1
|
Mohamed M, Hashem AAR, Obeid MF, Abu-Seida A. Histopathological and immunohistochemical profiles of pulp tissues in immature dogs' teeth to two recently introduced pulpotomy materials. Clin Oral Investig 2023; 27:3095-3103. [PMID: 36781475 PMCID: PMC10264498 DOI: 10.1007/s00784-023-04915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
OBJECTIVE The pulpal response to Hoffmann's Pulpine mineral (PMIN) and Pulpine NE (PNE) was compared to mineral trioxide aggregate (MTA) when used as pulpotomy materials in immature permanent teeth in dogs. MATERIALS AND METHODS Immature premolars were randomly divided according to the observation period into three equal groups (n = 24) (10 days, 30 days, and 90 days) then furtherly subdivided into 3 subgroups according to the material used. Histopathological analysis regarding inflammatory cell infiltration and dentin bridge (DB) formation was done. Immunohistochemical analysis was performed using osteopontin marker. RESULTS The results showed that after 90 days, both MTA and PMIN subgroups had 100% complete thick DB without inflammation in 87.5% of the samples, while the PNE subgroup failed to form DB in 37.5% of the samples and 50% of samples showed thin initial DB with heavy inflammation in 62.5% of the samples. There was no significant difference between MTA and PMIN, while there was a statistically significant difference between PNE and the two other subgroups in DB formation and inflammatory cell infiltration (P > 0.05). After 90 days, MTA showed the highest mean value of osteopontin positive fraction area followed by PMIN without statistically significant differences, while the least value was recorded in PNE subgroup with statistically significant difference with the remaining subgroups (P < 0.05). CONCLUSION PMIN is a promising alternative to MTA when used for pulpotomy. CLINICAL RELEVANCE Vital pulp therapy in immature teeth can be done using PMIN as an alternative to MTA.
Collapse
Affiliation(s)
- Mai Mohamed
- Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | | | | | | |
Collapse
|
2
|
Fujino S, Hamano S, Tomokiyo A, Sugiura R, Yamashita D, Hasegawa D, Sugii H, Fujii S, Itoyama T, Miyaji H, Maeda H. Dopamine is involved in reparative dentin formation through odontoblastic differentiation of dental pulp stem cells. Sci Rep 2023; 13:5668. [PMID: 37024514 PMCID: PMC10079685 DOI: 10.1038/s41598-023-32126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Conventional direct pulp-capping materials induce pulp cells to secrete various biomolecules in pulp tissues that promote reparative dentin formation through induction of odontoblastic differentiation of dental pulp stem cells (DPSCs). However, these biomolecules sometimes induce bone-like dentin with poor sealing properties. Therefore, exploration of biomolecules that allow tight sealing by tubular reparative dentin is required. We recently reported that dopamine (DA) is involved in dentinogenesis. Hence, we investigated the effect of DA on odontoblastic differentiation of DPSCs and reparative dentin formation. Both tyrosine hydroxylase (TH), a DA synthetase, and DA were expressed in odontoblast-like cells in vivo. In vitro, their expression was increased during odontoblastic differentiation of DPSCs. Furthermore, TH-overexpressing DPSCs had promoted odontoblastic differentiation and DA production. Moreover, DA stimulation promoted their differentiation and induced tubular reparative dentin. These results suggest that DA produced by TH is involved in odontoblastic differentiation of DPSCs and has an inductive capacity for reparative dentin formation similar to primary dentin. This study may lead to the development of therapy to preserve vital pulp tissues.
