1
|
Jiang Z, Huang H, Luo L, Jiang B. The Role of Autophagy on Osteogenesis of Dental Follicle Cells Under Inflammatory Microenvironment. Oral Dis 2024. [PMID: 39415618 DOI: 10.1111/odi.15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE This study investigated the role of autophagy on osteogenesis of DFCs under inflammatory microenvironment during tooth eruption. METHODS DFCs were isolated and identified. Lipopolysaccharide (LPS) was used to construct the inflammatory microenvironment in vitro and in vivo. Cell viability was examined by CCK-8 assay. Osteogenic differentiation was evaluated by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining. The gene and protein levels were examined using qRT-PCR and western blot analysis, respectively. We observed the process of tooth eruption after local LPS injection by micro-CT and HE staining. Osteogenesis and autophagy were monitored through qRT-PCR, western blot and histological staining of specific markers. RESULTS LPS at the indicated concentrations did not produce toxic effects on DFCs, and significantly promoted the inflammatory gene expression. LPS inhibited osteogenic differentiation and activated autophagy in DFCs. Blocking autophagy with 3-MA reversed the expression of osteogenic markers in LPS-treated DFCs. Additionally, the eruption of LPS-treated teeth was accelerated and their DFs exhibited an increased expression of TNF-α and Beclin1, and decreased expression of ALP and RUNX2. CONCLUSIONS Autophagy was involved in the suppression of the DFCs osteogenesis in an LPS-induced inflammatory condition, suggesting the pivotal role of autophagy in inflammation-induced premature tooth eruption.
Collapse
Affiliation(s)
- Zhen Jiang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Haiyan Huang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Linjuan Luo
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Beizhan Jiang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Pediatric Dentistry, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Osorio R, Rodríguez-Lozano FJ, Toledano M, Toledano-Osorio M, García-Bernal D, Murcia L, López-García S. Mitigating lipopolysaccharide-induced impairment in human dental pulp stem cells with tideglusib-doped nanoparticles: Enhancing osteogenic differentiation and mineralization. Dent Mater 2024; 40:1591-1601. [PMID: 39068091 DOI: 10.1016/j.dental.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Drug-loaded non-resorbable polymeric nanoparticles (NPs) are proposed as an adjunctive treatment for pulp regenerative strategies. The present in vitro investigation aimed to evaluate the effectiveness of tideglusib-doped nanoparticles (TDg-NPs) in mitigating the adverse effects of bacterial lipopolysaccharide endotoxin (LPS) on the viability, morphology, migration, differentiation and mineralization potential of human dental pulp stem cells (hDPSCs). METHODS Cell viability, proliferation, and differentiation were assessed using a MTT assay, cell migration evaluation, cell cytoskeleton staining analysis, Alizarin Red S staining and expression of the odontogenic related genes by a real-time quantitative polymerase chain reaction (RT-qPCR) were also performed. Cells were tested both with and without stimulation with LPS at various time points. One-way ANOVA and Tukey's test were employed for statistical analysis (p < 0.05). RESULTS Adequate cell viability was encountered in all groups and at every tested time point (24, 48, 72 and 168 h), without differences among the groups (p > 0.05). The analysis of cell cytoskeleton showed nuclear alteration in cultures with undoped NPs after LPS stimulation. These cells exhibited an in blue diffuse and multifocal appearance. Some nuclei looked fragmented and condensed. hDPSCs after LPS stimulation but in the presence of TDg-NPs exhibited less nuclei changes. LPS induced down-regulation of Alkaline phosphatase, Osteonectin and Collagen1 gene markers, after 21d. LPS half-reduced the cells production of calcium deposits in all groups (p < 0.05), except in the group with TDg-NPs (decrease about 10 %). SIGNIFICANCE LPS induced lower mineral deposition and cytoskeletal disorganization in hDPSCs. These effects were counteracted by TDg-NPs, enhancing osteogenic differentiation and mineralization.
Collapse
Affiliation(s)
- Raquel Osorio
- Faculty of Dentistry, University of Granada Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Francisco J Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Biomedical Research Institute (IMIB), Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Medicine, University of Murcia, Murcia 30008, Spain
| | - Manuel Toledano
- Faculty of Dentistry, University of Granada Colegio Máximo de Cartuja s/n, Granada 18071, Spain.
| | - Manuel Toledano-Osorio
- Postgraduate Program of Specialization in Periodontology, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
| | - David García-Bernal
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Biomedical Research Institute (IMIB), Murcia 30120, Spain
| | - Laura Murcia
- Department of Health Sciences, Catholic University San Antonio of Murcia, Murcia 30107, Spain
| | - Sergio López-García
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Biomedical Research Institute (IMIB), Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Medicine, University of Murcia, Murcia 30008, Spain
| |
Collapse
|
3
|
Zhou C, Wu Y, Teng Y, Zhang J, Liu J. BRF1 promotes the odontogenic differentiation of dental pulp stem cells in pulpitis by inducing autophagy. Heliyon 2024; 10:e35442. [PMID: 39229529 PMCID: PMC11369479 DOI: 10.1016/j.heliyon.2024.e35442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Objective While post-transcriptional modifications play a pivotal role in the autophagy regulation, studies on dental pulp disease are limited. This study investigated the effect of BRF1 on autophagy in inflamed pulp tissue and human dental pulp stem cells (hDPSCs). Methods Immunohistochemical analysis was used to examine BRF1 expression, autophagy levels, and dentinogenic markers in normal and inflamed pulp. The presence of autophagosomes was observed by transmission electron microscopy. Primary hDPSCs were treated with 1 μg/mL lipopolysaccharide (LPS) for different lengths of time. The expression of BRF1 and autophagy makers was determined by Western blotting. BRF1 knockdown and 3 MA treatment were employed to assess changes in autophagy and dentinogenic differentiation. Double immunofluorescence staining was performed to co-localize BRF1 with LC3B in pulp tissue. Results The expressions of BRF1, LC3, DMP1, and DSP were significantly elevated in the inflamed pulp. LPS enhanced the protein production of IL-6, BRF1, LC3, and Beclin-1 from 6 h to 24 h after the treatment. BRF1 knockdown reduced the ratio of LC3-II/LC3-I and the differentiation ability of hDPSCs, while 3 MA inhibited LPS-mediated dentinogenic differentiation. Double-labeling revealed that BRF1 co-localized with LC3B in inflamed pulp. Conclusion This study demonstrated that BRF1 promoted autophagy activation and odontogenic differentiation in pulpitis.
