1
|
Li XL, Fan W, Fan B. Dental pulp regeneration strategies: A review of status quo and recent advances. Bioact Mater 2024; 38:258-275. [PMID: 38745589 PMCID: PMC11090883 DOI: 10.1016/j.bioactmat.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/18/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024] Open
Abstract
Microorganisms, physical factors such as temperature or mechanical injury, and chemical factors such as free monomers from composite resin are the main causes of dental pulp diseases. Current clinical treatment methods for pulp diseases include the root canal therapy, vital pulp therapy and regenerative endodontic therapy. Regenerative endodontic therapy serves the purpose of inducing the regeneration of new functional pulp tissues through autologous revascularization or pulp tissue engineering. This article first discusses the current clinical methods and reviews strategies as well as the research outcomes regarding the pulp regeneration. Then the in vivo models, the prospects and challenges for regenerative endodontic therapy were further discussed.
Collapse
Affiliation(s)
- Xin-Lu Li
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079, Wuhan, China
| | - Wei Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079, Wuhan, China
| | - Bing Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079, Wuhan, China
| |
Collapse
|
2
|
de Paula KDS, Dos Reis-Prado AH, de Jesus WP, Goto J, de Arantes LC, Verçosa M, Cintra LTA, Ervolino E, Szawka RE, Crovace MC, de Mesquita RA, Benetti F. Final irrigation with bioglass solution in regenerative endodontic procedure induces tissue formation inside the root canals, collagen maturation, proliferation cell and presence of osteocalcin. Int Endod J 2024; 57:586-600. [PMID: 38323923 DOI: 10.1111/iej.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/01/2023] [Accepted: 01/14/2024] [Indexed: 02/08/2024]
Abstract
AIM To evaluate the influence of an experimental solution of cobalt-doped F18 bioactive glass (F18Co) on tissue repair following regenerative endodontic procedure (REP) in rat molars. METHODOLOGY The F18Co solution was prepared at a ratio of 1:5 F18Co powder to distilled water. The right or left upper first molars of 12 Wistar rats were used, where the pulps were exposed, removed, and irrigated with 2.5% sodium hypochlorite (NaOCl), followed by 17% ethylenediaminetetraacetic acid (EDTA) (5 min each). Subsequently, the molars were divided into two groups (n = 6): REP-SS and REP-F18Co, where they received a final irrigation (5 min) with saline solution (SS) or F18Co solution, respectively. Then, intracanal bleeding was induced, and the tooth was sealed. Untreated molars were used as controls (n = 3). At 21 days, the rats were euthanized, and the specimens were processed for analysis of mineralized tissue and soft tissue formation inside the root canal using haematoxylin-eosin. The presence and maturation of collagen were evaluated by Masson's trichrome and picrosirius red staining. Immunolabelling analyses of proliferating cell nuclear antigen (PCNA) and osteocalcin (OCN) were performed. The data were submitted to the Mann-Whitney U-test (p < .05). RESULTS There was a similar formation of mineralized tissue in thickness and length in REP-SS and REP-F18Co groups (p > .05). Regarding the presence of newly formed soft tissue, most specimens of the REP-F18Co had tissue formation up to the cervical third of the canal, whilst the REP-SS specimens showed formation up to the middle third (p < .05), and there was higher maturation of collagen in REP-F18Co (p < .05). The number of PCNA-positive cells found in the apical third of the root canal was significantly higher in the F18Co group, as well as the OCN immunolabelling, which was severe in most specimens of REP-F18Co, and low in most specimens of REP-SS. CONCLUSION The final irrigation with F18Co bioactive glass solution in REP did not influence mineralized tissue formation but induced soft tissue formation inside the root canals, with higher collagen maturation, and an increase in PCNA-positive cells and OCN immunolabelling.