Collapse
Affiliation(s)
- Shoko Fujino
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Atsushi Tomokiyo
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Risa Sugiura
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daiki Yamashita
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Itoyama
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, 7 Kita13-jonishi Kita-ku, Sapporo, 060-8586, Japan
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
3
|
Hoveizi E, Naddaf H, Ahmadianfar S, Bernardi S. Using Odontoblasts Derived from Dog Endometrial Stem Cells Encapsulated in Fibrin Gel Associated with BMP-2 in a Rat Pulp-Capping Model. Curr Issues Mol Biol 2023; 45:2984-2999. [PMID: 37185720 PMCID: PMC10136987 DOI: 10.3390/cimb45040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
This study aimed to treat dental injuries by utilizing one of the most advanced tissue engineering techniques. In this study, an in vitro model was employed to investigate the proliferation and odontogenic differentiation of canine endometrial stem cells (C-EnSCs). Furthermore, the dentin regeneration potential of odontoblast like-cells (OD) derived from C-EnSCs was assessed in rats. The C-EnSCs were isolated by the enzymatic method and identified by flow cytometry. The C-EnSCs were encapsulated in fibrin gel associated with signaling factors to create the proper conditions for cell growth and differentiation. Then, the OD cells were associated with bone morphologic protein-2 (BMP-2) to promote dentin formation in vivo. The animal model used to evaluate the regenerative effect of cells and biomaterials included the preparation of the left maxillary first molar of rats for direct pulp capping operation. Animals were divided into four groups: group 1, a control group without any treatment, group 2, which received fibrin, group 3, which received fibrin with ODs (fibrin/ODs), and group 4, which received fibrin with ODs and BMP-2 (fibrin/ODs/BMP-2). The morphological observations showed the differentiation of C-EnSCs into adipose, bone, neural cells, and ODs. Furthermore, the histomorphometric data of the treated teeth showed how fibrin gel and BMP2 at a concentration of 100 ng/mL provided an optimal microenvironment for regenerating dentin tissue in rats, which was increased significantly with the presence of OD cells within eight weeks. Our study showed that using OD cells derived from C-EnSCs encapsulated in fibrin gel associated with BMP2 can potentially be an appropriate candidate for direct pulp-capping and dentin regeneration.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Hadi Naddaf
- Department of Clinical Sciences, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Sina Ahmadianfar
- Department of Clinical Sciences, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Sara Bernardi
- Department of Life Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
4
|
Encapsulation of human endometrial stem cells in chitosan hydrogel containing titanium oxide nanoparticles for dental pulp repair and tissue regeneration in male Wistar rats. J Biosci Bioeng 2023; 135:331-340. [PMID: 36709084 DOI: 10.1016/j.jbiosc.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023]
Abstract
This study aimed to determine the impact of human endometrial stem cells (EnSCs) and titanium oxide nanoparticles (TiO2 NPs) on dental pulp repair and regeneration in an animal model through dentine development and tissue regeneration. The EnSCs were put on a three-dimensional (3D) chitosan scaffold containing TiO2 NPs after obtaining and purifying the collagenase enzyme. Pulps were exposed on the maxillary left first molar of all rats followed by direct pulp capping with the experimental scaffolds, as follows. Groups were: 1, control group without any treatment; 2, chitosan group (CS); 3, chitosan group with stem cells (CS/SCs); 4, chitosan group with stem cells and TiO2 NPs (CS/EnSCs/TiO2). Glass ionomer was used as a sealant in all groups. The teeth were extracted and histologically evaluated after 8 weeks. The quality and amount of dentine in the CS/EnSCs/TiO2 group were higher than in the other groups. The combination of EnSCs with TiO2 NPs and 3D chitosan scaffolds had a synergistic effect on each other, evidencing increased speed and quality of dentine formation. Using EnSCs with TiO2 NPs on a 3D chitosan scaffold can be a suitable combination for direct pulp capping and dentine regeneration in a rat molar tooth model.
Collapse
|
5
|
Anada R, Hara ES, Nagaoka N, Okada M, Kamioka H, Matsumoto T. Important roles of odontoblast membrane phospholipids in early dentin mineralization. J Mater Chem B 2023; 11:657-666. [PMID: 36541228 DOI: 10.1039/d2tb02351b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of this study was to first identify the timing and location of early mineralization of mouse first molar, and subsequently, to characterize the nucleation site for mineral formation in dentin from a materials science viewpoint and evaluate the effect of environmental cues (pH) affecting early dentin formation. Early dentin mineralization in mouse first molars began in the buccal central cusp on post-natal day 0 (P0), and was first hypothesized to involve collagen fibers. However, elemental mapping indicated the co-localization of phospholipids with collagen fibers in the early mineralization area. Co-localization of phosphatidylserine and annexin V, a functional protein that binds to plasma membrane phospholipids, indicated that phospholipids in the pre-dentin matrix were derived from the plasma membrane. A 3-dimensional in vitro biomimetic mineralization assay confirmed that phospholipids from the plasma membrane are critical factors initiating mineralization. Additionally, the direct measurement of the tooth germ pH, indicated it to be alkaline. The alkaline environment markedly enhanced the mineralization of cell membrane phospholipids. These results indicate that cell membrane phospholipids are nucleation sites for mineral formation, and could be important materials for bottom-up approaches aiming for rapid and more complex fabrication of dentin-like structures.