Collapse
Affiliation(s)
- Caixia Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- Now Working in Shenzhen Stomatological Hospital, Shenzhen, 518000, China
| | - Yan Wu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yizhen Teng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jian Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiarong Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
4
|
Xu X, Wang J, Xia Y, Yin Y, Zhu T, Chen F, Hai C. Autophagy, a double-edged sword for oral tissue regeneration. J Adv Res 2024; 59:141-159. [PMID: 37356803 PMCID: PMC11081970 DOI: 10.1016/j.jare.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Oral health is of fundamental importance to maintain systemic health in humans. Stem cell-based oral tissue regeneration is a promising strategy to achieve the recovery of impaired oral tissue. As a highly conserved process of lysosomal degradation, autophagy induction regulates stem cell function physiologically and pathologically. Autophagy activation can serve as a cytoprotective mechanism in stressful environments, while insufficient or over-activation may also lead to cell function dysregulation and cell death. AIM OF REVIEW This review focuses on the effects of autophagy on stem cell function and oral tissue regeneration, with particular emphasis on diverse roles of autophagy in different oral tissues, including periodontal tissue, bone tissue, dentin pulp tissue, oral mucosa, salivary gland, maxillofacial muscle, temporomandibular joint, etc. Additionally, this review introduces the molecular mechanisms involved in autophagy during the regeneration of different parts of oral tissue, and how autophagy can be regulated by small molecule drugs, biomaterials, exosomes/RNAs or other specific treatments. Finally, this review discusses new perspectives for autophagy manipulation and oral tissue regeneration. KEY SCIENTIFIC CONCEPTS OF REVIEW Overall, this review emphasizes the contribution of autophagy to oral tissue regeneration and highlights the possible approaches for regulating autophagy to promote the regeneration of human oral tissue.
Collapse
Affiliation(s)
- Xinyue Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Jia Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Yunlong Xia
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Tianxiao Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Faming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Chunxu Hai
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
5
|
Rodas-Junco BA, Hernández-Solís SE, Serralta-Interian AA, Rueda-Gordillo F. Dental Stem Cells and Lipopolysaccharides: A Concise Review. Int J Mol Sci 2024; 25:4338. [PMID: 38673923 PMCID: PMC11049850 DOI: 10.3390/ijms25084338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Dental tissue stem cells (DTSCs) are well known for their multipotent capacity and regenerative potential. They also play an important role in the immune response of inflammatory processes derived from caries lesions, periodontitis, and gingivitis. These oral diseases are triggered by toxins known as lipopolysaccharides (LPS) produced by gram-negative bacteria. LPS present molecular patterns associated with pathogens and are recognized by Toll-like receptors (TLRs) in dental stem cells. In this review, we describe the effect of LPS on the biological behavior of DTSCs. We also focus on the molecular sensors, signaling pathways, and emerging players participating in the interaction of DTSCs with lipopolysaccharides. Although the scientific advances generated provide an understanding of the immunomodulatory potential of DTSCs, there are still new reflections to explore with regard to their clinical application in the treatment of oral inflammatory diseases.
Collapse
Affiliation(s)
- Beatriz A. Rodas-Junco
- CONAHCYT–Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, Mérida CP 97203, Yucatán, Mexico
- Laboratorio Traslacional de Células Troncales de la Cavidad Bucal, Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A #492-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida CP 97000, Yucatán, Mexico;
| | - Sandra E. Hernández-Solís
- Departamento de Microbiología Oral y Biología Molecular, Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A #492-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida CP 97000, Yucatán, Mexico; (S.E.H.-S.); (F.R.-G.)
| | - Angelica A. Serralta-Interian
- Laboratorio Traslacional de Células Troncales de la Cavidad Bucal, Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A #492-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida CP 97000, Yucatán, Mexico;
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, Mérida CP 97203, Yucatán, Mexico
| | - Florencio Rueda-Gordillo
- Departamento de Microbiología Oral y Biología Molecular, Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A #492-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida CP 97000, Yucatán, Mexico; (S.E.H.-S.); (F.R.-G.)
| |
Collapse
|
6
|
Huang Q, Sun Y, Huang W, Zhang F, He H, He Y, Huang F. FTO Positively Regulates Odontoblastic Differentiation via SMOC2 in Human Stem Cells from the Apical Papilla under Inflammatory Microenvironment. Int J Mol Sci 2024; 25:4045. [PMID: 38612855 PMCID: PMC11012055 DOI: 10.3390/ijms25074045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Odontoblastic differentiation of human stem cells from the apical papilla (hSCAPs) is crucial for continued root development and dentin formation in immature teeth with apical periodontitis (AP). Fat mass and obesity-associated protein (FTO) has been reported to regulate bone regeneration and osteogenic differentiation profoundly. However, the effect of FTO on hSCAPs remains unknown. This study aimed to identify the potential function of FTO in hSCAPs' odontoblastic differentiation under normal and inflammatory conditions and to investigate its underlying mechanism preliminarily. Histological staining and micro-computed tomography were used to evaluate root development and FTO expression in SD rats with induced AP. The odontoblastic differentiation ability of hSCAPs was assessed via alkaline phosphatase and alizarin red S staining, qRT-PCR, and Western blotting. Gain- and loss-of-function assays and online bioinformatics tools were conducted to explore the function of FTO and its potential mechanism in modulating hSCAPs differentiation. Significantly downregulated FTO expression and root developmental defects were observed in rats with AP. FTO expression notably increased during in vitro odontoblastic differentiation of hSCAPs, while lipopolysaccharide (LPS) inhibited FTO expression and odontoblastic differentiation. Knockdown of FTO impaired odontoblastic differentiation, whereas FTO overexpression alleviated the inhibitory effects of LPS on differentiation. Furthermore, FTO promoted the expression of secreted modular calcium-binding protein 2 (SMOC2), and the knockdown of SMOC2 in hSCAPs partially attenuated the promotion of odontoblastic differentiation mediated by FTO overexpression under LPS-induced inflammation. This study revealed that FTO positively regulates the odontoblastic differentiation ability of hSCAPs by promoting SMOC2 expression. Furthermore, LPS-induced inflammation compromises the odontoblastic differentiation of hSCAPs by downregulating FTO, highlighting the promising role of FTO in regulating hSCAPs differentiation under the inflammatory microenvironment.