Collapse
Affiliation(s)
- Kiani Dos Santos de Paula
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte-MG, Brazil
| | | | - Witalo Pereira de Jesus
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte-MG, Brazil
| | - Juliana Goto
- Department of Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba-SP, Brazil
| | - Lara Cancella de Arantes
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte-MG, Brazil
| | - Marina Verçosa
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte-MG, Brazil
| | | | - Edilson Ervolino
- Department of Basic Science, São Paulo State University (UNESP), School of Dentistry, Araçatuba-SP, Brazil
| | - Raphael Escorsim Szawka
- Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte-MG, Brazil
| | - Murilo Camuri Crovace
- Department of Materials Engineering, State University of São Carlos (UFSCar), Bioactive Materials Laboratory (LMBio), São Carlos-SP, Brazil
| | - Ricardo Alves de Mesquita
- Oral Pathology and Surgery, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte-MG, Brazil
| | - Francine Benetti
- Department of Restorative Dentistry, Universidade Federal de Minas Gerais (UFMG), School of Dentistry, Belo Horizonte-MG, Brazil
| |
Collapse
|
3
|
Rahul M, Lokade A, Tewari N, Mathur V, Agarwal D, Goel S, Keshari P, Sharma S, Bansal K. Effect of Intracanal Scaffolds on the Success Outcomes of Regenerative Endodontic Therapy - A Systematic Review and Network Meta-analysis. J Endod 2023; 49:110-128. [PMID: 36410623 DOI: 10.1016/j.joen.2022.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The scaffolds used in regenerative endodontic therapy (RET) provide structural support for cells so that they can adhere to the scaffolds and also are crucial for cellular proliferation and differentiation. The objective of this network meta-analysis was to compare effects of different intracanal scaffolds on success outcomes of RET. METHODS PubMed/Medline, EMBASE, Cochrane, CINAHL, Scopus, and Web of Science databases were searched. Studies evaluating and/or comparing clinical and/or radiographic success of RET using different scaffolds with a minimum of 12 months follow-up were included. The Cochrane Collaboration risk of bias (ROB) tool and appropriate tools from Joanna Briggs Institute were used for the assessment of ROB. A network meta-analysis was performed to compare the primary outcome (clinical success) and other success outcomes (root maturation, and pulpal sensibility) using different scaffolds. RESULTS Twenty-seven studies fulfilled the desired inclusion criteria of which 25 had a low ROB whereas 2 had a moderate ROB. Clinical success of RET using platelet-rich plasma (PRP), blood clot (BC), and platelet-rich fibrin (PRF) scaffolds ranged between 91.66%-100%, 84.61%-100%, and 77%-100% respectively. The different scaffolds did not show any statistically significant difference in clinical success (PRF vs BC [P = 1.000], PRP vs BC [P = 1.000], and PRF vs PRP [P = .999]), apical root closure (PRF vs BC [P = 1.000], PRP vs BC [P = .835], PRF vs PRP [P = .956]), and pulp sensibility (PRF vs BC [P = .980], PRP versus BC [P = .520], and PRF vs PRP [P = .990]). CONCLUSION The intracanal scaffolds used during RET did not result in significant differences in regard to clinical success, root maturation, and pulpal sensibility.
Collapse
Affiliation(s)
- Morankar Rahul
- Division of pedodontics and preventive dentistry, Centre for Dental Education and Research, AIIMS, New Delhi, India.