Collapse
Affiliation(s)
- Risa Anada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan. .,Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Emilio Satoshi Hara
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama, Japan
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
6
|
Alharbi H, Khalil W, Alsofi L, Binmadi N, Elnahas A. The effect of low-level laser on the quality of dentin barrier after capping with bioceramic material: A histomorphometric analysis. AUST ENDOD J 2022; 49:27-37. [PMID: 35229961 DOI: 10.1111/aej.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/24/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
The study aims to investigate the quality of dentin barriers and pulp reaction to EndoSequence Root Repair Material (ERRM) combined with low-level laser application. In eight dogs, pulps were exposed via class V, half of the samples received low-level diode laser at 870 nm. Thereafter, cavities were capped with fast-set or regular-set ERRM. The specimens were processed for histomorphological and immunohistochemical examination after 2 weeks and 2 months. Dentin bridges were observed in all samples, and 87.5% were complete. The low-level laser group had significantly more reparative dentin area than the non-lased group (p < 0.05). The dentin bridges were found to have an unprecedented tubularity of 43%-89%. Tiny dentin island formation was observed within the material particles. Initial mild-to-moderate inflammatory reactions were observed, which subsided after 2 months. RUNX2 and osteocalcin staining were evident for all samples at both time intervals. Low-level laser combined with bioactive ERRM is effective in inducing reparative dentin formation.
Collapse
Affiliation(s)
- Hanan Alharbi
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Conservative Sciences, Division of Endodontics, College of Dentistry, Qassim University, Qassim, Saudi Arabia
| | - Wafaa Khalil
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Loai Alsofi
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nada Binmadi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Elnahas
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| |
Collapse
|
7
|
Rosa V, Sriram G, McDonald N, Cavalcanti BN. A critical analysis of research methods and biological experimental models to study pulp regeneration. Int Endod J 2022; 55 Suppl 2:446-455. [PMID: 35218576 PMCID: PMC9311820 DOI: 10.1111/iej.13712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/01/2022]
Abstract
With advances in knowledge and treatment options, pulp regeneration is now a clear objective in clinical dental practice. For this purpose, many methodologies have been developed in attempts to address the putative questions raised both in research and in clinical practice. In the first part of this review, laboratory‐based methods will be presented, analysing the advantages, disadvantages, and benefits of cell culture methodologies and ectopic/semiorthotopic animal studies. This will also demonstrate the need for alignment between two‐dimensional and three‐dimensional laboratory techniques to accomplish the range of objectives in terms of cell responses and tissue differentiation. The second part will cover observations relating to orthotopic animal studies, describing the current models used for this purpose and how they contribute to the translation of regenerative techniques to the clinic.
