protocols. The American Association of Endodontists and the European Society of Endodontology have not yet recommended autologous stem cell transplantation (CB-RERT) which aspires for regeneration. Therefore, an understanding of the concept, term, difficulties and differences in current protocols is important for the clinician. However, rather than being discouraged that ideal regeneration has not been achieved to date, repair can be an acceptable outcome in clinical regenerative endodontics as it has also been accepted in medicine. Repair should also be considered in the context that resolution of the clinical signs/symptoms of pulp necrosis/apical periodontitis is generally reliably obtained in clinical regenerative endodontics.
Collapse
Affiliation(s)
- L M Lin
- College of Dentistry, New York University, New York, NY, USA
| | - G T-J Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - A Sigurdsson
- College of Dentistry, New York University, New York, NY, USA
| | - B Kahler
- School of Dentistry, University of Queensland, Brisbane, Australia
| |
Collapse
|
25
|
Lahoud P, EzEldeen M, Beznik T, Willems H, Leite A, Van Gerven A, Jacobs R. Artificial Intelligence for Fast and Accurate 3-Dimensional Tooth Segmentation on Cone-beam Computed Tomography. J Endod 2021; 47:827-835. [PMID: 33434565 DOI: 10.1016/j.joen.2020.12.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Tooth segmentation on cone-beam computed tomographic (CBCT) imaging is a labor-intensive task considering the limited contrast resolution and potential disturbance by various artifacts. Fully automated tooth segmentation cannot be achieved by merely relying on CBCT intensity variations. This study aimed to develop and validate an artificial intelligence (AI)-driven tool for automated tooth segmentation on CBCT imaging. METHODS A total of 433 Digital Imaging and Communications in Medicine images of single- and double-rooted teeth randomly selected from 314 anonymized CBCT scans were imported and manually segmented. An AI-driven tooth segmentation algorithm based on a feature pyramid network was developed to automatically detect and segment teeth, replacing manual user contour placement. The AI-driven tool was evaluated based on volume comparison, intersection over union, the Dice score coefficient, morphologic surface deviation, and total segmentation time. RESULTS Overall, AI-driven and clinical reference segmentations resulted in very similar segmentation volumes. The mean intersection over union for full-tooth segmentation was 0.87 (±0.03) and 0.88 (±0.03) for semiautomated (SA) (clinical reference) versus fully automated AI-driven (F-AI) and refined AI-driven (R-AI) tooth segmentation, respectively. R-AI and F-AI segmentation showed an average median surface deviation from SA segmentation of 9.96 μm (±59.33 μm) and 7.85 μm (±69.55 μm), respectively. SA segmentations of single- and double-rooted teeth had a mean total time of 6.6 minutes (±76.15 seconds), F-AI segmentation of 0.5 minutes (±8.64 seconds, 12 times faster), and R-AI segmentation of 1.2 minutes (±33.02 seconds, 6 times faster). CONCLUSIONS This study showed a unique fast and accurate approach for AI-driven automated tooth segmentation on CBCT imaging. These results may open doors for AI-driven applications in surgical and treatment planning in oral health care.
Collapse
Affiliation(s)
- Pierre Lahoud
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Leuven, Belgium.
| | | | | | - André Leite
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, Brazil
| | | | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium; Oral Facial Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
26
|
Abstract
A loss of organs or the destruction of tissue leaves wounds to which organisms and living things react differently. Their response depends on the extent of damage, the functional impairment and the biological potential of the organism. Some can completely regenerate lost body parts or tissues, whereas others react by forming scars in the sense of a tissue repair. Overall, the regenerative capacities of the human body are limited and only a few tissues are fully restored when injured. Dental tissues may suffer severe damage due to various influences such as caries or trauma; however, dental care aims at preserving unharmed structures and, thus, the functionality of the teeth. The dentin-pulp complex, a vital compound tissue that is enclosed by enamel, holds many important functions and is particularly worth protecting. It reacts physiologically to deleterious impacts with an interplay of regenerative and reparative processes to ensure its functionality and facilitate healing. While there were initially no biological treatment options available for the irreversible destruction of dentin or pulp, many promising approaches for endodontic regeneration based on the principles of tissue engineering have been developed in recent years. This review describes the regenerative and reparative processes of the dentin-pulp complex as well as the morphological criteria of possible healing results. Furthermore, it summarizes the current knowledge on tissue engineering of dentin and pulp, and potential future developments in this thriving field.