| | - Amolkumar Lokade
- Division of pedodontics and preventive dentistry, Centre for Dental Education and Research, AIIMS, New Delhi, India
| | - Nitesh Tewari
- Division of pedodontics and preventive dentistry, Centre for Dental Education and Research, AIIMS, New Delhi, India
| | - Vijay Mathur
- Division of pedodontics and preventive dentistry, Centre for Dental Education and Research, AIIMS, New Delhi, India
| | - Deepali Agarwal
- Division of Public Health Dentistry, Centre for Dental Education and Research, AIIMS, New Delhi, India
| | - Shubhi Goel
- Department of Public Health Dentistry, Postgraduate Institute of Dental Sciences, Rohtak, Haryana, India
| | | | - Sidhartha Sharma
- Division of Conservative Dentistry and Endodontics, Centre for Dental Education and Research, AIIMS, New Delhi, India
| | - Kalpana Bansal
- Division of pedodontics and preventive dentistry, Centre for Dental Education and Research, AIIMS, New Delhi, India
| |
Collapse
|
4
|
Doyle ME, Dalgarno K, Masoero E, Ferreira AM. Advances in biomimetic collagen mineralisation and future approaches to bone tissue engineering. Biopolymers 2023; 114:e23527. [PMID: 36444710 PMCID: PMC10078151 DOI: 10.1002/bip.23527] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
With an ageing world population and ~20% of adults in Europe being affected by bone diseases, there is an urgent need to develop advanced regenerative approaches and biomaterials capable to facilitate tissue regeneration while providing an adequate microenvironment for cells to thrive. As the main components of bone are collagen and apatite mineral, scientists in the tissue engineering field have attempted in combining these materials by using different biomimetic approaches to favour bone repair. Still, an ideal bone analogue capable of mimicking the distinct properties (i.e., mechanical properties, degradation rate, porosity, etc.) of cancellous bone is to be developed. This review seeks to sum up the current understanding of bone tissue mineralisation and structure while providing a critical outlook on the existing biomimetic strategies of mineralising collagen for bone tissue engineering applications, highlighting where gaps in knowledge exist.
Collapse
Affiliation(s)
| | - Kenny Dalgarno
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
| | | | | |
Collapse
|
5
|
Dos Reis-Prado AH, Oliveira SDC, Goto J, Silva GAB, Cintra LTA, de Mesquita RA, Szawka RE, Ribeiro-Sobrinho AP, Benetti F. Influence of ethylenediaminetetraacetic acid irrigation on the regenerative endodontic procedure in an immature rat molar model. Int Endod J 2023; 56:69-79. [PMID: 36229181 DOI: 10.1111/iej.13846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022]
Abstract
AIM To analyse the influence of ethylenediaminetetraacetic acid (EDTA) on the repair process in immature rat molars after a regenerative endodontic procedure (REP). METHODOLOGY The lower first molars of 12 4-week-old Wistar rats underwent pulpectomy in the mesial root and were divided into the following groups: sodium hypochlorite (NaOCl; n = 6) - the mesial canals were irrigated with 2.5% NaOCl for 5 min, and NaOCl-EDTA (n = 6) - the canals were irrigated with 2.5% NaOCl, followed by 17% EDTA for 5 min each. After evoking bleeding using a size 10 K-file, the cavities were sealed. Three molars on the untreated side were randomly used as control (control-15 d; n = 3), and three molars from the other three rats untreated were used as immediate control (n = 3). After 15 days (NaOCl, NaOCl-EDTA and control-15 d groups) or immediately (control-immediate), the animals were euthanized, and the teeth were subjected to histologic evaluation of tissue regeneration and presence of collagen fibres. Mann-Whitney U-test was used (p < .05). RESULTS The experimental groups had newly formed cementum-like tissue and increased root length and thickness. Half of the specimens in NaOCl-EDTA group showed apical foramen closure, whilst the NaOCl group had partial apical closure. The experimental groups showed inflammatory infiltrate extending mainly to the medium third of the root canal. These parameters were similar between experimental groups (p > .05). Newly formed connective tissue in the pulp space was significantly higher in the NaOCl-EDTA group than in NaOCl group (p < .05). Regarding the collagen fibres, the NaOCl-EDTA group had more collagen fibres in the root tip, but there was no significant difference compared to NaOCl group, and both groups showed greater amount of immature fibres in this area; in the centre of the apical third of root canal, there was equivalence between mature and immature fibres from both groups (p > .05). CONCLUSIONS Ethylenediaminetetraacetic acid irrigation improved newly formed intracanal connective tissue after REP in immature molars of rats; however, EDTA did not influence cementum-like tissue formation, apical closure, inflammatory infiltrate and maturation of collagen fibres.