Collapse
Affiliation(s)
- Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Neville McDonald
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Bruno Neves Cavalcanti
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Sulistyowati I, Sukpaita T, Limjeerajarus CN, Ampornaramveth RS. Hydroxamate-Based Histone Deacetylase Inhibitors as Potential Mediators to Induce Dentine Regeneration by Human Dental Pulp Cell. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.765462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human dental pulp cells (hDPCs) have shown their plasticity when treated with the hydroxamate-based histone deacetylase (HDAC) inhibitor members, Trichostatin A (TSA), and suberoylanilide hydroxamic acid (SAHA). However, a comparison of their potency to stimulate odontoblast-like differentiation and mineralization has not been reported. The aim of our study was to confirm and compare these TSA and SAHA effects. Primary hDPCs cultured with/without various TSA or SAHA concentrations were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), ALP activity, alizarin red staining, and scratch wound healing assays. The inhibitory effect of TSA and SAHA on inhibiting the activity of HDAC was evaluated by HDAC activity assay. Odontoblast-related gene expression was determined using RT-qPCR. The MTT assay indicated that TSA or SAHA did not affect hDPC viability. TSA or SAHA treatment-induced odontoblast-like differentiation as evidenced by a significant increase in alkaline phosphatase activity and mineral deposition after 400 nM TSA or 1 μM SAHA treatment. A significant increase in nuclear factor I C, kruppel like factor 4, dentin matrix acidic phosphoprotein 1, dentin sialophosphoprotein, collagen type I alpha 1 chain, alkaline phosphatase (ALPL), integrin-binding sialoprotein, bone gamma-carboxyglutamate protein, vascular endothelial growth factor A, and cyclin-dependent kinase inhibitor 1A gene expression analyzed by RT-qPCR, at 24, 72 h, 7, and 10 days of treatment. The activity of HDAC in hDPCs culture was significantly inhibited after 72 h TSA and SAHA treatment. The scratch wound healing assay displayed enhanced cell migration at 72 h after TSA or SAHA treatment. Our findings demonstrated that TSA and SAHA have similar stimulatory effects in inducing HDPC odontogenic differentiation and mineralization and propose another potential use of TSA and SAHA to promote dentin regeneration.
Collapse
|
9
|
Biomineralization potential and biological properties of a new tantalum oxide (Ta 2O 5)-containing calcium silicate cement. Clin Oral Investig 2021; 26:1427-1441. [PMID: 34382106 PMCID: PMC8816786 DOI: 10.1007/s00784-021-04117-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/01/2021] [Indexed: 12/16/2022]
Abstract
Objective The present study evaluated the biological effects and biomineralization potential of a new tantalum oxide (Ta2O5)–containing material designed for vital pulp therapy or perforation repair (NeoMTA 2), compared to NeoMTA Plus and Bio-C Repair. Material and methods Human dental pulp stem cells (hDPSCs) were exposed to different eluates from NeoMTA Plus, NeoMTA 2, and Bio-C Repair. Ion release from each material was determined using inductively coupled plasma-optical emission spectrometry (ICP-MS). The biological experiments performed were MTT assays, apoptosis/necrosis assays, adhesion assays, migration assays, morphology evaluation, and reactive oxygen species (ROS) production analysis. Biomineralization was assessed by Alizarin red S staining. Finally, osteo/odontogenic gene expression was determined by real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR). Data were analyzed using one-way ANOVA followed by Tukey’s multiple comparison test. Results NeoMTA 2 displayed a significantly higher calcium release compared to the other materials (p < 0.05). When hDPSCs were cultured in presence of the different material eluates, all groups exhibited similar hDPSC viability and migration rates when compared to untreated cells. Substantial cell attachment and spreading were observed in all materials’ surfaces, without significant differences. hDPSCs treated with NeoMTA 2 displayed an upregulation of ALP, Col1A1, RUNX2 (p < 0.001), ON, and DSPP genes (p < 0.05), and showed the highest mineralization potential compared to other groups (p < 0.001). Finally, the more concentrated eluates from these materials, specially NeoMTA Plus and NeoMTA 2, promoted higher ROS production in hDPSCs compared to Bio-C Repair and control cells (p < 0.001), although these ROS levels did not result in increased cell death. Conclusions The new tantalum oxide (Ta2O5)–containing material shows an adequate cytocompatibility and the ability to promote biomineralization without using chemical osteogenic inducers, showing great potential as a new material for vital pulp therapy. Clinical relevance NeoMTA 2 seems to be a promising material for vital pulp therapy. Further studies considering its biocompatibility and biomineralization potential are necessary.