Collapse
|
27
|
Impact of remnant healthy pulp and apical tissue on outcomes after simulated regenerative endodontic procedure in rat molars. Sci Rep 2020; 10:20967. [PMID: 33262423 PMCID: PMC7708843 DOI: 10.1038/s41598-020-78022-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
When regenerative endodontic procedures (REPs) are performed on immature teeth diagnosed with pulp necrosis and apical periodontitis, various healing patterns occur. Furthermore, infected immature teeth with endodontic disorders often exhibit some remnant pulp and apical tissue. Therefore, this study investigated the impact of remnant healthy or fully functional pulp and apical tissue on healing patterns after REPs. Simulated REPs were performed on non-infected immature rat molars with different amounts of remnant pulp and apical tissue. Healing patterns in these teeth were assessed after 28 days. Teeth with 0.81–0.91 mm of remnant pulp healed with pulp-like tissue, dentin, and osteodentin-like dentin-associated mineralized tissue (OSD-DAMT); teeth with 0.60–0.63 mm of remnant pulp healed with pulp-like tissue and OSD-DAMT; teeth with 0.13–0.43 mm of remnant pulp healed with periodontal ligament (PDL)-like tissue, OSD-DAMT, and cementum-like dentin-associated mineralized tissue (CEM-DAMT); and teeth with disorganization of pulp and apical tissues at 0.15–0.38 mm beyond the root apex healed with PDL-like tissue, CEM-DAMT, and intracanal bone (IB). Loss of Hertwig’s epithelial root sheath was observed with IB formation. These results showed that four distinct healing patterns occurred after REPs, depending on the preoperative amount of remnant healthy pulp and apical tissue.
Collapse
|
28
|
Abstract
The pulp-dentin complex is innervated by a high density of trigeminal neurons free nerve endings. These neuronal fibers are highly specialized to sense noxious stimuli such as thermal, mechanical, chemical, and biological cues. This robust alert system provides immediate feedback of potential or actual injury triggering reflex responses that protect the teeth from further injury. In the case of patients, pain is the most important experience that leads them to seek oral health care. The adequate removal of the etiology, such as caries, provides ample opportunity for the robust reparative and regenerative potential of the pulp-dentin complex to restore homeostasis. In addition to this elaborated surveillance system, evidence has accumulated that sensory neuronal fibers can potentially modulate various steps of the reparative and regenerative process through cellular communication processes. These include modulation of immunologic, angiogenic, and mineralization responses. Despite these orchestrated cellular events, the defense of the pulp-dentin complex may be overwhelmed, resulting in pulp necrosis and apical periodontitis. Regenerative endodontic procedures have evolved to restore the once lost function of the pulp-dentin complex. After these procedures, a large subset of successful cases demonstrates a positive response to sensitivity testing, suggesting reinnervation of the canal space. This process is likely mediated through cellular and noncellular release of neurotrophic factors such as brain-derived nerve growth factor. In addition, these newly recruited nerve fibers appear equipped to sense thermal stimuli through nonhydrodynamic mechanisms. Collectively, the significance of innervation in the normal physiology of the pulp-dentin complex and its role in regeneration need to be better appreciated to promote further research in this area that could potentially bring new therapeutic opportunities.
Collapse
Affiliation(s)
- Anibal Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
| |
Collapse
|
29
|
Abstract
Two increasingly common endodontic procedures, vital pulp therapy (VPT) and regenerative endodontic procedures, rely on dental tissue regeneration/repair mechanisms with the aid of biomaterials. These materials are applied in close contact to the pulpal tissue and are required to be biocompatible, form an antimicrobial seal, not induce staining, and be easy to manipulate. Historically, calcium hydroxide played an important role in VPT. However, over the last 3 decades, significant efforts in research and industry have been made to develop various biomaterials, including hydraulic tricalcium silicate cements. The present review summarized various hydraulic tricalcium silicate cements and their biological properties in clinical procedures, namely VPT and regenerative endodontic procedures.