Collapse
Affiliation(s)
- Qi Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yumei Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wushuang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Fuping Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.H.); (Y.S.); (W.H.); (F.Z.); (H.H.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
7
|
Bucchi C, Bucchi A, Martínez-Rodríguez P. Biological properties of stem cells from the apical papilla exposed to lipopolysaccharides: An in vitro study. Arch Oral Biol 2024; 159:105876. [PMID: 38181490 DOI: 10.1016/j.archoralbio.2023.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVE The aim of this study was to analyze the effect of lipopolysaccharides (LPS) on the biological properties of stem cells from the apical papilla (SCAPs), such as viability, adhesion to dentin, odontoblast-like differentiation, mineralization, and release of immunomodulatory cytokines. DESIGN SCAPs were isolated from immature teeth of three donors (10 to 15 years old) and cultured in mineralizing media with or without 1 μg/mL lipopolysaccharide (LPS). Cells were seeded and cultured under standardized conditions; viability was assessed by MTT assay on days 1, 3, 5, and 7; adhesion to dentin was analyzed using an environmental scanning electron microscope after 2 days; the expression of odontogenic and mineralization genes (DSPP, DMP-1, OCN, Col1A1) was evaluated through qPCR after 14 days, mineralization was evaluated with alizarin red staining after 21 days; and the release of immunomodulatory cytokines (IL-6 and IL-10) was measured by ELISA after 1 and 7 days. The Kruskal-Wallis test was performed to detect the effect of LPS on SCAPs, followed by the Dunn-Sidak test. RESULTS LPS presence in the culture media affected SCAPs viability on day 5 and increased IL-6 secretion by day 7, however, SCAPs retained the adhesion to dentin and mineralization capacities, as well as the differentiation capacity into a mineralizing phenotype. CONCLUSION In conclusion, within the limitations of this in vitro study, and under the inflammatory microenvironment simulated in this study, stem cells from the apical papilla were found with retained adhesion capacity to dentin, differentiation into a mineralizing phenotype, mineralization, and release of IL-10.
Collapse
Affiliation(s)
- Cristina Bucchi
- Integral Adult Dentistry Department, Universidad de La Frontera, Temuco, Chile; Oral Biology Center, Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile.
| | - Ana Bucchi
- Integral Adult Dentistry Department, Universidad de La Frontera, Temuco, Chile
| | | |
Collapse
|
8
|
Teawcharoensopa C, Srisuwan T. The potential use of ascorbic acid to recover the cellular senescence of lipopolysaccharide-induced human apical papilla cells: an in vitro study. Clin Oral Investig 2023; 28:49. [PMID: 38153550 DOI: 10.1007/s00784-023-05455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES To examine the effect of lipopolysaccharide (LPS) on cellular senescence induction of human apical papilla cells (hAPCs) and evaluate the potential use of 50 μg/ml ascorbic acid to recover cellular senescence and regenerative functions. MATERIALS AND METHODS hAPCs were treated with LPS at 1 and 10 μg/ml either with or without 50 μg/ml ascorbic acid for 48 h. The cellular senescence biomarkers were analyzed by senescence-associated β-galactosidase (SA-β-gal) staining and senescence-related gene expression, p16 and p21. Cell migration, at 12 h and 24 h, was evaluated using a scratch wound assay. Mineralization potential was assessed at 21 days using Alizarin red S staining and dentine sialophosphoprotein (DSPP) and bone sialoprotein (BSP) gene expression. RESULTS 1 μg/ml and 10 μg/ml LPS stimulation for 48 h induced cellular senescence, as shown by remarkable SA-β-gal staining and p16 and p21 gene expression. The percentage of wound closure and mineralized formation was reduced. The co-incubation with ascorbic acid significantly down-regulated the level of SA-β-gal staining. The reduction of senescence-associated gene expressions was observed. Ascorbic acid improved cell migration, mineralized nodule formation, and the expression of DSPP and BSP genes in LPS-treated hAPCs. CONCLUSIONS LPS significantly promoted cellular senescence on hAPCs and diminished the cell function capacity. Co-presence of ascorbic acid could impede cellular senescence and possibly improve the regenerative capacity of LPS-induced senescent hAPCs in vitro. CLINICAL RELEVANCE The data support the in vitro potential benefit of ascorbic acid on cellular senescence recovery of apical papilla cells.