Collapse
|
10
|
The Role of Dendritic Cells during Physiological and Pathological Dentinogenesis. J Clin Med 2021; 10:jcm10153348. [PMID: 34362130 PMCID: PMC8348392 DOI: 10.3390/jcm10153348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The dental pulp is a soft connective tissue of ectomesenchymal origin that harbors distinct cell populations, capable of interacting with each other to maintain the vitality of the tooth. After tooth injuries, a sequence of complex biological events takes place in the pulpal tissue to restore its homeostasis. The pulpal response begins with establishing an inflammatory reaction that leads to the formation of a matrix of reactionary or reparative dentin, according to the nature of the exogenous stimuli. Using several in vivo designs, antigen-presenting cells, including macrophages and dendritic cells (DCs), are identified in the pulpal tissue before tertiary dentin deposition under the afflicted area. However, the precise nature of this phenomenon and its relationship to inherent pulp cells are not yet clarified. This literature review aims to discuss the role of pulpal DCs and their relationship to progenitor/stem cells, odontoblasts or odontoblast-like cells, and other immunocompetent cells during physiological and pathological dentinogenesis. The concept of “dentin-pulp immunology” is proposed for understanding the crosstalk among these cell types after tooth injuries, and the possibility of immune-based therapies is introduced to accelerate pulpal healing after exogenous stimuli.
Collapse
|
11
|
Santos JM, Marques JA, Diogo P, Messias A, Sousa V, Sequeira D, Palma PJ. Influence of Preoperative Pulp Inflammation in the Outcome of Full Pulpotomy Using a Dog Model. J Endod 2021; 47:1417-1426. [PMID: 34229033 DOI: 10.1016/j.joen.2021.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION This study aimed to evaluate the impact of preoperative pulp inflammation on the histologic outcome of full pulpotomy performed in mature permanent posterior teeth using 4 different biomaterials. METHODS Five beagle dogs (providing a total of 120 roots) were selected. Dentin exposure was performed in teeth from the second and third quadrants. One week later, full pulpotomy procedures were performed using 4 different bioactive materials (ProRoot MTA [MTA], TotalFill BC Putty [BC], Biodentine [BIO], and an experimental cement [ie, pulp capping material]). The hemostasis time was registered. After 14 weeks, the animals were killed. Pulp-dentin tissues were histologically and radiographically assessed. The significance level was set at .05. RESULTS Teeth with previously exposed dentin revealed a statistically significant increase in the time required to achieve hemostasis (P < .001), therefore confirming the pulp inflammation status induced by 1-week exposure of occlusal dentin before performing full pulpotomy. There was no radiographic evidence of root resorption, periapical radiolucency, or lamina dura alterations. No statistically significant differences were observed between normal and inflamed pulp regardless of the evaluated histologic parameters. Moreover, histologic data concerning calcified barrier formation and the pulp tissue response show better results for BIO without statistical differences compared with MTA or BC (P > .05). The pulp capping material presented a lower performance, with statistically significant differences being detected in regard to the remaining 3 tested materials (P < .001). CONCLUSIONS Radiographic and histologic outcomes of full pulpotomy are not jeopardized by short-term preoperative pulp inflammation. Moreover, BIO, MTA, and BC cements present suitable alternatives to be used as pulp capping agents.
Collapse
Affiliation(s)
- João Miguel Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovation and Research in Oral Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Joana A Marques
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Patrícia Diogo
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovation and Research in Oral Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Messias
- Center for Innovation and Research in Oral Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Institute of Oral Implantology and Prosthodontics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vitor Sousa
- Institute of Pathological Anatomy, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Diana Sequeira
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo J Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovation and Research in Oral Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Chen Q, Zheng L, Zhang Y, Huang X, Wang F, Li S, Yang Z, Liang F, Hu J, Jiang Y, Li Y, Zhou P, Luo W, Zhang H. Special AT-rich sequence-binding protein 2 (Satb2) synergizes with Bmp9 and is essential for osteo/odontogenic differentiation of mouse incisor mesenchymal stem cells. Cell Prolif 2021; 54:e13016. [PMID: 33660290 PMCID: PMC8016638 DOI: 10.1111/cpr.13016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Mouse incisor mesenchymal stem cells (MSCs) have self-renewal ability and osteo/odontogenic differentiation potential. However, the mechanism controlling the continuous self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs remains unclear. Special AT-rich sequence-binding protein 2 (SATB2) positively regulates craniofacial patterning, bone development and regeneration, whereas SATB2 deletion or mutation leads to craniomaxillofacial dysplasia and delayed tooth and root development, similar to bone morphogenetic protein (BMP) loss-of-function phenotypes. However, the detailed mechanism underlying the SATB2 role in odontogenic MSCs is poorly understood. The aim of this study was to investigate whether SATB2 can regulate self-renewal and osteo/odontogenic differentiation of odontogenic MSCs. MATERIALS AND METHODS Satb2 expression was detected in the rapidly renewing mouse incisor mesenchyme by immunofluorescence staining, quantitative RT-PCR and Western blot analysis. Ad-Satb2 and Ad-siSatb2 were constructed to evaluate the effect of Satb2 on odontogenic MSCs self-renewal and osteo/odontogenic differentiation properties and the potential role of Satb2 with the osteogenic factor bone morphogenetic protein 9 (Bmp9) in vitro and in vivo. RESULTS Satb2 was found to be expressed in mesenchymal cells and pre-odontoblasts/odontoblasts. We further discovered that Satb2 effectively enhances mouse incisor MSCs self-renewal. Satb2 acted synergistically with the potent osteogenic factor Bmp9 in inducing osteo/odontogenic differentiation of mouse incisor MSCs in vitro and in vivo. CONCLUSIONS Satb2 promotes self-renewal and osteo/odontogenic differentiation of mouse incisor MSCs. Thus, Satb2 can cooperate with Bmp9 as a new efficacious bio-factor for osteogenic regeneration and tooth engineering.