Collapse
Affiliation(s)
| | - Sabrina de Castro Oliveira
- Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana Goto
- Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | | | | | - Ricardo Alves de Mesquita
- Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Raphael Escorsim Szawka
- Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Francine Benetti
- Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
6
|
Ohlsson E, Galler KM, Widbiller M. A Compilation of Study Models for Dental Pulp Regeneration. Int J Mol Sci 2022; 23:ijms232214361. [PMID: 36430838 PMCID: PMC9695686 DOI: 10.3390/ijms232214361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Efforts to heal damaged pulp tissue through tissue engineering have produced positive results in pilot trials. However, the differentiation between real regeneration and mere repair is not possible through clinical measures. Therefore, preclinical study models are still of great importance, both to gain insights into treatment outcomes on tissue and cell levels and to develop further concepts for dental pulp regeneration. This review aims at compiling information about different in vitro and in vivo ectopic, semiorthotopic, and orthotopic models. In this context, the differences between monolayer and three-dimensional cell cultures are discussed, a semiorthotopic transplantation model is introduced as an in vivo model for dental pulp regeneration, and finally, different animal models used for in vivo orthotopic investigations are presented.
Collapse
Affiliation(s)
- Ella Ohlsson
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nuernberg, D-91054 Erlangen, Germany
| | - Kerstin M. Galler
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nuernberg, D-91054 Erlangen, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, D-93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
7
|
Minic S, Vital S, Chaussain C, Boukpessi T, Mangione F. Tissue Characteristics in Endodontic Regeneration: A Systematic Review. Int J Mol Sci 2022; 23:ijms231810534. [PMID: 36142446 PMCID: PMC9504778 DOI: 10.3390/ijms231810534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
The regenerative endodontic procedure (REP) represents a treatment option for immature necrotic teeth with a periapical lesion. Currently, this therapy has a wide field of pre-clinical and clinical applications, but no standardization exists regarding successful criteria. Thus, by analysis of animal and human studies, the aim of this systematic review was to highlight the main characteristics of the tissue generated by REP. A customized search of PubMed, EMBASE, Scopus, and Web of Science databases from January 2000 to January 2022 was conducted. Seventy-five human and forty-nine animal studies were selected. In humans, the evaluation criteria were clinical 2D and 3D radiographic examinations. Most of the studies identified a successful REP with an asymptomatic tooth, apical lesion healing, and increased root thickness and length. In animals, histological and radiological criteria were considered. Newly formed tissues in the canals were fibrous, cementum, or bone-like tissues along the dentine walls depending on the area of the root. REP assured tooth development and viability. However, further studies are needed to identify procedures to successfully reproduce the physiological structure and function of the dentin–pulp complex.
Collapse
Affiliation(s)
- Sandra Minic
- URP 2496 Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), Laboratoire d’excellence INFLAMEX, UFR Odontology, Université Paris Cité, 92120 Montrouge, France
| | - Sibylle Vital
- URP 2496 Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), Laboratoire d’excellence INFLAMEX, UFR Odontology, Université Paris Cité, 92120 Montrouge, France
- Louis Mourier Hospital, AP-HP, DMU ESPRIT, 92700 Colombes, France
| | - Catherine Chaussain
- URP 2496 Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), Laboratoire d’excellence INFLAMEX, UFR Odontology, Université Paris Cité, 92120 Montrouge, France
- Bretonneau Hospital Dental Department and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, AP-HP, 75018 Paris, France
| | - Tchilalo Boukpessi
- URP 2496 Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), Laboratoire d’excellence INFLAMEX, UFR Odontology, Université Paris Cité, 92120 Montrouge, France
- Pitié Salpétrière Hospital, DMU CHIR, AP-HP, 75013 Paris, France
| | - Francesca Mangione
- URP 2496 Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), Laboratoire d’excellence INFLAMEX, UFR Odontology, Université Paris Cité, 92120 Montrouge, France
- Henri Mondor Hospital, AP-HP, 94000 Créteil, France
- Correspondence:
| |
Collapse
|
8
|
Orthodontic Loads in Teeth after Regenerative Endodontics: A Finite Element Analysis of the Biomechanical Performance of the Periodontal Ligament. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to analyse the stress distribution in the periodontal ligament and tooth structure of a cementum-reinforced tooth, a dentine-reinforced tooth and an immature tooth during orthodontic loads using a finite element analysis. A finite element model of a maxillary incisor and its supporting tissues was developed. The root was segmented into two parts: a part that represented a root in an immature state and an apical part that represented the tissue formed after regenerative endodontics. The apical part was given the mechanical properties of dentine or cementum. The three models underwent simulation of mesial load, palatal inclination and rotation. The mean stress values and stress distribution patterns of the periodontal ligament of the dentine- and cementum-reinforced teeth were similar in all scenarios. The maturation of the root, with either dentine or cementum, was beneficial for all scenarios, since the periodontal ligament of the immature tooth showed the highest mean stress values. Under the condition of this computational study, orthodontic loads can be applied in teeth previously treated with regenerative endodontics, since the distribution of stress is similar to those of physiologically mature teeth. In vivo studies should be performed to validate these results.