Collapse
Affiliation(s)
- Chananporn Teawcharoensopa
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand
- Sikhoraphum Hospital Dental Department, Surin, TH, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand.
| |
Collapse
|
9
|
Zymovets V, Rakhimova O, Wadelius P, Schmidt A, Brundin M, Kelk P, Landström M, Vestman NR. Exploring the impact of oral bacteria remnants on stem cells from the Apical papilla: mineralization potential and inflammatory response. Front Cell Infect Microbiol 2023; 13:1257433. [PMID: 38089810 PMCID: PMC10711090 DOI: 10.3389/fcimb.2023.1257433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Bacterial persistence is considered one of the main causal factors for regenerative endodontic treatment (RET) failure in immature permanent teeth. This interference is claimed to be caused by the interaction of bacteria that reside in the root canal with the stem cells that are one of the essentials for RET. The aim of the study was to investigate whether prolonged exposure of stem cells from the apical papilla (SCAP) to bacterial remnants of Fusobacterium nucleatum, Actinomyces gerensceriae, Slackia exigua, Enterococcus faecalis, Peptostreptococcaceae yurii, commonly found in infected traumatized root canals, and the probiotic bacteria Lactobacillus gasseri and Limosilactobacillus reuteri, can alter SCAP's inflammatory response and mineralization potential. Methods To assess the effect of bacterial remnants on SCAP, we used UV-C-inactivated bacteria (as cell wall-associated virulence factors) and bacterial DNA. Histochemical staining using Osteoimage Mineralization Assay and Alizarin Red analysis was performed to study SCAP mineralization, while inflammatory and osteo/odontogenic-related responses of SCAPs were assessed with Multiplex ELISA. Results We showed that mineralization promotion was greater with UV C-inactivated bacteria compared to bacterial DNA. Immunofluorescence analysis detected that the early mineralization marker alkaline phosphatase (ALP) was increased by the level of E. coli lipopolysaccharide (LPS) positive control in the case of UV-C-inactivated bacteria; meanwhile, DNA treatment decreased the level of ALP compared to the positive control. SCAP's secretome assessed with Multiplex ELISA showed the upregulation of pro-inflammatory factors IL-6, IL-8, GM-CSF, IL-1b, neurotrophic factor BDNF, and angiogenic factor VEGF, induced by UV-C-killed bacteria. Discussion The results suggest that long term stimulation (for 21 days) of SCAP with UV-C-inactivated bacteria stimulate their mineralization and inflammatory response, while DNA influence has no such effect, which opens up new ideas about the nature of RET failure.
Collapse
Affiliation(s)
| | | | - Philip Wadelius
- Department of Endodontics, Region of Västerbotten, Umeå, Sweden
| | - Alexej Schmidt
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Malin Brundin
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Peyman Kelk
- Section for Anatomy, Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
| | - Maréne Landström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Nelly Romani Vestman
- Department of Odontology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Liu Q, Gao Y, He J. Stem Cells from the Apical Papilla (SCAPs): Past, Present, Prospects, and Challenges. Biomedicines 2023; 11:2047. [PMID: 37509686 PMCID: PMC10377451 DOI: 10.3390/biomedicines11072047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Dental diseases occurring on young permanent teeth usually lead to the premature arrest of tooth root development. Sustained tooth root elongation is necessary to achieve the goal of long-term preservation of affected teeth. To this end, stem cell-based regenerative endodontic treatment has been regarded as one of the most promising strategies for treating young permanent teeth with pulp and periapical infections. Endogenous stem cells residing in the apical papilla, named stem cells from the apical papilla (SCAPs), have been intensively investigated due to their critical roles in pulp regeneration and root redevelopment. The present review summarizes advances in the field of SCAPs studies and discusses the challenges that need to be further addressed.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuan Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinzhi He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Li FC, Kishen A. 3D Organoids for Regenerative Endodontics. Biomolecules 2023; 13:900. [PMID: 37371480 DOI: 10.3390/biom13060900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Apical periodontitis is the inflammation and destruction of periradicular tissues, mediated by microbial factors originating from the infected pulp space. This bacteria-mediated inflammatory disease is known to interfere with root development in immature permanent teeth. Current research on interventions in immature teeth has been dedicated to facilitating the continuation of root development as well as regenerating the dentin-pulp complex, but the fundamental knowledge on the cellular interactions and the role of periapical mediators in apical periodontitis in immature roots that govern the disease process and post-treatment healing is limited. The limitations in 2D monolayer cell culture have a substantial role in the existing limitations of understanding cell-to-cell interactions in the pulpal and periapical tissues. Three-dimensional (3D) tissue constructs with two or more different cell populations are a better physiological representation of in vivo environment. These systems allow the high-throughput testing of multi-cell interactions and can be applied to study the interactions between stem cells and immune cells, including the role of mediators/cytokines in simulated environments. Well-designed 3D models are critical for understanding cellular functions and interactions in disease and healing processes for future therapeutic optimization in regenerative endodontics. This narrative review covers the fundamentals of (1) the disease process of apical periodontitis; (2) the influence and challenges of regeneration in immature roots; (3) the introduction of and crosstalk between mesenchymal stem cells and macrophages; (4) 3D cell culture techniques and their applications for studying cellular interactions in the pulpal and periapical tissues; (5) current investigations on cellular interactions in regenerative endodontics; and, lastly, (6) the dental-pulp organoid developed for regenerative endodontics.