Collapse
Affiliation(s)
- Qiuman Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Liwen Zheng
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yuxin Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Xia Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Feilong Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Shuang Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Zhuohui Yang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Fang Liang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Jing Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yucan Jiang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Yeming Li
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| | - Pengfei Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Wenping Luo
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesThe Affiliated Hospital of Stomatology of Chongqing Medical UniversityChongqingChina
- Department of Pediatric DentistryThe Affiliated Stomatology Hospital, Chongqing Medical UniversityChongqingChina
| |
Collapse
|
13
|
Yin J, Xu J, Cheng R, Shao M, Qin Y, Yang H, Hu T. Role of connexin 43 in odontoblastic differentiation and structural maintenance in pulp damage repair. Int J Oral Sci 2021; 13:1. [PMID: 33414369 PMCID: PMC7791050 DOI: 10.1038/s41368-020-00105-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/31/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023] Open
Abstract
Dental pulp can initiate its damage repair after an injury of the pulp–dentin complex by rearrangement of odontoblasts and formation of newly differentiated odontoblast-like cells. Connexin 43 (Cx43) is one of the gap junction proteins that participates in multiple tissue repair processes. However, the role of Cx43 in the repair of the dental pulp remains unclear. This study aimed to determine the function of Cx43 in the odontoblast arrangement patterns and odontoblastic differentiation. Human teeth for in vitro experiments were acquired, and a pulp injury model in Sprague-Dawley rats was used for in vivo analysis. The odontoblast arrangement pattern and the expression of Cx43 and dentin sialophosphoprotein (DSPP) were assessed. To investigate the function of Cx43 in odontoblastic differentiation, we overexpressed or inhibited Cx43. The results indicated that polarized odontoblasts were arranged along the pulp–dentin interface and had high levels of Cx43 expression in the healthy teeth; however, the odontoblast arrangement pattern was slightly changed concomitant to an increase in the Cx43 expression in the carious teeth. Regularly arranged odontoblast-like cells had high levels of the Cx43 expression during the formation of mature dentin, but the odontoblast-like cells were not regularly arranged beneath immature osteodentin in the pulp injury models. Subsequent in vitro experiments demonstrated that Cx43 is upregulated during odontoblastic differentiation of the dental pulp cells, and inhibition or overexpression of Cx43 influence the odontoblastic differentiation. Thus, Cx43 may be involved in the maintenance of odontoblast arrangement patterns, and influence the pulp repair outcomes by the regulation of odontoblastic differentiation.