Collapse
|
30
|
|
31
|
Wu JL, McIntyre PW, Hong JM, Yassen GH, Bruzzaniti A. Effects of radiopaque double antibiotic pastes on the proliferation, alkaline phosphatase activity and mineral deposition of dental pulp stem cells. Arch Oral Biol 2020; 117:104764. [PMID: 32485262 DOI: 10.1016/j.archoralbio.2020.104764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of two radiopaque agents, barium sulfate (BaSO4) or zirconium oxide (ZrO2) in double antibiotic paste (DAP), on the proliferation and mineral deposition of human dental pulp stem cells (DPSC). MATERIALS AND METHODS Radiopaque antimicrobial medicaments composed of methylcellulose (MC) thickening polymer with BaSO4 or ZrO2 and either 1 or 5 mg/mL DAP (equal portions of metronidazole and ciprofloxacin) were used to investigate DPSC proliferation after 3 days, and alkaline phosphatase (ALP) activity and mineral deposition after 7 and 14 days. Radiopaque agents without DAP and Ca(OH)2 were used as controls. RESULTS MC-BaSO4 DAP and MC-ZrO2 DAP at 1 or 5 mg/mL had no adverse effect on DPSC proliferation, compared to the media and MC controls. MC-ZrO2 (DAP-free) greatly increased ALP activity after 7 days. DPSC mineral deposition was modestly reduced at 7 days by MC-BaSO4 DAP and MC-ZrO2 DAP, but not by DAP-free radiopaque agents, and was most reduced by 5 mg/mL DAP in the 14-day cultures. CONCLUSIONS MC-BaSO4 or MC-ZrO2 medicaments containing up to 5 mg/mL of DAP supported the proliferation and early osteogenic differentiation of DPSC. Low DAP concentrations and short culture times led to more favorable effects on ALP activity and mineral deposition by DPSC. The findings suggest that radiopaque agents added for the purpose of detecting whether medicaments occupy the full extent of the root canal may have clinical applications. Radiopaque antibiotic medicaments containing low DAP concentrations may be an alternative to Ca(OH)2 for regenerative endodontic procedures.
Collapse
Affiliation(s)
- Jennifer L Wu
- Department of Biomedical Sciences & Comprehensive Care, Indiana University School of Dentistry, 1121 W Michigan St, Indianapolis, IN, 46202, USA
| | - Patrick W McIntyre
- Department of Biomedical Sciences & Comprehensive Care, Indiana University School of Dentistry, 1121 W Michigan St, Indianapolis, IN, 46202, USA
| | - Jung Min Hong
- Department of Biomedical Sciences & Comprehensive Care, Indiana University School of Dentistry, 1121 W Michigan St, Indianapolis, IN, 46202, USA
| | - Ghaeth H Yassen
- Department of Endodontics, Case Western Reserve School of Dental Medicine, 2124 Cornell Rd, Cleveland, OH, 44106, USA.
| | - Angela Bruzzaniti
- Department of Biomedical Sciences & Comprehensive Care, Indiana University School of Dentistry, 1121 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
32
|
An Immunofluorescence Study to Analyze Wound Healing Outcomes of Regenerative Endodontics in an Immature Premolar with Chronic Apical Abscess. J Endod 2020; 46:627-640. [DOI: 10.1016/j.joen.2020.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
|
33
|
Cymerman JJ, Nosrat A. Regenerative Endodontic Treatment as a Biologically Based Approach for Non-Surgical Retreatment of Immature Teeth. J Endod 2020; 46:44-50. [DOI: 10.1016/j.joen.2019.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
|
34
|
Digka A, Sakka D, Lyroudia K. Histological assessment of human regenerative endodontic procedures (
REP
) of immature permanent teeth with necrotic pulp/apical periodontitis: A systematic review. AUST ENDOD J 2019; 46:140-153. [DOI: 10.1111/aej.12371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Anna Digka
- Department of Endodontology School of Dentistry Aristotle University of Thessaloniki Thessaloniki Greece
| | - Dimitra Sakka
- Department of Endodontology School of Dentistry Aristotle University of Thessaloniki Thessaloniki Greece
| | - Kleoniki Lyroudia
- Department of Endodontology School of Dentistry Aristotle University of Thessaloniki Thessaloniki Greece
| |
Collapse
|
35
|
Bucchi C, Gimeno-Sandig Á, Valdivia-Gandur I, Manzanares-Céspedes C, DE Anta JM. A Regenerative Endodontic Approach in Mature Ferret Teeth Using Rodent Preameloblast-conditioned Medium. In Vivo 2019; 33:1143-1150. [PMID: 31280203 DOI: 10.21873/invivo.11584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND This study evaluated the effectiveness of a regenerative endodontic approach to regenerate the pulp tissue in mature teeth of ferret. The presence of odontoblast-like cells in the newly-formed tissue of teeth treated with or without preameloblast-conditioned medium was evaluated based on morphological criteria. MATERIALS AND METHODS Twenty-four canines from six ferrets were treated. The pulp was removed, and the apical foramen was enlarged. After inducing the formation of a blood clot, a collagen sponge with or without preameloblast-conditioned medium was placed underneath the cementoenamel junction. The samples were analyzed at the eighth week of follow-up. RESULTS Vascularized connective tissue was observed in 50% of teeth, without differences between groups. The tissue occupied the apical third of the root canals. Odontoblast-like cells were not observed in any group. CONCLUSION Revitalization of mature teeth is possible, at least in the apical third of the root canal. Further experimental research is needed to produce more reliable outcomes.