Collapse
Affiliation(s)
- Fang-Chi Li
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Anil Kishen
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
12
|
Loukelis K, Machla F, Bakopoulou A, Chatzinikolaidou M. Kappa-Carrageenan/Chitosan/Gelatin Scaffolds Provide a Biomimetic Microenvironment for Dentin-Pulp Regeneration. Int J Mol Sci 2023; 24:ijms24076465. [PMID: 37047438 PMCID: PMC10094618 DOI: 10.3390/ijms24076465] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
This study aims to investigate the impact of kappa-carrageenan on dental pulp stem cells (DPSCs) behavior in terms of biocompatibility and odontogenic differentiation potential when it is utilized as a component for the production of 3D sponge-like scaffolds. For this purpose, we prepared three types of scaffolds by freeze-drying (i) kappa-carrageenan/chitosan/gelatin enriched with KCl (KCG-KCl) as a physical crosslinker for the sulfate groups of kappa-carrageenan, (ii) kappa-carrageenan/chitosan/gelatin (KCG) and (iii) chitosan/gelatin (CG) scaffolds as a control. The mechanical analysis illustrated a significantly higher elastic modulus of the cell-laden scaffolds compared to the cell-free ones after 14 and 28 days with values ranging from 25 to 40 kPa, showing an increase of 27-36%, with the KCG-KCl scaffolds indicating the highest and CG the lowest values. Cell viability data showed a significant increase from days 3 to 7 and up to day 14 for all scaffold compositions. Significantly increasing alkaline phosphatase (ALP) activity has been observed over time in all three scaffold compositions, while the KCG-KCl scaffolds indicated significantly higher calcium production after 21 and 28 days compared to the CG control. The gene expression analysis of the odontogenic markers DSPP, ALP and RunX2 revealed a two-fold higher upregulation of DSPP in KCG-KCl scaffolds at day 14 compared to the other two compositions. A significant increase of the RunX2 expression between days 7 and 14 was observed for all scaffolds, with a significantly higher increase of at least twelve-fold for the kappa-carrageenan containing scaffolds, which exhibited an earlier ALP gene expression compared to the CG. Our results demonstrate that the integration of kappa-carrageenan in scaffolds significantly enhanced the odontogenic potential of DPSCs and supports dentin-pulp regeneration.
Collapse
Affiliation(s)
- Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
| | - Foteini Machla
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
- Foundation for Research and Technology Hellas-Institute of Electronic Structure and Laser (FORTH-IESL), 70013 Heraklion, Greece
| |
Collapse
|
13
|
Vaseenon S, Srisuwan T, Chattipakorn N, Chattipakorn SC. Lipopolysaccharides and hydrogen peroxide induce contrasting pathological conditions in dental pulpal cells. Int Endod J 2023; 56:179-192. [PMID: 36269677 DOI: 10.1111/iej.13853] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/17/2023]
Abstract
AIM To determine the effects of lipopolysaccharides (LPS), hydrogen peroxide (H2 O2 ), and both combined on cell proliferation/differentiation, inflammation, mitochondrial dynamics as indicated by mitochondrial fission/fusion, antioxidants as indicated by superoxide dismutase 2 (SOD2), and apoptosis of human dental pulpal cells (HDPCs). METHODOLOGY Pulpal tissues from eight healthy subjects (n = 8) were collected from Faculty of Dentistry, Chiang Mai University. Isolated HDPCs from healthy donors were divided into four experimental groups: vehicle, 20 μg/ml LPS, 400 μM H2 O2 , and the two combined. All experimental groups were investigated to assess cell proliferation, mineralization, differentiation, inflammation, mitochondrial dynamics, antioxidants, and apoptosis. RESULTS H2 O2 and combined agents decreased cell proliferation of HDPCs equally. LPS, H2 O2, and both combined decreased mineralization and differentiation with an increase in tumour necrosis factor-alpha (TNF-α) levels. Surprisingly, LPS and combined agents increased SOD2 expression and caused an imbalance in mitochondrial dynamics. A significant increase in apoptosis was observed in the case of H2 O2 and combined agents. CONCLUSIONS These findings suggest that LPS induced inflammation, imbalanced mitochondrial dynamics, and reduced cell differentiation without altering apoptosis and cell proliferation. However, H2 O2 decreased cell proliferation, and differentiation, and increased inflammation, and apoptosis without interfering with mitochondrial dynamics. Based on our findings, combining LPS and H2 O2 could be potentially used as the inducers in in vitro study to mimic the clinical pulpitis.
Collapse
Affiliation(s)
- Savitri Vaseenon
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
14
|
Dang H, Chen W, Chen L, Huo X, Wang F. TPPU inhibits inflammation-induced excessive autophagy to restore the osteogenic differentiation potential of stem cells and improves alveolar ridge preservation. Sci Rep 2023; 13:1574. [PMID: 36709403 PMCID: PMC9884285 DOI: 10.1038/s41598-023-28710-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/23/2023] [Indexed: 01/30/2023] Open
Abstract
Inflammation-induced autophagy is a double-edged sword. Dysfunction of autophagy impairs the differentiation capacity of mesenchymal stem cells and enhances inflammation-induced bone loss. Tooth extraction with periodontal and/or endodontic lesions exacerbates horizontal and vertical resorption of alveolar bone during the healing period. Alveolar socket preservation (ASP) procedure following tooth extraction has important clinical implications for future prosthodontic treatments. Studies have shown that epoxyeicosatrienoic acids (EETs) have significant anti-inflammatory effects and participate in autophagy. However, whether EETs can minimize alveolar bone resorption and contribute to ASP by regulating autophagy levels under inflammatory conditions remain elusive. Here, we figured out that LPS-induced inflammatory conditions increased the inflammatory cytokine and inhibited osteogenic differentiation of human dental pulp stem cells (hDPSCs), and led to excessive autophagy of hDPSCs. Moreover, we identified that increased EETs levels using TPPU, a soluble epoxide hydrolase inhibitor, reversed these negative outcomes. We further demonstrated the potential of TPPU to promote early healing of extraction sockets and ASP, and speculated that it was related to autophagy. Taken together, these results suggest that targeting inhibition of soluble epoxide hydrolase using TPPU plays a protective role in the differentiation and autophagy of mesenchymal stem cells and provides potential feasibility for applying TPPU for ASP, especially under inflammatory conditions.