Collapse
|
9
|
Liu H, Lu J, Jiang Q, Haapasalo M, Qian J, Tay FR, Shen Y. Biomaterial scaffolds for clinical procedures in endodontic regeneration. Bioact Mater 2022; 12:257-277. [PMID: 35310382 PMCID: PMC8897058 DOI: 10.1016/j.bioactmat.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Regenerative endodontic procedures have been rapidly evolving over the past two decades and are employed extensively in clinical endodontics. These procedures have been perceived as valuable adjuvants to conventional strategies in the treatment of necrotic immature permanent teeth that were deemed to have poor prognosis. As a component biological triad of tissue engineering (i.e., stem cells, growth factors and scaffolds), biomaterial scaffolds have demonstrated clinical potential as an armamentarium in regenerative endodontic procedures and achieved remarkable advancements. The aim of the present review is to provide a broad overview of biomaterials employed for scaffolding in regenerative endodontics. The favorable properties and limitations of biomaterials organized in naturally derived, host-derived and synthetic material categories were discussed. Preclinical and clinical studies published over the past five years on the performance of biomaterial scaffolds, as well as current challenges and future perspectives for the application of biomaterials for scaffolding and clinical evaluation of biomaterial scaffolds in regenerative endodontic procedures were addressed in depth. Overview of biomaterials for scaffolding in regenerative endodontics are presented. Findings of preclinical and clinical studies on the performance of biomaterial scaffolds are summarized. Challenges and future prospects in biomaterial scaffolds are discussed.
Collapse
|
10
|
Alghofaily M, Torabinejad M, Nosrat A. Regenerative Endodontic Treatment Using Periapical Blood or Circulating Blood as Scaffold: A Volumetric Analysis. J Endod 2022; 48:625-631. [PMID: 35218760 DOI: 10.1016/j.joen.2022.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/26/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Circulating blood is a readily available scaffold when enough bleeding cannot be induced from periapical tissues during regenerative endodontic treatments (RET). The aim of this investigation was to compare the radiographic outcome, linear and 3-dimensional volumetric, of RET using periapical blood or circulating blood as scaffolds in sheep immature mandibular incisors. METHODS Thirty-two immature sheep mandibular central incisors were randomly assigned to the following groups (n=8)- Positive control: the pulps were removed without any treatment; Periapical blood: RET was performed using periapical blood as scaffold; Circulating blood: RET was performed using circulating blood as scaffold; Negative control: intact teeth without any treatment. After 8 months micro computed tomography images of mandibular blocks were taken to assess the followings: root length; root thickness at mid-root and CEJ levels; and incidence of apical closure. Root structures were segmented, and root volumes were calculated and analyzed statistically. RESULTS RET using periapical blood and circulating blood resulted in increase in root length, root wall thickness at mid-root and CEJ levels, incidence of apical closure, and root volume (P<.05). There were no significant differences between RET groups and negative control group regarding linear measurements (i.e., root length, root thickness, and apical closure) (P>.05). Root volumes of the two RET groups were similar (P>.05) and were less than those observed in negative control group (P<.05). CONCLUSIONS There were no significant radiographic differences between RET groups using periapical blood and circulating blood as scaffolds. RET resulted in less root volume compared to normal root development.