Collapse
Affiliation(s)
- Jiaxin Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Jue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuandong Qin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Responses of oral-microflora-exposed dental pulp to capping with a triple antibiotic paste or calcium hydroxide cement in mouse molars. Regen Ther 2020; 15:216-225. [PMID: 33426222 PMCID: PMC7770410 DOI: 10.1016/j.reth.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction Responses of oral-microflora-exposed dental pulp to a triple antibiotic paste (TAP), a mixture of ciprofloxacin, metronidazole, and minocycline in ointment with macrogol and propylene glycol, remain to be fully clarified at the cellular level. This study aimed to elucidate responses of oral-microflora-exposed dental pulp to capping with TAP in mouse molars. Methods A cavity was prepared on the first molars of 6-week-old mice to expose the dental pulp for 24 h. The exposed pulp was capped with TAP (TAP group) or calcium hydroxide cement (CH group), in addition to the combination of macrogol (M) and propylene glycol (P) (MP, control group), followed by a glass ionomer cement filling. The samples were collected at intervals of 1, 2, and 3 weeks, and immunohistochemistry for nestin and Ki-67 and deoxyuride-5′-triphosphate biotin nick end labeling (TUNEL) assay were performed in addition to quantitative real-time polymerase chain reaction (qRT-PCR) analyses. Results The highest occurrence rate of pulp necrosis was found in the control group followed by the CH group at Weeks 2 and 3, whereas the highest occurrence rate of healed areas in the dental pulp was observed in the TAP group at each time point. Tertiary dentin formation was first observed in the dental pulp of the TAP group at Week 2. In contrast, bone-like and/or fibrous tissues were frequently observed in the CH group. qRT-PCR analyses clarified that TAP activated the stem and dendritic cells at Weeks 1 and 2, respectively. Conclusions The use of TAP as a pulp-capping agent improved the healing process of oral-microflora-exposed dental pulp in mouse molars. We established a mouse model to evaluate the pulpal responses to capping materials. TAP induced odontoblast-like cell differentiation faster than calcium hydroxide. Tertiary dentin was predominantly seen at the exposure site in the TAP group. TAC-P tends to activate dental pulp stem cells earlier than calcium hydroxide. TAP favored the repair process of the oral-microflora-exposed pulpal tissue.
Collapse
Key Words
- ANOVA, One-way analysis of variance
- AZAN, Azocarmine and aniline blue
- Anti-bacterial agents
- BMPs, Bone morphogenetic proteins
- Birc5, Baculoviral IAP Repeat Containing 5
- CH, Calcium hydroxide
- Cell differentiation
- Cell proliferation
- Ct, Cycle threshold
- DAP, Double antibiotic paste
- DCs, Dendritic cells
- DNA, Deoxyribonucleic acid
- DPC, Direct pulp capping
- DPSCs, Dental pulp stem cells
- Dental cavity preparation
- Dental pulp
- FGFs, Fibroblast growth factors
- GM-CSF, Granulocyte-macrophage colony-stimulating factor
- H2O2, Hydrogen peroxide
- HE, Hematoxylin-eosin
- HLA-DR-immunopositive cells, Human Leukocyte Antigen – DR isotype-immunopositive cells
- M, Macrogol
- MHC, Major histocompatibility complex
- MP, Macrogol (M) mixed with propylene glycol (P)
- MSCs, Mesenchymal stem cells
- MTA, Mineral trioxide aggregate
- Mice (crlj:CD1)
- Oct 3/4 A, Octamer binding transcription factor 3/4 A
- Oct 3/4 B, Octamer binding transcription factor 3/4 B
- P, Propylene glycol
- PBS, Phosphate-buffered saline
- Pcna, Proliferating cell nuclear antigen
- REP, Regenerative endodontic procedures
- RNA, Ribonucleic acid
- RT, Reverse transcription
- SCAP, Stem cells of the apical papilla
- Sox 10, SRY-related HMG-box 10
- TAC, Triple antibiotic combination (a mixture of metronidazole, ciprofloxacin, and minocycline)
- TAC-P, Triple antibiotic combination and propylene glycol
- TAP, Triple antibiotic paste
- TAS, Triple antibiotic solution
- TGFβ, Transforming growth factor β
- TUNEL assay, Terminal deoxynucleotidyl transferase dUTP nick end labeling assay
- Tris–HCl buffer, Tris (hydroxymethyl) aminomethane (THAM) hydrochloride buffer
- Yap1, Yes-associated protein 1
- cDNA, Complementary deoxyribonucleic acid
- mRNA, Messenger ribonucleic acid
- mTAP, Modified triple antibiotic paste
- qRT-PCR, Quantitative real-time polymerase chain reaction
- αTCP, Alpha tricalcium phosphate
- β-actin, Beta-actin
Collapse
|