Collapse
Affiliation(s)
- Haixia Dang
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.,School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China.,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, 116044, China
| | - Lan Chen
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xinru Huo
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China. .,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, 116044, China. .,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116086, China.
| |
Collapse
|
15
|
Wang D, Zhu N, Xie F, Qin M, Wang Y. Long non-coding RNA IGFBP7-AS1 promotes odontogenic differentiation of stem cells from human exfoliated deciduous teeth through autophagy: An in vitro study. Arch Oral Biol 2022; 141:105492. [DOI: 10.1016/j.archoralbio.2022.105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
|
16
|
Countryman K, Chen YW, Johnson JD, Paranjpe A. N-Acetylcysteine Protects the Stem Cells of the Apical Papilla. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.848081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
ObjectivePrevious research has demonstrated that stem cells of the apical papilla (SCAP) have a lower differentiation potential and are less resistant to cell death as compared to other stem cells. N-acetyl cysteine (NAC) prevents apoptosis of the dental pulp stem cells (DPSCs) by inducing differentiation of these cells. The use of NAC with SCAP could possibly, enhance their differentiation and resistance to cytotoxicity. Hence, the aim of this study was to determine if NAC could prevent apoptosis of SCAP by promoting proliferation and differentiation of these cells thereby contributing to the success of Regenerative endodontic procedures (REPs).MethodsHuman SCAP were cultured with and without 2-hydroxyethyl methacrylate (HEMA), 20 mM NAC and Dexamethasone (Dex). Proliferation rates were analyzed at days 4 and 7. Flow cytometric analysis was used to analyze the levels of cell death. Differentiation of the cells was analyzed using Real-time PCR and an ALP assay. Data were analyzed using ANOVA with a post-hoc Tukey test.ResultsThe NAC-treated cells had similar cell viability compared with the controls. The cells treated with NAC + HEMA had significantly higher rates of proliferation as compared to the HEMA only treated groups and displayed more cell viability when these groups were compared with flow cytometric analysis. Real-time PCR and the ALP assay demonstrated that the NAC group upregulated ALP, RUNX-2, and DSPP genes.ConclusionThe data demonstrated that NAC protects the SCAP from apoptosis and enhances the proliferation and differentiation potential of these cells suggesting that NAC could be used effectively during REPs.
Collapse
|
17
|
Li FC, Hussein H, Magalhaes M, Selvaganapathy PR, Kishen A. Deciphering Stem Cell from Apical Papilla - Macrophage Choreography using a Novel 3D Organoid System. J Endod 2022; 48:1063-1072.e7. [PMID: 35513088 DOI: 10.1016/j.joen.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Immune cell - mesenchymal stem cell crosstalk modulates the process of repair and regeneration. In this study, a novel heterogenous cell containing matrix based three-dimensional (3D) tissue-construct was employed to study the interactions between stem cells from apical papilla (SCAP) and macrophage for a comprehensive understanding on the cellular signalling mechanisms guiding inflammation and repair. METHODS SCAP and macrophages were seeded with collagen in 3D printed molds to generate self-assembled tissue-constructs, which were exposed to three conditions: no stimulation, lipopolysaccharide (LPS), and interleukin-4 (IL-4) from 0 to 14 days. Specimens from each group were evaluated for cellular interactions, inflammatory mediators (IL-1β, TNF-α, MDC, MIP-1β, MCP-1, IL-6, IL-8, TGF-β1, IL-1RA, IL-10), expression of surface markers (CD80, 206), transcription factors (pSTAT1, pSTAT6) and SCAP differentiation markers (DSPP, DMP-1, and alizarin red) using confocal laser scanning microscopy and multiplex cytokine profiling from 2 to 14 days. RESULTS SCAP and macrophages displayed a cytokine-mediated interaction and differentiation characteristics. The increased pro-inflammatory cytokines/chemokines: IL-1β, TNF-α, MDC and MIP-1β in the earlier phase followed by the higher ratio of pSTAT6/pSTAT1 and decreased CD206 (p<0.05), indicated a distinct polarization behavior in macrophages during repair in LPS group. Conversely, the equal ratio of pSTAT6/pSTAT1, late increase in CD206 and amplified secretion of IL-1RA, IL-10 and TGF-β1 (p<0.05) in the anti-inflammatory environment, directed alternative macrophage polarization, promoting SCAP differentiation and tissue modeling in IL-4 group. CONCLUSIONS The novel 3D organoid system developed in this study allowed a comprehensive analysis of the SCAP-macrophage interactions during inflammation and healing, providing a deeper insight on the periapical dynamics of immature tooth.
Collapse
Affiliation(s)
- Fang-Chi Li
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Hebatullah Hussein
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Faculty of Dentistry, Ain Shams University, Endodontics Department, Cairo, Egypt
| | - Marco Magalhaes
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - P Ravi Selvaganapathy
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Xu H, Zhao J, Chen G, Yuan Z, Liu J. Effects of BMAL1 on dentinogenic differentiation of Dental Pulp Stem Cells via PI3K / Akt / mTOR pathway. Int Endod J 2022; 55:505-516. [PMID: 35263812 DOI: 10.1111/iej.13720] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
AIM The present study was aimed to investigate the effect of the circadian clock gene Bmal1 on dentinogenic differentiation of dental pulp stem cells (DPSCs) under inflammatory conditions. METHODOLOGY DPSCs were isolated from the pulp tissue of the healthy donor and were then stimulated with different concentrations of lipopolysaccharide (LPS) to mimic inflammatory conditions. Real-time polymerase chain reaction (PCR) was used to detect the gene expression of circadian clock genes Bmal1, Clock, Per1, Per2, Cry1, and Cry2. Western blot (WB) was applied to analyze the protein expression of circadian clock proteins (BMAL1, CLOCK) and dentinogenic differentiation related proteins (DSPP, DMP1). In addition, the apoptosis and osteogenic differentiation of DPSCs were also analyzed in the presence of different concentrations of LPS. RESULTS The expression of circadian clock genes of DPSCs significantly changed in an inflammatory environment. WB analysis shows that BMAL1 is relevant to the dentinogenic differentiation of DPSCs. In low concentrations of LPS-mimicked inflammatory condition, the expression of BMAL1 increased and promoted the dentinogenic differentiation of DPSCs. However, under high concentrations of LPS-mimicked inflammatory condition, the expression of BMAL1 decreased and inhibited the dentinogenic differentiation of DPSCs. Moreover, the effects of BMAL1 on dentinogenic differentiation of DPSCs may be through PI3K / Akt / mTOR pathway. CONCLUSIONS This study showed that the circadian clock gene Bmal1 affected dentinogenic differentiation of DPSCs, providing a new insight for clinical stem cell-based restorative dentinogenesis therapies.