Collapse
Affiliation(s)
- Maha Alghofaily
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | | | - Ali Nosrat
- Division of Endodontics, Department of Advanced Oral Sciences and Therapeutics, University of Maryland, Baltimore, Baltimore, Maryland; Centreville Endodontics, Loma Linda, Centreville, Virginia.
| |
Collapse
|
11
|
Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine. Molecules 2021; 26:molecules26227043. [PMID: 34834134 PMCID: PMC8621873 DOI: 10.3390/molecules26227043] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/10/2023] Open
Abstract
Dental, oral, and craniofacial (DOC) regenerative medicine aims to repair or regenerate DOC tissues including teeth, dental pulp, periodontal tissues, salivary gland, temporomandibular joint (TMJ), hard (bone, cartilage), and soft (muscle, nerve, skin) tissues of the craniofacial complex. Polymeric materials have a broad range of applications in biomedical engineering and regenerative medicine functioning as tissue engineering scaffolds, carriers for cell-based therapies, and biomedical devices for delivery of drugs and biologics. The focus of this review is to discuss the properties and clinical indications of polymeric scaffold materials and extracellular matrix technologies for DOC regenerative medicine. More specifically, this review outlines the key properties, advantages and drawbacks of natural polymers including alginate, cellulose, chitosan, silk, collagen, gelatin, fibrin, laminin, decellularized extracellular matrix, and hyaluronic acid, as well as synthetic polymers including polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly (ethylene glycol) (PEG), and Zwitterionic polymers. This review highlights key clinical applications of polymeric scaffolding materials to repair and/or regenerate various DOC tissues. Particularly, polymeric materials used in clinical procedures are discussed including alveolar ridge preservation, vertical and horizontal ridge augmentation, maxillary sinus augmentation, TMJ reconstruction, periodontal regeneration, periodontal/peri-implant plastic surgery, regenerative endodontics. In addition, polymeric scaffolds application in whole tooth and salivary gland regeneration are discussed.
Collapse
|
12
|
Functional Dental Pulp Regeneration: Basic Research and Clinical Translation. Int J Mol Sci 2021; 22:ijms22168991. [PMID: 34445703 PMCID: PMC8396610 DOI: 10.3390/ijms22168991] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases account for a large proportion of dental visits, the current treatments for which are root canal therapy (RCT) and pulp revascularisation. Despite the clinical signs of full recovery and histological reconstruction, true regeneration of pulp tissues is still far from being achieved. The goal of regenerative endodontics is to promote normal pulp function recovery in inflamed or necrotic teeth that would result in true regeneration of the pulpodentinal complex. Recently, rapid progress has been made related to tissue engineering-mediated pulp regeneration, which combines stem cells, biomaterials, and growth factors. Since the successful isolation and characterisation of dental pulp stem cells (DPSCs) and other applicable dental mesenchymal stem cells, basic research and preclinical exploration of stem cell-mediated functional pulp regeneration via cell transplantation and cell homing have received considerably more attention. Some of this effort has translated into clinical therapeutic applications, bringing a ground-breaking revolution and a new perspective to the endodontic field. In this article, we retrospectively examined the current treatment status and clinical goals of pulpal and periapical diseases and scrutinized biological studies of functional pulp regeneration with a focus on DPSCs, biomaterials, and growth factors. Then, we reviewed preclinical experiments based on various animal models and research strategies. Finally, we summarised the current challenges encountered in preclinical or clinical regenerative applications and suggested promising solutions to address these challenges to guide tissue engineering-mediated clinical translation in the future.