Collapse
Affiliation(s)
- Cristina Bucchi
- Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapy, Faculty of Medicine and Health Sciences, Bellvitge Health Science Campus, University of Barcelona, Barcelona, Spain.,Department of Integral Adult Dentistry, CICO Research Centre, University of La Frontera, Temuco, Chile
| | - Álvaro Gimeno-Sandig
- Biotherium Bellvitge Health Science Campus, Scientific and Technological Centers, University of Barcelona, Barcelona, Spain
| | - Iván Valdivia-Gandur
- Biomedical Department and Dentistry Department, University of Antofagasta, Antofagasta, Chile
| | - Cristina Manzanares-Céspedes
- Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapy, Faculty of Medicine and Health Sciences, Bellvitge Health Science Campus, University of Barcelona, Barcelona, Spain
| | - Josep Maria DE Anta
- Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapy, Faculty of Medicine and Health Sciences, Bellvitge Health Science Campus, University of Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Widbiller M, Austah O, Lindner SR, Sun J, Diogenes A. Neurotrophic Proteins in Dentin and Their Effect on Trigeminal Sensory Neurons. J Endod 2019; 45:729-735. [PMID: 31036381 DOI: 10.1016/j.joen.2019.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION A plethora of bioactive molecules present during tooth formation become sequestered in the mineralized dentin matrix and can be released into the pulp tissue after demineralization from carious lesions. However, neurotrophic factors are differentially expressed and secreted during various stages of odontogenesis. Thus, the aims of this study were (1) to investigate their presence and relative abundance in crown and root dentin and (2) to evaluate the bioactivity of dentin-derived proteins on neuronal cells. METHODS Dentin matrix proteins (DMPs) were isolated from matched roots and crowns of extracted healthy human third molars. The total protein amount as well as the concentration of growth factors and neurotrophic proteins were quantified. The impact on neuritogenesis was determined with mouse trigeminal neurons in vitro and by a hydrogel implant model in vivo. Transient receptor potential cation channel subfamily V member 1 (TRPV1) sensitization of DMP-conditioned neurons was evaluated by single-cell calcium imaging. RESULTS The relative concentration of neurotrophic molecules revealed that nerve growth factor is the most abundant neurotrophin with 3-fold increased expression in radicular dentin. Similarly, brain-derived neurotrophic factor and neurotrophin 3 are more abundant in radicular than coronal dentin. Conversely, glial cell line-derived neurotrophic factor is more abundant in coronal dentin, whereas neurotrophin 4 is equally distributed. Dentin matrix proteins promoted neurite outgrowth in vitro and axonal targeting in vivo, with a greater effect observed by radicular dentin extracts. Furthermore, DMPs sensitized TRPV1 responses in mouse trigeminal neurons with greater activity seen with extracts from root dentin. CONCLUSIONS Neurotrophic factors are differentially distributed between coronal and radicular dentin with different effects of dentin-derived proteins on axonal growth and targeting as well as the sensitization of TRPV1. Thus, extracellular proteins from the dentin matrix are likely involved in neurogenic responses to caries and could be exploited in clinical regenerative endodontics to promote reinnervation and enhance tissue regeneration.
Collapse
Affiliation(s)
- Matthias Widbiller
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Obadah Austah
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sophia R Lindner
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas; Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jenny Sun
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Anibal Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
| |
Collapse
|