Collapse
Affiliation(s)
- Hui Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiajia Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiarong Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
19
|
Li FC, Shahin-Shamsabadi A, Selvaganapathy PR, Kishen A. Engineering a novel stem cells from apical papilla - macrophages organoid for regenerative endodontics. J Endod 2022; 48:741-748. [PMID: 35245579 DOI: 10.1016/j.joen.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Three-dimension (3D) tissue-construct with a heterogeneous cell population is critical to understand the interactions between immune cells and stem cells from apical papilla (SCAP) in the periapical region for developing treatment strategies in regenerative endodontics. This study aims to develop and characterize a 3D tissue-construct with binary cell system for studying the interactions between SCAP and macrophages in presence of lipopolysaccharide (LPS - pro-inflammatory) and interleukin-4 (IL-4 - anti-inflammatory) environments. METHODS SCAP and macrophages were seeded in the 3D printed dumbbell-shaped molds to generate tissue-constructs with binary cell population. Two experimental (LPS and IL-4) and control (non-stimulation) conditions were applied to the tissue-constructs to determine the characteristics of the tissue-construct, volume of viable cells and their morphology using a confocal laser scanning microscopy from 0 to 7 days period. Experiments were conducted in triplicates and data were analyzed with trend analysis and two-way analysis of variance at the significance of p < 0.05. RESULTS The tissue-constructs revealed distinct SCAP-macrophage interaction in pro-/anti-inflammatory environments. SCAP displayed characteristic self-organization as a cap-shaped structure in the tissue-construct. The growth of cells and cell-to-cell as well as cell-to-matrix interactions resulted in 70% and 30% decreased dimension of the tissue graft on the SCAP side and macrophage side respectively at day 7 (p < 0.0001). The tissue environments influenced macrophages-SCAP interactions, resulting in altered viable cell volume (p < 0.05), morphology and structural organization. CONCLUSIONS This study developed and characterized an apical papilla organoid in a 3D collagen based tissue-construct for studying SCAP-macrophage crosstalk in tissue regeneration as well as repair.
Collapse
Affiliation(s)
- Fang-Chi Li
- The Kishen Lab, Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | - P Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Hamilton, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Canada
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Canada; Department of Dentistry, Mount Sinai Health System, Toronto, Canada
| |
Collapse
|
20
|
Andrukhov O. Toll-Like Receptors and Dental Mesenchymal Stromal Cells. FRONTIERS IN ORAL HEALTH 2022; 2:648901. [PMID: 35048000 PMCID: PMC8757738 DOI: 10.3389/froh.2021.648901] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Dental mesenchymal stromal cells (MSCs) are a promising tool for clinical application in and beyond dentistry. These cells possess multilineage differentiation potential and immunomodulatory properties. Due to their localization in the oral cavity, these cells could sometimes be exposed to different bacteria and viruses. Dental MSCs express various Toll-like receptors (TLRs), and therefore, they can recognize different microorganisms. The engagement of TLRs in dental MSCs by various ligands might change their properties and function. The differentiation capacity of dental MSCs might be either inhibited or enhanced by TLRs ligands depending on their nature and concentrations. Activation of TLR signaling in dental MSCs induces the production of proinflammatory mediators. Additionally, TLR ligands alter the immunomodulatory ability of dental MSCs, but this aspect is still poorly explored. Understanding the role of TLR signaling in dental MSCs physiology is essential to assess their role in oral homeostasis, inflammatory diseases, and tissue regeneration.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Functional Dental Pulp Regeneration: Basic Research and Clinical Translation. Int J Mol Sci 2021; 22:ijms22168991. [PMID: 34445703 PMCID: PMC8396610 DOI: 10.3390/ijms22168991] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases account for a large proportion of dental visits, the current treatments for which are root canal therapy (RCT) and pulp revascularisation. Despite the clinical signs of full recovery and histological reconstruction, true regeneration of pulp tissues is still far from being achieved. The goal of regenerative endodontics is to promote normal pulp function recovery in inflamed or necrotic teeth that would result in true regeneration of the pulpodentinal complex. Recently, rapid progress has been made related to tissue engineering-mediated pulp regeneration, which combines stem cells, biomaterials, and growth factors. Since the successful isolation and characterisation of dental pulp stem cells (DPSCs) and other applicable dental mesenchymal stem cells, basic research and preclinical exploration of stem cell-mediated functional pulp regeneration via cell transplantation and cell homing have received considerably more attention. Some of this effort has translated into clinical therapeutic applications, bringing a ground-breaking revolution and a new perspective to the endodontic field. In this article, we retrospectively examined the current treatment status and clinical goals of pulpal and periapical diseases and scrutinized biological studies of functional pulp regeneration with a focus on DPSCs, biomaterials, and growth factors. Then, we reviewed preclinical experiments based on various animal models and research strategies. Finally, we summarised the current challenges encountered in preclinical or clinical regenerative applications and suggested promising solutions to address these challenges to guide tissue engineering-mediated clinical translation in the future.