Collapse
|
13
|
Sismanoglu S, Ercal P. Dentin-Pulp Tissue Regeneration Approaches in Dentistry: An Overview and Current Trends. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1298:79-103. [PMID: 32902726 DOI: 10.1007/5584_2020_578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional treatment approaches in irreversible pulpitis and apical periodontitis include the disinfection of the pulp space followed by filling with various materials, which is commonly known as the root canal treatment. Disadvantages including the loss of tooth vitality and defense mechanism against carious lesions, susceptibility to fractures, discoloration and microleakage led to the development of regenerative therapies for the dentin pulp-complex. The goal of dentin-pulp tissue regeneration is to reestablish the physiological pulp function such as pulp sensibility, pulp repair capability by mineralization and pulp immunity. Recent dentin-pulp tissue regeneration approaches can be divided into cell homing and cell transplantation. Cell based approaches include a suitable scaffold for the delivery of potent stem cells with or without bioactive molecules into the root canal system while cell homing is based on the recruitment of host endogenous stem cells from the resident tissue including periapical region or dental pulp. This review discusses the recent treatment modalities in dentin-pulp tissue regeneration through tissue engineering and current challenges and trends in this field of research.
Collapse
Affiliation(s)
- Soner Sismanoglu
- Department of Restorative Dentistry, Faculty of Dentistry, Altinbas University, Istanbul, Turkey
| | - Pınar Ercal
- Department of Oral Surgery, Faculty of Dentistry, Altinbas University, Istanbul, Turkey.
| |
Collapse
|
14
|
Khazaei S, Khademi A, Torabinejad M, Nasr Esfahani MH, Khazaei M, Razavi SM. Improving pulp revascularization outcomes with buccal fat autotransplantation. J Tissue Eng Regen Med 2020; 14:1227-1235. [PMID: 32610370 DOI: 10.1002/term.3094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/12/2022]
Abstract
Several techniques have been introduced to improve the pulp revascularization outcomes. The use of the tissue graft can create more practical tissue regeneration, provide vascular supply, and enhance tissue healing. The aim of the present study was to investigate the histologic and molecular outcomes of pulp revascularization with buccal fat autotransplantation. Fifty-six open apex roots from four dogs aged 4-6 months were randomly allocated to five groups of endodontic regeneration models: Group 1 (negative control, n = 4); Group 2 (control and without intervention, n = 4); Group 3 (blood clot, n = 16); Group 4 (buccal fat autotransplantation, n = 16); and Group 5 (blood clot plus buccal fat autotransplantation, n = 16). After 3 months, the extracted dog teeth were analyzed by histological and immunohistochemical techniques. Furthermore, real-time quantitative polymerase chain reactions were implemented to assess the gene expression profiles of dentin sialophosphoprotein (DSPP), dentin matrix protein (DMP), collagen I (COL1), and alkaline phosphatase (ALP) on regenerated tissue in the root canals. There were no significant differences in the severity of inflammation and necrosis between intervention groups. Immunohistochemical analysis showed significant differences among the study groups in expression level of extracellular glycoproteins such as fibronectin, laminin, and tenascin C. Group 5 showed an increase in the expression of DMP1 and COL1 genes. The expression of DSPP gene increased significantly in Group 4. The expression of ALP gene increased significantly in Group 3. Using this procedure may open new fields of research for regenerative endodontic procedure in which tissue autotransplant, particularly adipose tissue, may improve the outcomes of pulp revascularization.
Collapse
Affiliation(s)
- Saber Khazaei
- Department of Endodontics and Dental Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Khademi
- Department of Endodontics and Dental Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad H Nasr Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sayed Mohammad Razavi
- Department of Oral and Maxillofacial Pathology and Dental Implant Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Azarpazhooh A, Diogenes AR, Fouad AF, Glickman GN, Kang MK, Kishen A, Levin L, Roda RS, Sedgley CM, Tay FR, Hargreaves KM. Insights into the February 2020 Issue of the Journal of Endodontics. J Endod 2020; 46:147-148. [PMID: 32040422 DOI: 10.1016/j.joen.2020.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Amir Azarpazhooh
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Anibal R Diogenes
- University of Texas Health San Antonio School of Dentistry, San Antonio, Texas
| | - Ashraf F Fouad
- University of North Carolina, Chapel Hill, North Carolina
| | | | - Mo K Kang
- University of California Los Angeles School of Dentistry, Los Angeles, California
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Franklin R Tay
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|