Collapse
|
22
|
Yang S, Fan W, Li Y, Liu Q, He H, Huang F. Autophagy in tooth: Physiology, disease and therapeutic implication. Cell Biochem Funct 2021; 39:702-712. [PMID: 33929054 DOI: 10.1002/cbf.3636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023]
Abstract
Autophagy is an evolutionarily conserved cellular process, in which damaged organelles and proteins are engulfed in autophagic vesicles and subsequently fuse with lysosomes for degradation. Autophagy is widely involved in different physiologic or pathologic processes in human. Accumulating evidence indicates that autophagy operates as a critical quality control mechanism to maintain pulp homeostasis and structural integrity of the dentin-pulp complex. Autophagy is activated during stresses and is involved in the pathogenesis of pulpitis and periapical infection. Recent discoveries have also provided intriguing insights into the roles of autophagy in tooth development, pulp aging and stress adaptation. In this review, we provide an update on the multifaceted functions of autophagy in physiology and pathophysiology of tooth. We also discuss the therapeutic implications of autophagy modulation in diseases and the regeneration of dentin-pulp complex.
Collapse
Affiliation(s)
- Shengyan Yang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yaoyin Li
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qing Liu
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
23
|
Shen Z, Tsao H, LaRue S, Liu R, Kirkpatrick TC, Souza LCD, Letra A, Silva RM. Vascular Endothelial Growth Factor and/or Nerve Growth Factor Treatment Induces Expression of Dentinogenic, Neuronal, and Healing Markers in Stem Cells of the Apical Papilla. J Endod 2021; 47:924-931. [PMID: 33652017 DOI: 10.1016/j.joen.2021.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The goal of regenerative endodontic procedures is to preserve and stimulate stem cells from the apical papilla (SCAPs) to develop the pulp-dentin complex using various growth factors and scaffolds. We hypothesized that the treatment of SCAPs with vascular endothelial growth factor (VEGF) or nerve growth factor (NGF) may impact the expression of osteogenic and dentinogenic markers. METHODS The optimum concentration of VEGF and NGF on SCAP viability was assessed and introduced to SCAPs for 6-24 hours. SCAPs were also challenged with Escherichia coli lipopolysaccharide (LPS). Messenger RNA (mRNA) expression of DSPP, DMP1, TGFB1, OCN, SP7, and TWIST1 was examined via quantitative reverse transcription polymerase chain reaction. Immunohistochemistry was used to verify protein expression. In addition, total RNA from NGF-treated SCAPs in the presence or absence of LPS was extracted for RNA sequencing. RESULTS Compared with untreated cells, NGF-treated SCAPs showed markedly higher levels of DSPP, DMP1, and TGFB1 mRNAs (>9-fold change, P < .05), and SCAPs treated with both VEGF and NGF showed a significant increase of DSPP and TGFB1 mRNAs (P < .05). In addition, in LPS-challenged SCAPs, treatment with these growth factors also exhibited increased expression of DSPP, DMP1, and TGFB1 mRNAs, with the most significant change induced by VEGF (P < .05). Immunohistochemistry confirmed increased dentin sialophosphoprotein, dentin matrix acidic phosphoprotein 1, and transforming growth factor beta 1 protein expression in treated SCAPs. RNA sequencing revealed multiple pathways regulated by NGF, including TGF-β and neurogenic pathways. CONCLUSIONS VEGF- and NGF-induced dentinogenic/neuronal/healing marker expression in SCAPs indicates the potential value of applying these growth factors in regenerative endodontic procedures.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Helen Tsao
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Sean LaRue
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Richard Liu
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Timothy C Kirkpatrick
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Letícia Chaves de Souza
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas; Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas School of Dentistry at Houston, Houston, Texas; Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Renato M Silva
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas; Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, Texas.
| |
Collapse
|
24
|
Aguilar P, Mahanonda R, Sa-Ard-Iam N, Lertchirakarn V. Effects of lipopolysaccharide on proliferation, migration and osteogenic differentiation of apical papilla cells from early and late stage of root development. AUST ENDOD J 2020; 47:281-289. [PMID: 33296134 DOI: 10.1111/aej.12475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/18/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate the effects of lipopolysaccharide on cell proliferation, migration and osteogenic differentiation of apical papilla cells from early and late stage of root development. After challenging with various lipopolysaccharide concentrations to apical papilla cells from both stages of root development for 168 h, cell proliferation and migration were investigated. Osteogenic differentiation was examined by Alizarin red staining, and gene expressions of bone/cementum or dentin-related genes were examined by polymerase chain reaction. Lipopolysaccharide did not affect cell proliferation and migration in both groups. Lipopolysaccharide at 1 and 5 µg mL-1 increased Alizarin red staining in apical papilla cells from early-stage but not the late-stage cells. Bone sialoprotein (bone/cementum marker) gene expression increased in both early and late stage of root development at 5 µg mL-1 . These results might explain bone/cementum generation in regenerative endodontic procedures.
Collapse
Affiliation(s)
- Panuroot Aguilar
- Oral Biology Program, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Rangsini Mahanonda
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Noppadol Sa-Ard-Iam
- Immunology Laboratory, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Veera Lertchirakarn
- Faculty of Dentistry, Department of Microbiology and, RU on Oral Microbiology and Immunology, Chulalongkorn University, Patumwan, Bangkok, Thailand
| |
Collapse
|
25
|
Azarpazhooh A, Diogenes AR, Fouad AF, Glickman GN, Kang MK, Kishen A, Levin L, Roda RS, Sedgley CM, Tay FR, Hargreaves KM. Insights into the April 2020 Issue of the Journal of Endodontics. J Endod 2020; 46:453-454. [PMID: 32216904 DOI: 10.1016/j.joen.2020.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Amir Azarpazhooh
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Anibal R Diogenes
- University of Texas Health San Antonio School of Dentistry, San Antonio, Texas
| | - Ashraf F Fouad
- University of North Carolina, Chapel Hill, North Carolina
| | | | - Mo K Kang
- University of California Los Angeles School of Dentistry, Los Angeles, California
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Franklin R Tay
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|